
RESEARCH CONTRl6UTlONS

Management of
C0ttlpl4titlg Structured Tools and
Gordon 8. Davis
Editor Conditional Logic:

An Empirical Investigation

IRIS VESSEY and RON WEBER

ABSTRACT: Prior research has identified two
psychological processes that appear to be used by
programmers when they perform design and coding tasks:
(a) taxonomizing-identifying the conditions that evoke
particular actions; and (b) sequencing-converting the taxa
into a linear sequence of program code. Three structured
tools-structured English, decision tables, and decision
trees-were investigated in a laboratory experiment to
determine how they facilitated these two processes. When
taxonomizing had to be undertaken, structured English
outperformed decision tables, and decision trees
outperformed structured English. When sequencing had to be
undertaken, decision frees and structured English
outperformed decision tables, but decision trees and
structured English evoked the same level of performance.

1. INTRODUCTION
The proponents of stru.ctured analysis and structured
design advocate three tools for representing conditional
logic: structured English, decision tables, and decision
trees. These tools are used in the final step of struc-
tured analysis to describe policy for a transform (bub-
ble) in a data-flow diagram-the major means of parti-
tioning, analyzing, and documenting the problem do-
main. In addition, they may be converted into pseudo-
code for modules outlined on the structure chart during
structured design (see, e.g., [ll]).

This research was funded by tht? Australian Research Grants Scheme.

(1; 1986 ACM OOOl-0782/86/0100-0048 7.50

Knowledge about the relative strengths and limita-
tions of these three tools is limited, however. De Marco
[4, p. 161 claims they are “something better than narra-
tive text”-the existing tool-but he does not advocate
one in particular. Gane and Sarson [8] argue that deci-
sion tables are more useful than decision trees when
the number of actions is large, many combinations of
conditions exist, and there is a risk of ambiguities and
omissions; but at least for simple problems the pictorial
vividness of the decision tree makes it more under-
standable. Page-iones [ll] advocates using structured
English if complex branching processes are not in-
volved.

This article describes an experiment that seeks to
provide insight into the relative strengths and limita-
tions of these three tools. Our motivation for the re-
search is the belief that there are significant differences
among the tools that facilitate or inhibit the expression
of conditional logic, depending on the analysis, design,
or programming task to be undertaken. Practically,
these differences are important as conditional state-
ments are frequently used in program code (e.g., [FI]),
even when fourth-generation languages are employed
[14]. Theoretically, these differences are also important
as they provide insights into several psychological con-
structs that seem to impact the performance of analysts,
designers, and programmers.

The article proceeds as follows. Section 2 reviews
some prior research that provides the background and
motivation for the current research. Section 3 presents

48 Communicafions of the AC&I lanua y 1986 Volume 29 Number 1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F5465.5470&domain=pdf&date_stamp=1986-01-01

Research Confributiom

the theory underlying the current research and the
propositions investigated. Section 4 describes the em-
pirical research methodology used to test the proposi-
tions. Sections 5 and 6 present the data analysis and
discuss the results obtained. Section 7 presents our con-
clusions.

2. BACKGROUND
An important outcome of recent work on the psychol-
ogy of programming has been the recognition that we
have a poor understanding of how various program-
ming practices-indentation, commenting, naming,
etc.-facilitate or inhibit the programming process.
After a fairly extensive series of studies, many results
obtained are contradictory and counterintuitive (see,
e.g., [12]). Part of the problem may be the research
methodologies used (see, e.g., [l]). However, the more
important problem seems to be the poor theoretical
bases that have driven the research (see, e.g., [18]).

The theory seems deficient in two ways. First, we
have little knowledge of the psychological constructs
that programmers bring to bear when they undertake a
programming task. Pennington [12] illustrates this prob-
lem in the following way. She reflects upon the equivo-
cal results obtained for commenting in programs: sev-
eral empirical studies show comments to be of little
use. Clearly, she argues, commenting must be useful
under some conditions, namely, those times when the
semantics of the program are unclear. The problem is
that we do not know when the semantics of the program
are not obvious to the programmer from an examina-
tion of the executable source code. If the semantics can
be deduced easily from the code, then comments may
simply confuse the programmer. But if the semantics
are not obvious, commenting should assist the program-
mer.

