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ABSTRACT: Prior research has identified two 
psychological processes that appear to be used by 
programmers when they perform design and coding tasks: 
(a) taxonomizing-identifying the conditions that evoke 
particular actions; and (b) sequencing-converting the taxa 
into a linear sequence of program code. Three structured 
tools-structured English, decision tables, and decision 
trees-were investigated in a laboratory experiment to 
determine how they facilitated these two processes. When 
taxonomizing had to be undertaken, structured English 
outperformed decision tables, and decision trees 
outperformed structured English. When sequencing had to be 
undertaken, decision frees and structured English 
outperformed decision tables, but decision trees and 
structured English evoked the same level of performance. 

1. INTRODUCTION 
The proponents of stru.ctured analysis and structured 
design advocate three tools for representing conditional 
logic: structured English, decision tables, and decision 
trees. These tools are used in the final step of struc- 
tured analysis to describe policy for a transform (bub- 
ble) in a data-flow diagram-the major means of parti- 
tioning, analyzing, and documenting the problem do- 
main. In addition, they may be converted into pseudo- 
code for modules outlined on the structure chart during 
structured design (see, e.g., [ll]). 
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Knowledge about the relative strengths and limita- 
tions of these three tools is limited, however. De Marco 
[4, p. 161 claims they are “something better than narra- 
tive text”-the existing tool-but he does not advocate 
one in particular. Gane and Sarson [8] argue that deci- 
sion tables are more useful than decision trees when 
the number of actions is large, many combinations of 
conditions exist, and there is a risk of ambiguities and 
omissions; but at least for simple problems the pictorial 
vividness of the decision tree makes it more under- 
standable. Page-iones [ll] advocates using structured 
English if complex branching processes are not in- 
volved. 

This article describes an experiment that seeks to 
provide insight into the relative strengths and limita- 
tions of these three tools. Our motivation for the re- 
search is the belief that there are significant differences 
among the tools that facilitate or inhibit the expression 
of conditional logic, depending on the analysis, design, 
or programming task to be undertaken. Practically, 
these differences are important as conditional state- 
ments are frequently used in program code (e.g., [FI]), 
even when fourth-generation languages are employed 
[14]. Theoretically, these differences are also important 
as they provide insights into several psychological con- 
structs that seem to impact the performance of analysts, 
designers, and programmers. 

The article proceeds as follows. Section 2 reviews 
some prior research that provides the background and 
motivation for the current research. Section 3 presents 
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the theory underlying the current research and the 
propositions investigated. Section 4 describes the em- 
pirical research methodology used to test the proposi- 
tions. Sections 5 and 6 present the data analysis and 
discuss the results obtained. Section 7 presents our con- 
clusions. 

2. BACKGROUND 
An important outcome of recent work on the psychol- 
ogy of programming has been the recognition that we 
have a poor understanding of how various program- 
ming practices-indentation, commenting, naming, 
etc.-facilitate or inhibit the programming process. 
After a fairly extensive series of studies, many results 
obtained are contradictory and counterintuitive (see, 
e.g., [12]). Part of the problem may be the research 
methodologies used (see, e.g., [l]). However, the more 
important problem seems to be the poor theoretical 
bases that have driven the research (see, e.g., [18]). 

The theory seems deficient in two ways. First, we 
have little knowledge of the psychological constructs 
that programmers bring to bear when they undertake a 
programming task. Pennington [12] illustrates this prob- 
lem in the following way. She reflects upon the equivo- 
cal results obtained for commenting in programs: sev- 
eral empirical studies show comments to be of little 
use. Clearly, she argues, commenting must be useful 
under some conditions, namely, those times when the 
semantics of the program are unclear. The problem is 
that we do not know when the semantics of the program 
are not obvious to the programmer from an examina- 
tion of the executable source code. If the semantics can 
be deduced easily from the code, then comments may 
simply confuse the programmer. But if the semantics 
are not obvious, commenting should assist the program- 
mer. 

