
PERCOLA : A SPECIAL PURPOSE PROGRAMMABLE 64-BIT
FLOATING-POINT PROCESSOR

Jean-Marie NORMAND

Service de Physique Theorique, CEN-Saclay

91 191 Gif-sur-Yvette Cedex, France

1. INTRODUCTION

The computer PERCOlA is designed for lengthy numerical

simutations on a percolation problem in Statistical Mechanics

of disordered media. The project that the computer is engaged

on at present is intended to improve the true values of critical

indices characteristic of the behaviour of electrical

conductivity at percolation threshold in a system of random

resistors. The architecture is based on an efficient highly

iterative algorithm to compute the electrical conductivity of

random resistor networks. This computer runs programs of

percolation problems considered 10 percent faster than the

Cray X-MP with the same 64bit floating-point precision.

Operating since May 1987, months of calculation have already

been performed.

Although best suited to a class of algorithms, the

processor includes a powerful 32-bit integer random number

generator and has many characteristics of general purpose

64.bit floating-point microprogrammable computers that

can run programs for various type of problems with a peak

performance of more than 25 Mflops. This high computing

speed is not the result of one all-powerful feature, but a

balance among several factors including supercomputer

derived features such as mainly : concurrent functional units

separately controlled from independent microcode fields,

distinct buses for data, addresses and instructions, flexible

and powerful address generators for matrix processing and an

advanced pipeline design implementing high performance VLSI

Weitek’s and Analog Devices components.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

o 1988 ACM O-8979 1-272-l/88/0007/0055 $1.50

2. PHYSICS PROBLEM AND EQUATIONS

The percolation concept allows systems composed of large

numbers of possibly interconnected objects to be described

statistically. The number of objects and interconnections

govern whether communication over long distances is feasible

or not. Between the two categories, there is a precise

transition threshold, termed the percolation threshold. The

design of PERCOLA is optimized to study the critical behaviour

at percolation threshold of the electrical conductivity of a

random resistor network. The electrical resistances r of each

bound are random variables taking two values, rl with

probability p and r2 with probability l-p. Two kinds of

problems are considered : a mixture of conductor-insulator

(r, =l and r2=m) where above the treshold pc the

conductivity behaves as (p-pJf [I]; and a mixture of

superconductor-conductor (r,=O and r2=l) where as p goes

to po from underneath the conductivity diverges as (p,-p)-’

[2]. The aim is to increase by an order of magnitude the

accuracy with which the critical indices t and s are presently

known in two and three dimensions and also to explore the

four-dimensional case.

The algorithm considered is based on the calculation of

the electrical conductivity using the so-called strip method

and the transfer matrix ideas [l]. To simulate an infinite

medium in a d-dimensional space, only one dimension (the

longitudinal one of size L) is made as large as possible, while

finite size scaling arguments are used to take into account

finite size effects in other directions (the transverse ones of

size I). For a given type of lattice (e.g. hypercubic) and a

transverse cross section with N=ld-’ sites, the resistor

network (a IxL strip in d=2, a IxlxL bar in d=3,...) is built

by adding bounds one by one, see Fig. 1. At each step of this

procedure, the system is described as an N-access black box

characterized by an NxN impedance or admittance matrix 2.

The resistance p of each new link is chosen at random. Then an

55

http://crossmark.crossref.org/dialog/?doi=10.1145%2F55364.55370&domain=pdf&date_stamp=1988-06-01

Fig. 1. A 2dimensional strip of a random resistor

network, with periodic boundary conditions from

top to bottom. Potentials V and currents I are

related through V=ZI.

exact calculation, using Kirchoff’s laws, yields the matrix Z’

of the new system in terms of the previous matrix Z and the

resistance p of the bound added. This non-linear matrix

relation Z’=f(Z, p) has to be iterated to build a very long

strip in order to reach the desired accuracy. Indeed, the

convergence towards the limit for an infinite strip is like

l/dL . An increase by a factor ten of the present result

precision requires lengths L of order log, a hundred times

longer than those considered up to now. The calculation is

performed for different transverse sizes I at percolation

threshold. To obtain significant results, the transverse sizes

I, and therefore also N=ld-‘, must be large enough. Values of N

up to 256 are sufficient to study the 2 and 3-dimensional

cases and even a first approach for d=4.