Second, as a related issue, we have little knowledge
of what is “natural” for programmers. Indeed, there is
some evidence to suggest that our current notions are
misguided. For example, a nonprocedural language is
supposed to be more natural than a procedural lan-
guage. However, Welty and Stemple [20] found that
programmers using a procedural language outper-
formed programmers using a nonprocedural language.
As task complexity increases, programmers may need
to think in terms of a concrete, procedural model if
they are to solve the problem (see, also, [6]). Similarly,
Miller [lo] studied procedural instructions written by
nonprogrammers. He found that people generally avoid
conditional statements and prefer qualificational state-
ments. Thus, programming constructs like IF-THEN-
ELSE may not be natural (see, also, [IT]).

As a result of these problematical findings, several
recent studies support the notion that programming
language constructs that provide a close cognitive fit
with a person’s preferred problem solving strategy are
used more effectively (see, e.g., [16]). If this notion is to
be investigated further, however, the cognitive pro-
cesses used in programming must be better identified,

and propositions about the ways different programming
practices facilitate or inhibit these processes must be
developed.

3. THEORY
In an important paper on the psychology of program-
ming, Sime, Green, and Guest [15] hypothesized that
two tasks must be performed to produce a program:
(a) taxonomizing-identifying what conditions lead to a
particular action; and (b) sequencing-converting taxa
into the linear sequence of program code. These two
tasks evoke different psychological processes. The first
involves classifying and sorting elements according to
their attributes; the second involves specifying the tax-
onomic criteria and associated actions within the syn-
tactic and semantic constraints of the programming lan-
guage used. Figure lb (p. 49) shows (in decision-table
form) the result of a taxonomizing operation for the
conditional logic described in the narrative in Figure
la. Figure lc shows the result of a sequencing operation
where the language used prohibits an unconditional
transfer of control (GOTO).

In light of our arguments in Section 2, how well do
structured English, decision tables, and decision trees
support the taxonomizing and sequencing tasks? Con-
sider a situation in which an analyst or designer is
interviewing a user about some policy where condi-
tional logic applies. The primary objective is to estab-
lish completely and unambiguously the conditions that
lead to particular actions: in other words, the initial
task is a taxonomizing task. Assume the analyst at-
tempts to translate the user’s communications straight
into structured English-specifically, structured Eng-
lish where, in line with structured programming pre-
cepts, the GOT0 is prohibited. The task is difficult for
three reasons. First, the taxonomizing task is two-
dimensional; the analyst needs to be able to “see” the
relevant conditions as one dimension and their applica-
bility or nonapplicability to an action as another dimen-
sion. Structured English is unidimensional; it shows a
linear sequence of conditions and actions that perceptu-
ally are not easy to differentiate. Second, if the analyst
wishes to write structured English as a series of nested
tests, there is only one sequence in which the condi-
tions can be tested when the GOT0 is prohibited. Given
the taxa in Figure lb. Figure IC shows the only way
in which the series of nested tests can be constructed.
Alternatively, a series of repetitive conjunctions (e.g.,
if A and B and not C] must be written, but Green, Sime,
and Fitter [9] report that difficulties arise with this solu-
tion. Third, structured English provides no formal way
to test for completeness, consistency, and nonredun-
dancy in the code. This may be a serious failing as the
number of conditional tests to be undertaken increases.

To illustrate these difficulties, we urge the reader to
attempt to write structured English to represent the
conditional logic expressed in the narrative shown in
Figure 2a (p. 50). The narrative might represent the text
of a discussion betweqn an analyst and a user. If nested

lanuary 1986 Volume 29 Number 1 Communications of the ACM 4Y

Research Contributions

Vegetables that are both leafy and crispy should be fried, while
those that are crispy but not leafy should be boiled. Prior to
cooking, all vegetables that are not crispy should be chopped.
Then, those that are green and hard should be boiled, while
those that are hard but not green are steamed; those that are
not hard are grilled.

(a) Narratixe description of conditional logic

Crispy Y Y N N N
Hard - - Y Y N
Leafy Y N - - -
Green - - Y N -

If crispy
If leafy

fry
otherwise

boil
otherwise

chop
If hard

If green
boil

otherwise
steam

otherwise
grill

(c) Structured-English solution

FrY X
Chop x x x
Boil x x
Steam X
Grill X

(b) Decision-table solution

Leafy

/ crispy <

\

\ Hard

Boil

Green

Chop, Grill

Chop, Boil

Chop, Steam

(d) Decision-tree solution

FIGURE 1. Simple Problem Used in Experiments

conditionals are to be written, Figure 2c shows the only
solution. We believe the reader will find, as we did,
that the solution is difficult to write directly from the
narrative text.