Second, as a related issue, we have little knowledge 
of what is “natural” for programmers. Indeed, there is 
some evidence to suggest that our current notions are 
misguided. For example, a nonprocedural language is 
supposed to be more natural than a procedural lan- 
guage. However, Welty and Stemple [20] found that 
programmers using a procedural language outper- 
formed programmers using a nonprocedural language. 
As task complexity increases, programmers may need 
to think in terms of a concrete, procedural model if 
they are to solve the problem (see, also, [6]). Similarly, 
Miller [lo] studied procedural instructions written by 
nonprogrammers. He found that people generally avoid 
conditional statements and prefer qualificational state- 
ments. Thus, programming constructs like IF-THEN- 
ELSE may not be natural (see, also, [IT]). 

As a result of these problematical findings, several 
recent studies support the notion that programming 
language constructs that provide a close cognitive fit 
with a person’s preferred problem solving strategy are 
used more effectively (see, e.g., [16]). If this notion is to 
be investigated further, however, the cognitive pro- 
cesses used in programming must be better identified, 

and propositions about the ways different programming 
practices facilitate or inhibit these processes must be 
developed. 

3. THEORY 
In an important paper on the psychology of program- 
ming, Sime, Green, and Guest [15] hypothesized that 
two tasks must be performed to produce a program: 
(a) taxonomizing-identifying what conditions lead to a 
particular action; and (b) sequencing-converting taxa 
into the linear sequence of program code. These two 
tasks evoke different psychological processes. The first 
involves classifying and sorting elements according to 
their attributes; the second involves specifying the tax- 
onomic criteria and associated actions within the syn- 
tactic and semantic constraints of the programming lan- 
guage used. Figure lb (p. 49) shows (in decision-table 
form) the result of a taxonomizing operation for the 
conditional logic described in the narrative in Figure 
la. Figure lc shows the result of a sequencing operation 
where the language used prohibits an unconditional 
transfer of control (GOTO). 

In light of our arguments in Section 2, how well do 
structured English, decision tables, and decision trees 
support the taxonomizing and sequencing tasks? Con- 
sider a situation in which an analyst or designer is 
interviewing a user about some policy where condi- 
tional logic applies. The primary objective is to estab- 
lish completely and unambiguously the conditions that 
lead to particular actions: in other words, the initial 
task is a taxonomizing task. Assume the analyst at- 
tempts to translate the user’s communications straight 
into structured English-specifically, structured Eng- 
lish where, in line with structured programming pre- 
cepts, the GOT0 is prohibited. The task is difficult for 
three reasons. First, the taxonomizing task is two- 
dimensional; the analyst needs to be able to “see” the 
relevant conditions as one dimension and their applica- 
bility or nonapplicability to an action as another dimen- 
sion. Structured English is unidimensional; it shows a 
linear sequence of conditions and actions that perceptu- 
ally are not easy to differentiate. Second, if the analyst 
wishes to write structured English as a series of nested 
tests, there is only one sequence in which the condi- 
tions can be tested when the GOT0 is prohibited. Given 
the taxa in Figure lb. Figure IC shows the only way 
in which the series of nested tests can be constructed. 
Alternatively, a series of repetitive conjunctions (e.g., 
if A and B and not C] must be written, but Green, Sime, 
and Fitter [9] report that difficulties arise with this solu- 
tion. Third, structured English provides no formal way 
to test for completeness, consistency, and nonredun- 
dancy in the code. This may be a serious failing as the 
number of conditional tests to be undertaken increases. 

To illustrate these difficulties, we urge the reader to 
attempt to write structured English to represent the 
conditional logic expressed in the narrative shown in 
Figure 2a (p. 50). The narrative might represent the text 
of a discussion betweqn an analyst and a user. If nested 
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Vegetables that are both leafy and crispy should be fried, while 
those that are crispy but not leafy should be boiled. Prior to 
cooking, all vegetables that are not crispy should be chopped. 
Then, those that are green and hard should be boiled, while 
those that are hard but not green are steamed; those that are 
not hard are grilled. 