This algorithm leads to a highly iterative computation

organized in several nesting loops : a loop over the L slices of

one step in the longitudinal direction of the strip ; a loop over

the d.N bounds of a slice ; for each bound : a choice of its

resistance p from a random number generator algorithm and a

loop over the update of N(N+1)/2 matrix elements of the

symmetrical matrix Z according to Z’=f(Z, p). In the most

complicated case (the addition of a transverse bound between
sites a and j3 in a superconductor-conductor mixture) this

updating equation reads :

qi = zii - ZNN -
(Ziu - ZiB)(Z,j - 2s’) (1)

G4Ci - zap + zpp - zpa + PI

provided that Z,, - Z,6 + ZpB - Zga be non-zero, otherwise

Z’=Z.

On the whole, such a calculation represents L.d.N random

numbers and L.d.N2.(N+l)/2 computations of one matrix

element. These figures take huge values for the simulations

considered, e.g. respectively 8. 10’ ’ and 6.56 1013 for d-2,

N=40 and L=lOg. Furthermore, these calculations hlave to be

performed with a high precision in order to be able to

distinguish the resistance p of order one from 1:he matrix

elements of order L.

3. GENERAL REQUIREMENTS FOR THE DESIGN

The idea of special purpose computers is to optimize the

architecture to the problem considered. The design of a CPU

then arises from compromises between several choices and

requirements often strongly dependent of each other. Let us

emphasize the main ones. 1) The choice of a computation

scheme, i.e. a splitting of the equations to be solved into a

sequence of elementary operations, elementary with respect to

the functional units available. 2) The choice of computing

speed taking into account the amount of time one can or wishes

to spend for solving the problem. 3) The choice of technology,

and especially a choice of the components which perform the

main arithmetic or logic operations. 4) The choice of the type

of architecture, i.e. monoprocessor, parallel, pipeline,

5) A constant care for checking, this must be a “leitmotiv”

from the design to the operation. 6) A will to enlarge the

operation capabilities of the processor. Although this seems to

be inconsistent with the idea of specialization, this approach

is justified for several reasons. A first one is the regard for

checking mentioned previously, which leads to introduce

computation capabilities in view of this only end. A second

reason is to be able to cope with unexpected numerical

problems which may arise from larger simulations than the

ones already performed. Finally, a third reason is related to

the valuation which has to be done between the interest of the

particular problem to be solved and the amount of material

and above all human investment required for the design and

the realization of a high level computer.

To reach our aim for the percolation problem, five

conditions are essential :

- Computation speed. Thousand hours of computation time on a

Cray 1s should be necessary to get the accuracy we want. In

order that the total amount of computing time remains

reasonable, one has to realize a computer giving a

performance equal to that of a Cray lS, i.e. about 100 ns per

update of one matrix element.

- Precision. Only 64-bit floating-point arithmetic fits with

the high precision requirements (much larger than

L=10g=230) and with the wide dynamic-range needs.

- Data storage. At least, the N2 (with N1256) matrix

56

elements have to be stored in a high performance RAM in

order to be able to read and to write one matrix element per

updating cycle.

- Random number generation. This is a crucial point for all

lengthy simulations which require a huge number of random

values.

- Nesting loop control. At least, three nesting loops are needed.

Let us emphasize that these requirements (apart from

the data memory size which is rather small) are quite general

for a large number of scientific calculations. This enhances

the interest of PERCOLA project since it appears as a good

laboratory to acquire a know-how. The main requirement is to

perform at a very high speed 64-bit floating-point

arithmetic. Actually, it is the recent commercial availability

of very fast 64-bit floating-point VLSI components that made

the realization of PERCOLA feasible. We implement the first

available chips of this family, namely the Weitek’s 64-bit

ALU (WTL 1065) and multiplier (WTL 1064). These two

chips produce in pipeline mode one new 64-bit result every

120 ns and 480 ns, respectively. This high maximum

processing speed allows us to reach our aim of computation

time with a monoprocessor architecture updating one new

matrix element every 120 ns. This processor has a high

degree of parallelism of low level, i.e. its design is optimized

by implementing several independent functional units (ALU’s,

multiplier, address generators, sequencer, random number

generator,...) working in parallel. The data processing unit

has a synchronous pipeline architecture. indeed, the maximum

throughput of Weitek’s components is obtained in this

operation mode. Furthermore, the most iterative part of the

algorithm considered can easily be vectorized as shown below.

A TTL technology has been implemented since Weitek’s

components have TTL compatible inputs and outputs.

Furthermore, this technology offers several advantages with

respect to other ones like ECL which could be considered for

high speed logic : a greater number of components available,

lower power dissipation, simpler to interface with a host

computer of the same technology and finally easier to

implement although special cares must be taken for running at

high speed. We use advance Schottky (AS) and Fairchild

Advanced Schottky (FAST) integrated circuits. Most of control

logics are performed by very high speed programmable array

logic devices (MMl’s PAL series B).