Both decision tabl’es and decision trees overcome the
problems posed by the unidimensional nature of struc-
tured English when the taxonomizing task is to be un-
dertaken. Indeed, a primary strength of these tools is
that they separate the conditions from the actions and
show via rules or branches the particular combination
of truth-values that leads to a particular action. In es-
sence, we are arguing that decision tables and decision

trees provide a better cognitive fit than structured Eng-
lish when the taxonomizing task must be undertaken.
Which of these two tools is better is more difficult to
determine. On the one hand, we suspect that the picto-
rial vividness of decision trees makes them superior to
decision tables. On the other hand, decision tables pro-
vide formal procedures for ordering the sequence of
conditions to be tested and for checking completeness,
consistency, and redundancy. This is not the case with
decision trees. Again, attempting to determine the se-
quence of tests that avoids redundant branches in a
decision tree is a difficult task. To appreciate these

50 Communications of the ACM january 1986 Volume 29 Number 1

Research Contributions

Crispy, leafy vegetables that are juicy but not tall, are fried if
they are red; otherwise they are steamed. Crispy vegetables
that are juicy but neither tall nor leafy are grilled. Noncrispy
vegetables that are not tall but are juicy are prepared in two
steps: they are first peeled, and then if they are hard they are
boiled, otherwise they are chopped. The recommended method
of cooking all vegetables that are not juicy is roasting. Juicy
vetegables that are tall are chopped.

(a) Narrative description of conditional logic

Juicy Y Y Y Y Y Y N
Tall YNNNNN-
Crispy - Y Y Y N N -
Leafy - Y Y N - - -
Red - Y N - - - -
Hard - - - - Y N -

If juicy
If tall

chop
otherwise

If crispy
If leafy

If red

fry
otherwise

steam
otherwise

grill
otherwise

peel
If hard

boil
otherwise

chop
otherwise

roast

FV X
Steam X
Grill X
Peel x x
Boil X
Chop X X
Roast X

(b) Decision-table solution

(c) Structured-English solution

’ Roast

(d) Decision-tree solution

FIGURE 2. Complex Problem Used In Experiments

difficulties, we urge the reader to first attempt the The sequencing task is another story. When the pro-
decision-tree solution for the narrative in Figure 2a and grammer converts the conditional logic into program
then to attempt the decision-table solution (see Figures code, we argue that the structured English representa-
zd and zb]. tion facilitates this task most. The mapping from struc-

]anua y 1986 Volume 29 Number 1 Communications of the ACM 51

Research Contributions

tured English to program code is almost one to one. The
mapping from decision tables or decision trees, how-
ever, involves a transformation from a two-dimensional
representation of the logic to a unidimensional repre-
sentation. Notwithstanding that there are some
straightforward algorithms for performing this transfor-
mation (see, e.g., [1!3]), we argue that structured English
provides a closer cognitive fit with the psychological
constructs invoked to write program code.

To recap, then, the transformation of conditional
logic into program source code involves two psychologi-
cal processes. First, the analyst, designer, or program-
mer must determine the set of conditional truth-values
that leads to a particular set of actions-the taxonomiz-
ing process. Second, the taxa must be converted into
the linear representation of code-the sequencing pro-
cess. We argue that the relative strengths and limita-
tions of structured English, decision tables, and deci-
sion trees are a func:tion of how well they facilitate or
inhibit the cognitive processes invoked in each of these
two transformations.

Accordingly, we advance the following two proposi-
tions:

Proposition I: Decision tables and decision trees
facilitate th.e taxonomizing process better than
structured English.

Proposition 2: Structured English facilitates the
sequencing process better than decision tables
and decision trees.

4. METHOD
To test these propositions, a laboratory experiment was
conducted in which the performance of participants
using the three types of structured tools was measured
across different programming tasks.

4.1 Participants
One hundred twenty-four volunteer information sys-
tems and computer science students in three tertiary
institutions who had been trained in COBOL and struc-
tured analysis, design, and programming participated in
the experiment. Each was paid $30 for participation,
providing they completed all parts of the experiment.

4.2 Design
Each participant undertook three experiments. First,
the participants were given a narrative description of
some conditional logic and asked to represent the nar-
rative using one of the three types of structured tools.
Second, they were given conditional logic already de-
scribed via one of the tools and asked to convert it into
COBOL code. Third, they were given a narrative de-
scription of some conditional logic and asked to convert
it into COBOL code after representing the logic using
one of the three types of structured tools. Thus, the first
experiment tested Proposition 1, and the second experi-
ment tested Proposibon 2. The third experiment al-

lowed the effects of each tool to be investigated across
the “full” programming task-that is, design and cod-
ing-and it also took into account the possibility that
participants may switch back and forth between the
taxonomizing and sequencing processes. All experi-
ments used adaptations of cooking problems developed
by Sime et al. [IS] in an attempt to minimize the effects
of application domain knowledge.