(a) Narratixe description of conditional logic 

Crispy Y Y N N N 
Hard - - Y Y N 
Leafy Y N - - - 
Green - - Y N - 

If crispy 
If leafy 

fry 
otherwise 

boil 
otherwise 

chop 
If hard 

If green 
boil 

otherwise 
steam 

otherwise 
grill 

(c) Structured-English solution 

FrY X 
Chop x x x 
Boil x x 
Steam X 
Grill X 

(b) Decision-table solution 

Leafy 

/ crispy < 

\ 

\ Hard 

Boil 

Green 

Chop, Grill 

Chop, Boil 

Chop, Steam 

(d) Decision-tree solution 

FIGURE 1. Simple Problem Used in Experiments 

conditionals are to be written, Figure 2c shows the only 
solution. We believe the reader will find, as we did, 
that the solution is difficult to write directly from the 
narrative text. 

Both decision tabl’es and decision trees overcome the 
problems posed by the unidimensional nature of struc- 
tured English when the taxonomizing task is to be un- 
dertaken. Indeed, a primary strength of these tools is 
that they separate the conditions from the actions and 
show via rules or branches the particular combination 
of truth-values that leads to a particular action. In es- 
sence, we are arguing that decision tables and decision 

trees provide a better cognitive fit than structured Eng- 
lish when the taxonomizing task must be undertaken. 
Which of these two tools is better is more difficult to 
determine. On the one hand, we suspect that the picto- 
rial vividness of decision trees makes them superior to 
decision tables. On the other hand, decision tables pro- 
vide formal procedures for ordering the sequence of 
conditions to be tested and for checking completeness, 
consistency, and redundancy. This is not the case with 
decision trees. Again, attempting to determine the se- 
quence of tests that avoids redundant branches in a 
decision tree is a difficult task. To appreciate these 
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Crispy, leafy vegetables that are juicy but not tall, are fried if 
they are red; otherwise they are steamed. Crispy vegetables 
that are juicy but neither tall nor leafy are grilled. Noncrispy 
vegetables that are not tall but are juicy are prepared in two 
steps: they are first peeled, and then if they are hard they are 
boiled, otherwise they are chopped. The recommended method 
of cooking all vegetables that are not juicy is roasting. Juicy 
vetegables that are tall are chopped. 

(a) Narrative description of conditional logic 

Juicy Y Y Y Y Y Y N 
Tall YNNNNN- 
Crispy - Y Y Y N N - 
Leafy - Y Y N - - - 
Red - Y N - - - - 
Hard - - - - Y N - 

If juicy 
If tall 

chop 
otherwise 

If crispy 
If leafy 

If red 

fry 
otherwise 

steam 
otherwise 

grill 
otherwise 

peel 
If hard 

boil 
otherwise 

chop 
otherwise 

roast 

FV X 
Steam X 
Grill X 
Peel x x 
Boil X 
Chop X X 
Roast X 

(b) Decision-table solution 

(c) Structured-English solution 

’ Roast 

(d) Decision-tree solution 

FIGURE 2. Complex Problem Used In Experiments 

difficulties, we urge the reader to first attempt the The sequencing task is another story. When the pro- 
decision-tree solution for the narrative in Figure 2a and grammer converts the conditional logic into program 
then to attempt the decision-table solution (see Figures code, we argue that the structured English representa- 
zd and zb]. tion facilitates this task most. The mapping from struc- 
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tured English to program code is almost one to one. The 
mapping from decision tables or decision trees, how- 
ever, involves a transformation from a two-dimensional 
representation of the logic to a unidimensional repre- 
sentation. Notwithstanding that there are some 
straightforward algorithms for performing this transfor- 
mation (see, e.g., [1!3]), we argue that structured English 
provides a closer cognitive fit with the psychological 
constructs invoked to write program code. 

To recap, then, the transformation of conditional 
logic into program source code involves two psychologi- 
cal processes. First, the analyst, designer, or program- 
mer must determine the set of conditional truth-values 
that leads to a particular set of actions-the taxonomiz- 
ing process. Second, the taxa must be converted into 
the linear representation of code-the sequencing pro- 
cess. We argue that the relative strengths and limita- 
tions of structured English, decision tables, and deci- 
sion trees are a func:tion of how well they facilitate or 
inhibit the cognitive processes invoked in each of these 
two transformations. 