The architecture is optimized for the most time

consuming part of the calculation, i.e. the updating of 2

through Eq. (1). Having in mind a pipeline architecture, and

taking into account the symmetrical character of the matrix

2. the updating procedure of this matrix is decomposed into

five steps. Two scalar steps :

1) For given a and 5, the computation of the denominator :

D = Z,, - z,p + zpp - zga + P*

where p is determined from a random number. Meanwhile, one

checks if Z,,-Z,8+Z6p- Zga is positive. If it is true, the

calculation proceeds, otherwise a new bound a’ 5’ is

considered.

2) Computation of the inverse square root of D : S=i/JD.

Two pipeline steps :

3) A loop, called pipeline 1, over the computation of the N

components of a vector V :

Vi = (Z, - Zia) X S, i = 1, N. (3)

4) A loop, called pipeline 2, over the updating of N(N+1)/2

matrix elements of Z :

Z’ij = (Zij - ZNN) - (Vi x Vj), i = 1. N ; j = 1, i. (4)

A last scalar step :

5) The accumulation of the diagonal matrix element Z,, :

R’=R+zNN. (5)
In the first place, one has to optimize the pipeline steps

of the calculation. Starting from the equations above, we

successively consider the needs and the solutions adopted for

data processing, address generation, sequencing tasks, random

number generation and communication with the external word.

It is emphasized that although optimized for a class of

algorithms, the fully micro-programmable character of each

functional unit provides a potential for future use on others

problems.

3. DESCRIPTION OF THE ARCHITECTURE

64-bit floating-point data processing unit. Step 4, the

longest one, requires two subtractions and one multiplication.

Following the strategy of analogic computers, to update one

matrix element every 120 ns-cycle in pipeline mode, one

allocates independent arithmetic units running at the same

speed for each of the operations. Hence, there are two ALU’s

WTL 1065 GC and one multiplier consisting of four WTL

1064 GC chips in parallel, working sequentially. Actually,

during trouble-shooting these last chips were not able to

properly operate with a 60 ns-clock and they have been

replaced by four multipliers WTL 1264 GCD. In pipeline

mode, each ALU and the multiplier can load two operands per

cycle, i.e. one 64-bit operand per 60 ns-phase, and turn out

one 64-bit result per cycle, unloaded as two 32-bit words,

one per phase. In order to supply operands at such a high rate,

57

Clocks k 60 ns 4

CLKl

CLK2 4 4 I

CLK2

Ml

RAM

64K = 256x256 64-bit words

A

Bus A Bus B

I
Cycle

I CLKl ---Qg RAI
CLKl ---i$i RIB

\I Ah

64 I Bus I I
, 1 1

’ Pl I. I\

(Pl&P2)

P2 - .I \I

V RNI RIN RHI RIM
x,y <- CLK1

CLKl

ALU1 RF D
CLK2

(- CLKl

2 32 64-bit registers (- ClK2

Bus K 32
I LUT for 1 /x,

Z x,y

9-T 32
CLKl

M2
”

Bus N
t 1 RAM I

k Pl
256 64-bit words A\

:LK2 Bus H 1

CLKl
4ib

Bus J

RJH

t

RHJ

Fig. 2. Schematic diagram of the 64-bit floating-point processing unit implementing the 8

Weitek’s components.

two independent fast static RAM’s are introduced, both able to

read or to write one 64-bit word per phase. The main

256x256=64Kx64-bit word memory Ml (64xHitachi

HM6787DG-30) is devoted to the storage of the N2 matrix

elements of Z. The 256x64-bit word memory M2

(16xCypress CY7C122-25) provides storage for the N

components of the vector V. Both memories Ml and M2 can

read or (exclusive) write one 64-bit word per phase. The

initialization of inverse square root required for step 2 is

obtained from two 32-bit Weitek’s register files WTL 1066

GC, working in parallel to handle 64-bit data. These two chips

denoted as RF, also form a multiple port 32x64-bit word.RAM

which provides the necessary data bandwidth to fully utilize

Weitek’s pipelined floating-point arithmetic chips and to

interface to data buses. Indeed, RF has a read port XY outputing

one 64-bit word per phase while 64-bit words can be written

through 32-bit write ports W and Z in two phases, fitting the

output data flow of the ALU’s and multiplier. Through the

bidirectional 64-bit port D one can read and write one 64-bit

word per cycle. This processing unit is designed to normally

handle 64-bit floating-point operands in conformance with

the requirement of FAST IEEE Standard 754, Version 10.0.