Within each experiment, a mixed design was used
with two between-subjects factors and one within-
subjects factor. The two between-subjects factors were
tool and problem complexity. Tool was measured at
three levels: structured English, decision tables, and de-
cision trees. Problem complexity was measured at two
levels: simple and complex. A simple problem used
conditional logic that had four conditions, five actions,
and four levels of nesting when it was converted into
COBOL code. A complex problem used conditional
logic that had six conditions, seven actions, and five
levels of nesting when it was converted into COBOL
code. Two levels of problem complexity were used be-
cause, as discussed earlier, some writers argue that the
relative strengths and limitations of a tool depend on
the level of complexity of the logic to be described.
Figures la and 2a show, respectively, the narrative
used for a simple problem and a complex problem.

The within-subjects factor was problem [trial). Each
subject performed the same experimental task twice.
For example, a participant assigned to the simple
problem-structured English treatment converted narra-
tive to structured English during two consecutive trials.
Thus, two different problems with the same level of
complexity had to be devised for each task. Problems
were judged to have the same level of complexity if
they had the same number of conditions, actions, and
levels of nesting. The order of problem presentation
was randomized across participants in the experiment.

4.3 Measures of Performance
Three measures of performance were used. The pri-
mary measure was time taken to perform the experi-
mental task. The secondary measure was the number of
syntactic errors made. Participants had to conform ex-
actly with the syntactic requirements of the tool they
used and the COBOL language. For example, if a partic-
ipant misspelled a word, used a wrong level of indenta-
tion, or abbreviated a word, this was counted as a syn-
tactic error. The third measure used was number of
semantic errors made. Participants had to associate the
correct actions with the correct conditions in the tool
they used to express the logic or in the COBOL code
they wrote.

4.4 Procedure
Prior to the experiment proper, a pilot test was con-
ducted to identify any deficiencies in the experimental
materials and to obtain practice at administering the
experiment. Ten participants undertook the pilot test;
each treatment was administered at least once, and ad-

52 Communications of the ACM Ianuaty 1986 Volume 29 Number 1

Research Contributions

ditional administrations occurred when the experimen-
tal materials had to be modified or when more practice
was needed at running a treatment.

The experiment proper comprised a training session
and administration of two sets of the three experimen-
tal tasks. Participants were first allocated randomly to
treatments. Next, a training session was organized at a
convenient time for the subjects. Where possible, sub-
jects who had been allocated to the same treatment
were trained together. Training sessions normally in-
volved 3-5 participants.

A training session comprised four phases. First, the
general characteristics of the tool were reviewed. Sec-
ond, participants undertook four practice tasks of in-
creasing difficulty for the narrative-to-tool experiment.
Third, participants undertook three practice tasks of
increasing difficulty for the tool-to-code experiment. Fi-
nally, participants undertook three practice tasks of in-
creasing difficulty for the narrative-to-code experiment.
After each administration of a task, participants could
ask questions of the experimenter. They were also
given sufficient time to assimilate the nature of the task
and the experiment. The number of practice tasks used
was intended to be sufficient for learning to have
ceased and was determined on the basis of results ob-
tained during pilot testing. On the average, training ses-
sions took 3-5 hours. Interestingly, training sessions for
structured English and decision trees took about the
same time while training sessions for decision tables
took longer.

For the narrative-to-tool task, participants were first
provided with a sheet containing a narrative descrip-
tion of the conditional logic. Decision-table participants
were shown the usual procedures for converting the
narrative into a limited-entry decision table and for
checking the completeness, consistency, and redun-
dancy attributes of the decision table. Structured-
English participants were provided with the vocabulary
and syntax they were to use. Decision-tree participants
were shown the specific type of decision tree they were
to construct to represent the conditional logic. In addi-
tion. both the structured-English and decision-tree par-
ticipants were shown an heuristic for determining the
sequence of tests to be performed. Recall, one of the
difficult aspects of the coding task for conditional logic
when the GOT0 is prohibited is determining the single,
correct sequence of tests. With decision tables, this se-
quence is determined automatically by virtue of the
way the table is constructed. With structured English
and decision trees, however, this is not the case. Never-
theless, an heuristic that can be used to determine the
order of the tests is to sort the tests in descending fre-
quency and follow the positive branch of a test to its
conclusion before following the negative branch.