Accordingly, we advance the following two proposi- 
tions: 

Proposition I: Decision tables and decision trees 
facilitate th.e taxonomizing process better than 
structured English. 

Proposition 2: Structured English facilitates the 
sequencing process better than decision tables 
and decision trees. 

4. METHOD 
To test these propositions, a laboratory experiment was 
conducted in which the performance of participants 
using the three types of structured tools was measured 
across different programming tasks. 

4.1 Participants 
One hundred twenty-four volunteer information sys- 
tems and computer science students in three tertiary 
institutions who had been trained in COBOL and struc- 
tured analysis, design, and programming participated in 
the experiment. Each was paid $30 for participation, 
providing they completed all parts of the experiment. 

4.2 Design 
Each participant undertook three experiments. First, 
the participants were given a narrative description of 
some conditional logic and asked to represent the nar- 
rative using one of the three types of structured tools. 
Second, they were given conditional logic already de- 
scribed via one of the tools and asked to convert it into 
COBOL code. Third, they were given a narrative de- 
scription of some conditional logic and asked to convert 
it into COBOL code after representing the logic using 
one of the three types of structured tools. Thus, the first 
experiment tested Proposition 1, and the second experi- 
ment tested Proposibon 2. The third experiment al- 

lowed the effects of each tool to be investigated across 
the “full” programming task-that is, design and cod- 
ing-and it also took into account the possibility that 
participants may switch back and forth between the 
taxonomizing and sequencing processes. All experi- 
ments used adaptations of cooking problems developed 
by Sime et al. [IS] in an attempt to minimize the effects 
of application domain knowledge. 

Within each experiment, a mixed design was used 
with two between-subjects factors and one within- 
subjects factor. The two between-subjects factors were 
tool and problem complexity. Tool was measured at 
three levels: structured English, decision tables, and de- 
cision trees. Problem complexity was measured at two 
levels: simple and complex. A simple problem used 
conditional logic that had four conditions, five actions, 
and four levels of nesting when it was converted into 
COBOL code. A complex problem used conditional 
logic that had six conditions, seven actions, and five 
levels of nesting when it was converted into COBOL 
code. Two levels of problem complexity were used be- 
cause, as discussed earlier, some writers argue that the 
relative strengths and limitations of a tool depend on 
the level of complexity of the logic to be described. 
Figures la and 2a show, respectively, the narrative 
used for a simple problem and a complex problem. 

The within-subjects factor was problem [trial). Each 
subject performed the same experimental task twice. 
For example, a participant assigned to the simple 
problem-structured English treatment converted narra- 
tive to structured English during two consecutive trials. 
Thus, two different problems with the same level of 
complexity had to be devised for each task. Problems 
were judged to have the same level of complexity if 
they had the same number of conditions, actions, and 
levels of nesting. The order of problem presentation 
was randomized across participants in the experiment. 

4.3 Measures of Performance 
Three measures of performance were used. The pri- 
mary measure was time taken to perform the experi- 
mental task. The secondary measure was the number of 
syntactic errors made. Participants had to conform ex- 
actly with the syntactic requirements of the tool they 
used and the COBOL language. For example, if a partic- 
ipant misspelled a word, used a wrong level of indenta- 
tion, or abbreviated a word, this was counted as a syn- 
tactic error. The third measure used was number of 
semantic errors made. Participants had to associate the 
correct actions with the correct conditions in the tool 
they used to express the logic or in the COBOL code 
they wrote. 

4.4 Procedure 
Prior to the experiment proper, a pilot test was con- 
ducted to identify any deficiencies in the experimental 
materials and to obtain practice at administering the 
experiment. Ten participants undertook the pilot test; 
each treatment was administered at least once, and ad- 
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ditional administrations occurred when the experimen- 
tal materials had to be modified or when more practice 
was needed at running a treatment. 