58

Nevertheless the whole set of Weitek’s functions and mode

controls is available from the microcode.

The architecture presented in Fig. 2 synthesizes all

requirements previously listed : it optimizes the calculating

time for pipelines 1 and 2 ; it enables a fast execution of

scalar parts of the calculation, especially the computation of

1/4x (or l/x and 4x if needed) by an iterative

Newton-Raphson procedure involving RF, MUL and ALU2 ; it

offers a large variety of data-paths for cross-checks (in

“interface mode” as well as in “computing mode”) and for

other future applications. Let us emphasize that the control

mode implemented for data-paths allows to take the best

advantage of the concurrent processing and storage units and

furthermore enlarge the computing capabilities. For each of

buses I, J, M and N, a microcode field specifies every cycle

which one of the possible data sources (all of them are

available) is enable during independently each phase. Then,

the several receiving devices on a same bus can concurrently

be loaded according to their own microcode instructions. The

pipeline stage registers systematically store data at the rising

edge of their clock. A logical unit ensures a hardware conflict

management on these buses.

ADOF 1

CNTIJZ mux Pl /P2 mux
---- 1,1

ALU

CNTIJ 1

mux Pl&P2

__--_ _
-

dj
3)
P

- PI
- p2

Fig. 3. Schematic diagram of the matrix address generator for memory Ml.

Address generation. The algorithm considered requires triangle stored. This mechanism is necessary in pipeline 1 for

high performance address generators for memories Ml and the addresses ia and ij3, where a and p are fixed while i varies.

M2 optimized for matrix and vector addressing. The idea is to -Rectangular mode, i.e. a scanning of a rectangular matrix is

address any ii-matrix element by the concatenation of the two also available for general purpose. -Random mode, i.e. a

words i and j. Then for Ml, a distinct processing of each index scanning over a particular sequence of addresses. This mode is

i and j (respectively row and column) allows several fast required for the loop over bounds of a strip slice, especially

addressing modes : -Vectorial mode, i.e. a scanning of a row or the sequence of transverse bounds ap. This problem has been

a column. This mode is required for pipeline 1, where a and 3 settled thanks to an independent RAM, called M3, which can be

are fixed in Eq. (3). -Triangular mode, i.e. a scanning of the initialized from the host computer. Then, M3 is addressed by

lower or upper triangle, first diagonal included, of a square an internal counter of the sequencer, thereby handling loops

matrix. This mode allows in pipeline 2 to take into account the over any loaded sequence of addresses. In addition to the

symmetrical character of the matrix 2, thereby reducing the address ap, the calculation step 1 requires the addresses aa

computing time by a factor of almost two. Then, it is and 33, which can conveniently be obtained from ap through a

convenient to only store the triangle considered in the matrix. broadcasting mechanism over the two words cx and j3. For M2, a

This implies to fetch any matrix element either at the ij or vectorial addressing mode is required in pipeline 1. For

the ji address according to wether it belongs or not to the pipeline 2, one needs a triangular addressing mode, i.e.

59

alternately addressing the i and j components of V in

concordance with the triangular scanning of Ml. A similar

rectangular mode is also available.

To reach the maximum speed performances of data

processing units requires that the address generators of each

memory Ml and M2 outputs one new address every 60

ns-phase. Furthermore, during pipeline 2 the address

generator of Ml has to alternately produce a reading and a

writing address of a matrix element, the lag between these two

address sequences being the updating time for one matrix

element. This leads to an architecture with two independent

address generators, one for each of the two phases of a 120

ALU1 ,=s

ALU2 s = s

Effective random bit

End of loops

ABORT, BRAKE

End of loops Ml, M2

ns-cycle. A similar structure has also been adopted for the

address generator of M2.

Since no commercially available integrated device meet

our requirements, the address generators have been specially

designed for the computer, implementing some fifty chips. The

schematic diagram of the address generator for Ml is given in

Fig. 3. It is composed of four cascaded stages, each of them

separately controlled every cycle by its own microc,ode field .

The first stage is made of two identical and independent pairs

of counters. Each pair of counters generates one address per

cycle and each counter controls one index. The seconcl stage is a

phase multiplexor which outputs one address per phase. This

4 Interrupts
w

I

Microcode RAM
4 K x 148-bit words ad. y Sequencer <- CLKZ

Instruction field
D

I\

Functiannal \I \I
16

units
Bus s

1 \ /
1k IL

\I \f \I

I I 1 I
PM3
(Sll-0) Hexadecimal

display
RAM

4Kx 16-bit

vords 1 r13
RSX RXS

Random bit
handling unit

Adress generator AGM 1 Adress generator AGM2

Fig. 4. Schematic diagram of the sequencing unit based on the Analog Devices sequencer ADSP

1401.