For the tool-to-code task, participants were first pro-
vided with a sheet containing conditional logic ex-
pressed in the tool to which they had been assigned
and a sheet containing the data definition for the
COBOL program they were to write. Next they were

shown how to convert the conditional logic into
COBOL code. In the case of structured English, this
conversion was straightforward. In the case of decision
trees, they were shown how to follow a positive branch
and then a negative branch and how to determine the
appropriate level of indenting. In the case of decision
tables, they were shown the algorithm described by
Vessey and Weber [19] for determining the path
through the table and determining the appropriate level
of indenting. For the narrative-to-code task, partici-
pants were provided with a narrative description of the
conditional logic they were to use and the data division
of the COBOL program they were to write. They were
then shown how to progress from the narrative to the
code after first expressing the conditional logic in the
tool to which they had been assigned.

In all cases, participants provided their answers on
preprinted sheets. For example, decision-table partici-
pants received a sheet with the lines for the condi-
tion stub, action stub, and rules already drawn, and
structured-English participants received a sheet with
several vertical lines drawn on the left-hand side to act
as the margins for the various levels of indenting they
chose.

When completing the answer sheets, participants
were told they were to undertake the task as quickly as
possible. Speed was their goal; however, in spite of
speed being the primary objective, they had to provide
answers that were completely accurate. In other words,
no syntactic or semantic errors were to be present in
their answers. In addition, they were told not to re-
check their answers-they should strive to be accurate
on the first iteration of their answer-and they could
write or print their answers, whichever they preferred.
These latter instructions attempted to force participants
to undertake the experiment in a consistent way. With-
out an admonishment to be completely accurate, differ-
ent participants might have traded off different levels of
accuracy and speed. Similarly, task times might have
varied considerably if participants employed varying
strategies for checking their answers, and accordingly
the effects of the tool on task performance might be
difficult to determine. In the training session, partici-
pants were given some practice at undertaking the ex-
perimental tasks before they were required to comply
with the speed instruction and have their performance
timed.

Some 1-2 weeks after the training session, partici-
pants returned to undertake the experimental tasks.
Each participant was run singly through the experi-
ments. Prior to commencing the experiments, they re-
ceived an instruction sheet to remind them of the na-
ture of the tasks they were to undertake and the proto-
cols they were to follow. The experiments were then
conducted in a quiet room, free from noise and distrac-
tions with only the participant and the experimenter
present. The experimenter simply issued and collected
the experimental materials and unobtrusively recorded
time taken for each task on a stopwatch. On the aver-

january 1986 Volume 29 Number 1 Communications of the ACM 53

Research Contributiorls

54 Communications of the ACM january 1986 Volume 29 Number 1

age, the experimental session was completed in one
hour.

Since the experiments assessed the performance of
participants, confoundings could have arisen if experi-
menter expectancies had been conveyed to the partici-
pants [3]. Consequently, all training sessions and exper-
iments were conducted by research assistants who
were not informed of the propositions that were being
tested. To ensure consistency of training, all training
sessions were conducted by a single research assistant,
but the administrations of the experiments were con-
ducted by four different research assistants.

5. RESULTS
The data analysis proceeded in three steps. The first
step involved fitting a repeated measures multivariate
analysis of variance (MANOVA) model to the data since
Pearson product moment correlation coefficients indi-
cated that the dependent variables were moderately
correlated. In all three experiments, the two between-
subjects factors (complexity and tool) and their interac-
tion (complexity x tool) were significant at the .bl
level. In addition, for the tool-to-code and narrative-to-
code experiments, the interaction between the within-
subjects factor, problem, and the between-subjects fac-
tor, complexity, was significant at the .Ol level. No
other main or interaction effects were significant at the
.Ol level.