The experiment proper comprised a training session 
and administration of two sets of the three experimen- 
tal tasks. Participants were first allocated randomly to 
treatments. Next, a training session was organized at a 
convenient time for the subjects. Where possible, sub- 
jects who had been allocated to the same treatment 
were trained together. Training sessions normally in- 
volved 3-5 participants. 

A training session comprised four phases. First, the 
general characteristics of the tool were reviewed. Sec- 
ond, participants undertook four practice tasks of in- 
creasing difficulty for the narrative-to-tool experiment. 
Third, participants undertook three practice tasks of 
increasing difficulty for the tool-to-code experiment. Fi- 
nally, participants undertook three practice tasks of in- 
creasing difficulty for the narrative-to-code experiment. 
After each administration of a task, participants could 
ask questions of the experimenter. They were also 
given sufficient time to assimilate the nature of the task 
and the experiment. The number of practice tasks used 
was intended to be sufficient for learning to have 
ceased and was determined on the basis of results ob- 
tained during pilot testing. On the average, training ses- 
sions took 3-5 hours. Interestingly, training sessions for 
structured English and decision trees took about the 
same time while training sessions for decision tables 
took longer. 

For the narrative-to-tool task, participants were first 
provided with a sheet containing a narrative descrip- 
tion of the conditional logic. Decision-table participants 
were shown the usual procedures for converting the 
narrative into a limited-entry decision table and for 
checking the completeness, consistency, and redun- 
dancy attributes of the decision table. Structured- 
English participants were provided with the vocabulary 
and syntax they were to use. Decision-tree participants 
were shown the specific type of decision tree they were 
to construct to represent the conditional logic. In addi- 
tion. both the structured-English and decision-tree par- 
ticipants were shown an heuristic for determining the 
sequence of tests to be performed. Recall, one of the 
difficult aspects of the coding task for conditional logic 
when the GOT0 is prohibited is determining the single, 
correct sequence of tests. With decision tables, this se- 
quence is determined automatically by virtue of the 
way the table is constructed. With structured English 
and decision trees, however, this is not the case. Never- 
theless, an heuristic that can be used to determine the 
order of the tests is to sort the tests in descending fre- 
quency and follow the positive branch of a test to its 
conclusion before following the negative branch. 

For the tool-to-code task, participants were first pro- 
vided with a sheet containing conditional logic ex- 
pressed in the tool to which they had been assigned 
and a sheet containing the data definition for the 
COBOL program they were to write. Next they were 

shown how to convert the conditional logic into 
COBOL code. In the case of structured English, this 
conversion was straightforward. In the case of decision 
trees, they were shown how to follow a positive branch 
and then a negative branch and how to determine the 
appropriate level of indenting. In the case of decision 
tables, they were shown the algorithm described by 
Vessey and Weber [19] for determining the path 
through the table and determining the appropriate level 
of indenting. For the narrative-to-code task, partici- 
pants were provided with a narrative description of the 
conditional logic they were to use and the data division 
of the COBOL program they were to write. They were 
then shown how to progress from the narrative to the 
code after first expressing the conditional logic in the 
tool to which they had been assigned. 

In all cases, participants provided their answers on 
preprinted sheets. For example, decision-table partici- 
pants received a sheet with the lines for the condi- 
tion stub, action stub, and rules already drawn, and 
structured-English participants received a sheet with 
several vertical lines drawn on the left-hand side to act 
as the margins for the various levels of indenting they 
chose. 

When completing the answer sheets, participants 
were told they were to undertake the task as quickly as 
possible. Speed was their goal; however, in spite of 
speed being the primary objective, they had to provide 
answers that were completely accurate. In other words, 
no syntactic or semantic errors were to be present in 
their answers. In addition, they were told not to re- 
check their answers-they should strive to be accurate 
on the first iteration of their answer-and they could 
write or print their answers, whichever they preferred. 
These latter instructions attempted to force participants 
to undertake the experiment in a consistent way. With- 
out an admonishment to be completely accurate, differ- 
ent participants might have traded off different levels of 
accuracy and speed. Similarly, task times might have 
varied considerably if participants employed varying 
strategies for checking their answers, and accordingly 
the effects of the tool on task performance might be 
difficult to determine. In the training session, partici- 
pants were given some practice at undertaking the ex- 
perimental tasks before they were required to comply 
with the speed instruction and have their performance 
timed. 

Some 1-2 weeks after the training session, partici- 
pants returned to undertake the experimental tasks. 
Each participant was run singly through the experi- 
ments. Prior to commencing the experiments, they re- 
ceived an instruction sheet to remind them of the na- 
ture of the tasks they were to undertake and the proto- 
cols they were to follow. The experiments were then 
conducted in a quiet room, free from noise and distrac- 
tions with only the participant and the experimenter 
present. The experimenter simply issued and collected 
the experimental materials and unobtrusively recorded 
time taken for each task on a stopwatch. On the aver- 
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age, the experimental session was completed in one 
hour. 

Since the experiments assessed the performance of 
participants, confoundings could have arisen if experi- 
menter expectancies had been conveyed to the partici- 
pants [3]. Consequently, all training sessions and exper- 
iments were conducted by research assistants who 
were not informed of the propositions that were being 
tested. To ensure consistency of training, all training 
sessions were conducted by a single research assistant, 
but the administrations of the experiments were con- 
ducted by four different research assistants. 

5. RESULTS 
The data analysis proceeded in three steps. The first 
step involved fitting a repeated measures multivariate 
analysis of variance (MANOVA) model to the data since 
Pearson product moment correlation coefficients indi- 
cated that the dependent variables were moderately 
correlated. In all three experiments, the two between- 
subjects factors (complexity and tool) and their interac- 
tion (complexity x tool) were significant at the .bl 
level. In addition, for the tool-to-code and narrative-to- 
code experiments, the interaction between the within- 
subjects factor, problem, and the between-subjects fac- 
tor, complexity, was significant at the .Ol level. No 
other main or interaction effects were significant at the 
.Ol level. 

The second step in the analysis involved fitting a 
repeated measures analysis of variance model 
(ANOVA) with time as the dependent variable to those 
cases where the participant had made neither syntactic 
nor semantic errors across the two problems in an ex- 
periment. This step was undertaken for four reasons. 
First, a cursory examination of Table I suggests that in 
a practical sense time is the most important variable in 
the MANOVA results. The mean number of syntactic 
and semantic errors was low (see, also, Table II). Sec- 
ond, because of the high proportion of participants who 
made neither syntactic errors nor semantic errors when 
undertaking an experimental problem, the distribution 
of these dependent variables was acutely right skewed. 
Consequently, an important assumption of MANOVA- 
homogeneity of the variance-covariance matrices-was 
violated. Box’s M statistic remained significant at the 
.Ol level across various transformations of the data. 
Thus, statistically testing contrasts under MANOVA 
was a problematical procedure. Third, using repeated 
measures ANOVAs with the number of syntax errors 
and number of semantic errors as the dependent vari- 
ables, neither main effects nor interaction effects were 
significant at the .05 family level of significance. 
Fourth, recall that participants were told they were to 
strive for maximum speed but to ensure they first 
achieved complete accuracy. The analysis of the re- 
duced data set-the participants who made no errors 
across both problems in an experiment-provided the 
results for participants who had complied with this in- 
struction. 

Research Contributions 

TABLE II. Syntactic and Semantic Error Rate Statistics 

Proportion of Participants Undertaking an Experimental Problem 
Who Made Neither Svntactic Nor Semantic Errors 

N-T T-C N-C 

Problem 1 

Zero syntactic errors made .87 .69 .74 

Zero semantic errors made .86 .79 .57 

Problem 2 

Zero syntactic errors made .86 .81 .74 

Zero semantic errors made .86 .84 .69 

Number of Participants in Each Experiment Who Made Neither 
Syntactic Nor Semantic Errors Across Both Problems in the 

Experiment 

Experiment 

N-T T-C N-C’ 