The second step in the analysis involved fitting a
repeated measures analysis of variance model
(ANOVA) with time as the dependent variable to those
cases where the participant had made neither syntactic
nor semantic errors across the two problems in an ex-
periment. This step was undertaken for four reasons.
First, a cursory examination of Table I suggests that in
a practical sense time is the most important variable in
the MANOVA results. The mean number of syntactic
and semantic errors was low (see, also, Table II). Sec-
ond, because of the high proportion of participants who
made neither syntactic errors nor semantic errors when
undertaking an experimental problem, the distribution
of these dependent variables was acutely right skewed.
Consequently, an important assumption of MANOVA-
homogeneity of the variance-covariance matrices-was
violated. Box’s M statistic remained significant at the
.Ol level across various transformations of the data.
Thus, statistically testing contrasts under MANOVA
was a problematical procedure. Third, using repeated
measures ANOVAs with the number of syntax errors
and number of semantic errors as the dependent vari-
ables, neither main effects nor interaction effects were
significant at the .05 family level of significance.
Fourth, recall that participants were told they were to
strive for maximum speed but to ensure they first
achieved complete accuracy. The analysis of the re-
duced data set-the participants who made no errors
across both problems in an experiment-provided the
results for participants who had complied with this in-
struction.

Research Contributions

TABLE II. Syntactic and Semantic Error Rate Statistics

Proportion of Participants Undertaking an Experimental Problem
Who Made Neither Svntactic Nor Semantic Errors

N-T T-C N-C

Problem 1

Zero syntactic errors made .87 .69 .74

Zero semantic errors made .86 .79 .57

Problem 2

Zero syntactic errors made .86 .81 .74

Zero semantic errors made .86 .84 .69

Number of Participants in Each Experiment Who Made Neither
Syntactic Nor Semantic Errors Across Both Problems in the

Experiment

Experiment

N-T T-C N-C’

Simple ~-

English

Table

Tree

12 16 10

14 11 11

14 14 12

Complex

English

Table

Tree

10 8 1

13 10 5

8 15 8

With only one exception, noted below, the results of
the second step in the analysis are the same as those
obtained for the third step in the analysis in which a
repeated measures ANOVA was fitted to time for the
full data set obtained from the 124 participants. In other
words, the number of syntactic errors and the number
of semantic errors seem to have little effect on the re-
sults for the time taken to complete an experiment.
Given that larger data sets are more desirable for hy-
pothesis testing and statistical estimation purposes, the
results of the third analysis are presented below. In all
analyses, the dependent variable, time, has been con-
verted to minutes and a square root transformation ap-
plied in an attempt to correct for right skewness. This
transformation was also used in the analyses under-
taken in the second step discussed above. For the trans-
formed dependent variable, Bartlett’s test of sphericity
was insignificant at the .Ol level, indicating the trans-
formation was at least somewhat successful.

jarwary 1986 Volume 29 Number I Communications of the ACM 55

Research Contributions

For the narrative-to-tool experiment, only the two
between-subjects main effects were significant at the
.Ol level (complexity, F(1, 118) = 157.3; tool, F(2, 118) =
63.6). Neither the within-subjects factor nor any of the
interactions were significant. The results show that the
complex problems took more time than the simple
problems. For the tool factor, at the .Ol family signifi-
cance level, pairwise contrasts show that decision trees
took less time than either structured English or deci-
sion tables, and structured English took less time than
decision tables (see ‘Table I).

For the tool-to-code experiment, the two between-
subjects main effects were significant at the .Ol level
(complexity, F(1, 118) = 112.3; tool, F(2, 118) = 21.3)
and a within-subjects factor interaction effect was sig-
nificant (problem X complexity, F(l, 118) = 30.2). No
other effects were significant. Again, the results show
that the complex problems took more time than the
simple problems. For the tool factor, at the .Ol family
significance level, pairwise contrasts show that decision
trees and structured English took less time than deci-
sion tables, but there was no statistically significant
difference between the time taken for decision trees
and structured English. The significant interaction
arose because the second complex problem on the aver-
age took more time than the first complex problem, and
the first simple problem on the average took more time
than the second simple problem. Recall that the two
problems were randomized across trials, so the differ-
ence must reflect different levels of complexity be-
tween the problems.

For the narrative-to-code experiment, the two
between-subjects main effects were significant at the
.Ol level (complexity, F(l, 118) = 255.2; tool, F(2, 118) =
49.0). The within-subjects factor and an interaction ef-
fect were also significant at the .Ol level (problem,
F(1, 18) = 12.53; problem X complexity, F(l, 118) =
12.97). Note, this is the one area of difference between
the reduced data set {and the full data set; in the re-
duced data set only the within-subjects main effect was
significant. Once again, the complex problems took
more time than the simple problems. For the tool fac-
tor, at the .Ol family significance level, pairwise con-
trasts show that decision trees and structured English
took less time than decision tables. The difference be-
tween decision trees and structured English was almost
significant [p = .Oll), the former taking less time than
the latter. The significant interaction arose because the
second complex problem on average took more time
than the first complex problem.