Simple ~- 

English 

Table 

Tree 

12 16 10 

14 11 11 

14 14 12 

Complex 

English 

Table 

Tree 

10 8 1 

13 10 5 

8 15 8 

With only one exception, noted below, the results of 
the second step in the analysis are the same as those 
obtained for the third step in the analysis in which a 
repeated measures ANOVA was fitted to time for the 
full data set obtained from the 124 participants. In other 
words, the number of syntactic errors and the number 
of semantic errors seem to have little effect on the re- 
sults for the time taken to complete an experiment. 
Given that larger data sets are more desirable for hy- 
pothesis testing and statistical estimation purposes, the 
results of the third analysis are presented below. In all 
analyses, the dependent variable, time, has been con- 
verted to minutes and a square root transformation ap- 
plied in an attempt to correct for right skewness. This 
transformation was also used in the analyses under- 
taken in the second step discussed above. For the trans- 
formed dependent variable, Bartlett’s test of sphericity 
was insignificant at the .Ol level, indicating the trans- 
formation was at least somewhat successful. 
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For the narrative-to-tool experiment, only the two 
between-subjects main effects were significant at the 
.Ol level (complexity, F(1, 118) = 157.3; tool, F(2, 118) = 
63.6). Neither the within-subjects factor nor any of the 
interactions were significant. The results show that the 
complex problems took more time than the simple 
problems. For the tool factor, at the .Ol family signifi- 
cance level, pairwise contrasts show that decision trees 
took less time than either structured English or deci- 
sion tables, and structured English took less time than 
decision tables (see ‘Table I). 

For the tool-to-code experiment, the two between- 
subjects main effects were significant at the .Ol level 
(complexity, F(1, 118) = 112.3; tool, F(2, 118) = 21.3) 
and a within-subjects factor interaction effect was sig- 
nificant (problem X complexity, F(l, 118) = 30.2). No 
other effects were significant. Again, the results show 
that the complex problems took more time than the 
simple problems. For the tool factor, at the .Ol family 
significance level, pairwise contrasts show that decision 
trees and structured English took less time than deci- 
sion tables, but there was no statistically significant 
difference between the time taken for decision trees 
and structured English. The significant interaction 
arose because the second complex problem on the aver- 
age took more time than the first complex problem, and 
the first simple problem on the average took more time 
than the second simple problem. Recall that the two 
problems were randomized across trials, so the differ- 
ence must reflect different levels of complexity be- 
tween the problems. 

For the narrative-to-code experiment, the two 
between-subjects main effects were significant at the 
.Ol level (complexity, F(l, 118) = 255.2; tool, F(2, 118) = 
49.0). The within-subjects factor and an interaction ef- 
fect were also significant at the .Ol level (problem, 
F(1, 18) = 12.53; problem X complexity, F(l, 118) = 
12.97). Note, this is the one area of difference between 
the reduced data set {and the full data set; in the re- 
duced data set only the within-subjects main effect was 
significant. Once again, the complex problems took 
more time than the simple problems. For the tool fac- 
tor, at the .Ol family significance level, pairwise con- 
trasts show that decision trees and structured English 
took less time than decision tables. The difference be- 
tween decision trees and structured English was almost 
significant [p = .Oll), the former taking less time than 
the latter. The significant interaction arose because the 
second complex problem on average took more time 
than the first complex problem. 

6. DISCUSSION 
The narrative-to-tool results provide partial support for 
Proposition 1: as expected, decision trees outperformed 
structured English for the taxonomizing task; but, con- 
trary to expectations, structured English outperformed 
decision tables. Table I also shows that even on the 
basis of the number of syntactic errors made and the 

number of semantic errors made, there is little support 
for decision tables as a superior tool to structured Eng- 
lish for the taxonomizing task. 

The tool-to-code results provide partial support for 
Proposition 2: as expected, structured English outper- 
formed decision tables for the sequencing task; but, 
contrary to expectations, structured English and deci- 
sion trees evoked the same level of performance. Again, 
there is little support for structured English as a supe- 
rior tool to decision trees on the basis of the number of 
syntactic errors made and the number of semantic er- 
rors made. 