6. DISCUSSION
The narrative-to-tool results provide partial support for
Proposition 1: as expected, decision trees outperformed
structured English for the taxonomizing task; but, con-
trary to expectations, structured English outperformed
decision tables. Table I also shows that even on the
basis of the number of syntactic errors made and the

number of semantic errors made, there is little support
for decision tables as a superior tool to structured Eng-
lish for the taxonomizing task.

The tool-to-code results provide partial support for
Proposition 2: as expected, structured English outper-
formed decision tables for the sequencing task; but,
contrary to expectations, structured English and deci-
sion trees evoked the same level of performance. Again,
there is little support for structured English as a supe-
rior tool to decision trees on the basis of the number of
syntactic errors made and the number of semantic er-
rors made.

The narrative-to-code results simply confirm the
findings of the previous two experiments. Structured
English and decision trees outperformed decision ta-
bles, and decision trees outperformed structured Eng-
lish, presumably on the basis of the former’s superi-
ority in the taxonomizing task. On the average, the
narrative-to-tool experiment also took longer to com-
plete than the tool-to-code experiment, so any superior-
ity of a tool in the taxonomizing task pre,sumably
would be manifested in the narrative-to-code results.

At first glance the decision-tree results are surprising.
Upon reflection, however, they make sense. Decision
trees seem to combine the best features of both decision
tables and structured English. On the one hand, the
graphical tree structure enables taxon information to be
represented poignantly. On the other hand participants
found it easy to trace a branch to its leaf node to per-
form the sequencing task. Thus, unlike structured Eng-
lish and decision tables that facilitate only one task,
decision trees facilitate both tasks. The superiority of
decision trees also may simply confirm the arguments
made by Fitter and Green [7]; namely, the desirability
of graphically (perceptually) revealing the structure in-
herent in data or processes rather than using linear
symbolic languages.

The results also provide support for the existence of
the two important psychological processes used in pro-
gramming-taxonomizing and sequencing-identified
by Sime et al. [IS]. As these researchers have pointed
out, programming languages do not seem to have been
designed with an understanding of the psychological
processes that programmers must bring to bear on a
task, nor have they been designed with an understand-
ing of the representation that best facilitates the task to
be performed. In this respect, current programming
languages provide structured-English-like and decision-
table-like representations of conditional logic, but few
include decision trees as part of their syntax [2]. This
can be understood in the context of older technology
where graphical representations were difficult, but the
current technology surely allows the development of
compilers, interpreters, or preprocessors that include
decision trees as part of their syntax. Perhaps our per-
ceptions of programming languages as unidimensional,
linear sequences of code are too limited and, in this
respect, our results support some of the claims made by
the proponents of visual programming [IS].

56 Comnzmications of fhe ACM Ianuary 1986 Volume 29 Number I

Research Contributiom

Finally, the decision-table results are disappointing
and somewhat unexpected. While running the experi-
ments, it became clear that the procedures for con-
structing decision tables and checking their complete-
ness, consistency, and nonredundancy are time con-
suming, and for many participants they remained awk-
ward and unwieldy in spite of repeated practice in us-
ing them. Furthermore, one of the claimed benefits for
decision tables-the formal rules for checking com-
pleteness, consistency, and redundancy-is not sup-
ported by the results obtained for the number of syn-
tactic errors made and the number of semantic errors
made. It might be argued that the tasks were not suffi-
ciently complex for the benefits of decision tables to be
demonstrated, but in designing the tasks we examined
a large number of programs to gauge the average com-
plexity of conditional logic. The tasks reflect this as-
sessment. Perhaps the results reveal why, in our expe-
rience, computer professionals rarely employ decision
tables, even when they are skilled in their design and
use.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

7. CONCLUSIONS 16.

The primary purpose of our research was to examine
the relative strengths and limitations of three struc-
tured tools-structured English, decision tables, and
decision trees-for representing conditional logic. Our
results support the notion that the usefulness of a tool
must be considered in the context of the psychological
task that programmers must perform. While all tools
might represent the structure and processes inherent in
a task to some extent, different tools manifest different
aspects to a varying degree. Designers of information
systems tools must understand what aspects of the task
they wish to manifest before they design their tools.

17.

18.

19.

20.