The narrative-to-code results simply confirm the 
findings of the previous two experiments. Structured 
English and decision trees outperformed decision ta- 
bles, and decision trees outperformed structured Eng- 
lish, presumably on the basis of the former’s superi- 
ority in the taxonomizing task. On the average, the 
narrative-to-tool experiment also took longer to com- 
plete than the tool-to-code experiment, so any superior- 
ity of a tool in the taxonomizing task pre,sumably 
would be manifested in the narrative-to-code results. 

At first glance the decision-tree results are surprising. 
Upon reflection, however, they make sense. Decision 
trees seem to combine the best features of both decision 
tables and structured English. On the one hand, the 
graphical tree structure enables taxon information to be 
represented poignantly. On the other hand participants 
found it easy to trace a branch to its leaf node to per- 
form the sequencing task. Thus, unlike structured Eng- 
lish and decision tables that facilitate only one task, 
decision trees facilitate both tasks. The superiority of 
decision trees also may simply confirm the arguments 
made by Fitter and Green [7]; namely, the desirability 
of graphically (perceptually) revealing the structure in- 
herent in data or processes rather than using linear 
symbolic languages. 

The results also provide support for the existence of 
the two important psychological processes used in pro- 
gramming-taxonomizing and sequencing-identified 
by Sime et al. [IS]. As these researchers have pointed 
out, programming languages do not seem to have been 
designed with an understanding of the psychological 
processes that programmers must bring to bear on a 
task, nor have they been designed with an understand- 
ing of the representation that best facilitates the task to 
be performed. In this respect, current programming 
languages provide structured-English-like and decision- 
table-like representations of conditional logic, but few 
include decision trees as part of their syntax [2]. This 
can be understood in the context of older technology 
where graphical representations were difficult, but the 
current technology surely allows the development of 
compilers, interpreters, or preprocessors that include 
decision trees as part of their syntax. Perhaps our per- 
ceptions of programming languages as unidimensional, 
linear sequences of code are too limited and, in this 
respect, our results support some of the claims made by 
the proponents of visual programming [IS]. 
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Finally, the decision-table results are disappointing 
and somewhat unexpected. While running the experi- 
ments, it became clear that the procedures for con- 
structing decision tables and checking their complete- 
ness, consistency, and nonredundancy are time con- 
suming, and for many participants they remained awk- 
ward and unwieldy in spite of repeated practice in us- 
ing them. Furthermore, one of the claimed benefits for 
decision tables-the formal rules for checking com- 
pleteness, consistency, and redundancy-is not sup- 
ported by the results obtained for the number of syn- 
tactic errors made and the number of semantic errors 
made. It might be argued that the tasks were not suffi- 
ciently complex for the benefits of decision tables to be 
demonstrated, but in designing the tasks we examined 
a large number of programs to gauge the average com- 
plexity of conditional logic. The tasks reflect this as- 
sessment. Perhaps the results reveal why, in our expe- 
rience, computer professionals rarely employ decision 
tables, even when they are skilled in their design and 
use. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

7. CONCLUSIONS 16. 

The primary purpose of our research was to examine 
the relative strengths and limitations of three struc- 
tured tools-structured English, decision tables, and 
decision trees-for representing conditional logic. Our 
results support the notion that the usefulness of a tool 
must be considered in the context of the psychological 
task that programmers must perform. While all tools 
might represent the structure and processes inherent in 
a task to some extent, different tools manifest different 
aspects to a varying degree. Designers of information 
systems tools must understand what aspects of the task 
they wish to manifest before they design their tools. 

17. 

18. 

19. 

20. 

Finally, the overall superiority of decision trees 
across the three experiments suggests that perhaps we 
should attempt to break a fixation with programming 
languages that use restricted syntactics-specifically, 
languages that require a linear sequency of text to be 
written. Programming languages that also provide 
graphical syntax might improve programmer perform- 
ance, particularly where conditional logic must be writ- 
ten. 

CR Categories and Subject Descriptors: D.2.1 [Software Engineer- 
ing]: Requirements/Specifications-fools; D.2.2 [Software Engineering]: 
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