Finally, the overall superiority of decision trees
across the three experiments suggests that perhaps we
should attempt to break a fixation with programming
languages that use restricted syntactics-specifically,
languages that require a linear sequency of text to be
written. Programming languages that also provide
graphical syntax might improve programmer perform-
ance, particularly where conditional logic must be writ-
ten.

CR Categories and Subject Descriptors: D.2.1 [Software Engineer-
ing]: Requirements/Specifications-fools; D.2.2 [Software Engineering]:
Tools and Techniques-derision fables

General Terms: Experimentation
Additional Key Words and Phrases: structured analysis tools, mini-

specs, structured English, decision trees. decision tables, task complex-
ity, empirical evidence.

Received E/85; revised 10/85; accepted lo/85

Acknowledgments. We are indebted to Barbara Elliot,
Ming Kee Lui, Peter Tait. Byrne Haig, and Adrian
Coulston for their research assistance. We are also
indebted to colleagues in workshops at the Univer-
sity of Queensland and the New South Wales Institute
of Technology for helpful comments on an earlier
version of this article. Finally, we thank Jon Turner,
Errol Iselin, and Craig McDonald for their detailed com-
ments on the article.

Authors’ Present Address: Iris Vessey and Ron Weber. Department
of Commerce. University of Queensland. St. Lucia. Queensland, Aus-
tralia 4067.

REFERENCES
1. Brooks, R. Studying programmer behavior experimentally: The

problems of proper methodology. Commun. ACM 23,4 (1980),
207-213.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

Brown. C.P., Carling, R.T., Herot, CF., Kramlich, D.A., and Souza, P.
Program visualization: Graphical support for software development.
Compuf. 18, 8 (19&i), 27-35.
Christensen, L.B. Experimenfal Mefhodology. 2d ed.. Allyn and Bacon,
Boston, Mass., 1980.
De Marco. T. Sfructured Analysis and System Specification. Prentice-
Hall, Englewood Cliffs, N.J., 1979.
Elshoff, J.L. A numerical profile of commercial PL/l programs.
Software-Pracf. Exper. 6, (1976). 505-525.
Fitter, M.J. Towards more “natural” interactive systems. Inf. J. Man-
Mach. Sfud. II, (1979). 339-350.
Fitter, M.. and Green. T.R.G. When do diagrams make good com-
puter languages? Inf. J. Man-Mach. Stud. 11, (1979). 235-261.
Gane. C., and Sarson. T. Sfrucfured Sysfms Analysis: Tools and Tech-
niques. Prentice-Hall, En&wood Cliffs, N.J., 1979.
Green. T.R.G., Sime, M.E.. and Fitter, M.J. The problems the pro-
grarhmer faces. Ergonontics 23, 9 (1980). 893-907.
Miller. L.A. Natural language programming: Styles, strategies. and
contrasts. IBM Sysf. 1. 20, 2 (1981). 184-215.
Page-Jones, M. The Pracfical Guide fo Sfrucfured Systems Design. Your-
don Press. New York, 1980.
Pennington, N. Cognitive components of expertise in computer pro-
gramming: A review of the literature. Cognitive Science Tech. Rep.
Series #46. Univ. of Michigan, Ann Arbor. Mich., 1982.
Raeder. G. A survey of current graphical programming techniques.
Compuf. 18. 8 (1985). 11-25.
Read, N.S., and Harmon. D.L. Assuring MIS success. Dafamation 27, 2
(1981). 109-120.
Sime, M.E., Green, T.R.G.. and Guest, D.J. Psychological evaluation
of two conditional structures used in computer languages. Inf. 1.
Man-Mach. Sfud. 5, (1973). 123-143.
Soloway. E.. Bonar, J.. and Ehrlich. K. Cognitive strategies and loop-
ing constructs: An empirical study. Commun. ACM 26. 11 (19831,
853-660.
Thomas, J.C., and Carroll. J.M. Human factors in communication.
IBM Sysf. J. 20, 2 (1981). 237-263.
Vessey. I., and Weber. R. Research on structured programming: An
empiricist’s evaluation. IEEE Trans. Soffw. Eng. SE-IO, 4 (1984),
397-407.
Vessey. 1.. and Weber, R. Conditional statements and program cod-
ing: An experimental evaluation. Jnf. I. Man-Mach. Stud. 21. (1984),
161-190.
Welty, C., and Stemple. D.W. Human factors comparison of a proce-
dural and a nonprocedural query language. ACM Trans. Dafabase
Sysf. 6. (1981). 626-649.

Ianuary 1986 Volume 29 Number 1 Communications of the ACM 57