60

stage also provides a broadcasting mechanism which, .from a

stored ij address, generates both addresses ii and jj. The third

stage is an index multiplexor associated with a comparator of

input indices. This stage allows index permutations, either

systematic or according to the comparison between both input

indices. The last step provides offset capabilities separately

for each index. Since the loops executed by the counter stage

always ending to the address 0, the address offset allows to

fully utilize the memory space available. The design and the

operating mode of the address generator fo M2 are similar,

although simpler. These address generators are initiated

through the 16-bit bus X, see Fig. 4. This bus can be driven

from a 16-bit data microcode field, the data port of the

sequencer or the 4Kxl6-bit word static RAM M3 4xlnmos

lM.S1423-25). These several data sources provides as much

additional addressing modes. The six internal ports of the

32-register RF are each directly addressed from the

microcode.

Sequencing unit. The schematic diagram of this unit is

shown in Fig. 4. Each 120 ns-cycle, a 148”bit instruction

specifies the operations to be performed by all elementary

functional units of the processor. The set of these instructions

is stored in the microcode memory which is an independent

4Kx148-bit word static RAM (37xlnmos IMSl423-25)

having its own data and address buses. The micoprogram

sequencer provides the appropriate microprogram addressing

to support programming requirements, such as mainly

several nesting loops and conditional branchings (according to

the random bit and the result of a comparison in step 1 of the

calculation). The powerful VLSI program sequencer Analog

Devices ADSP-1401 KD meets our requirements of speed and

functionalities. The whole set of instructions provided by

Analog Devices for this chip is available. A 16-bit

bidirectional data port, connected to the bus S, permits loading

or dumping of all internal registers and supplies direct or

indirect jump addresses. Four external maskable interrupts

are implemented : an ABORT (from host computer) and a

BRAKE (from microcode), both inducing the execution of a

programmed dump of the sequencing unit into memory M3 ; an

end of loop signal for each of address generators for Ml and

M2. An external flag input can control conditional

instructions. This pin is connected to the output of a 1 of 8 bit

selector controlled from microcode. The eight inputs of this

multiplexor are the following : two sets of three bits coming

from the status registers of each Weitek’s ALU’s (each bit

corresponds to one of the comparisons C, = and 5) : the

effective random bit outputs by the random bit handling unit

(see latter) ; and an end of loop signal which is the OR of both

end of loop signals for Ml and M2.

A microcode field provides many instructions of the type

source-destination to transfer data between the several units

shown in Fig. 4. Most of these instructions transfer one

16-bit word per cycle. Some instructions executes two

simultaneous transfers per cycle, e.g. RXS into M3 and SEQ

into PM3. Furthermore, when a one-transfer instruction only

involves bus S, bus X is driven by M3 as default option.

Random number generation. We need a random bit b such

that b=l with probability p and 0 with probability l-p,

where p is a parameter within the range [O,l]. To treat

anisotropic media requires a possible change of p at any

random number request. Furthermore, in the most simple

case (the addition of a longitudinal bound at site a in a

superconductor-conductor mixture) only one matrix element

of Z has to be updated according to z’,,=Zaa+p. Then, to

perform a loop over the updating for these longitudinal bounds

at the maximum pipeline speed demands one new random bit

per 120 ns-cycle. Last but not least, it has already been noted

that we need a huge number of random values, more than

10”. Actually, the ability to generate satisfactory sequences

of random numbers is one of the key links between Computer

Science and Statistics. For reasons of speed, simplicity and

repeatability, random numbers are produced by a given

algorithm, chosen in such a way that the results pass

extensive tests of randomness. Indeed, if the maximum period

can often be analytically determined, it is not the same with

correlations. Hence, for any “best” procedure, there is no

certainty that either larger simulations or other types of

simulations will not find the algorithm unsatisfactory.

To produce the random bit b, one generates a “uniform”

sequence of random numbers {Xi). Each of these numbers is

compared with the threshold P equal to the renormalized value

of p with respect to the range of variation of Xi’s* The result of

this comparison is the random bit b, either 0 if XiZP or 1 if

Xi<P. The random numbers generator is of lagged-Fibonacci

type handling integers mod 2” . From an initial set of values

x1 1 x2, *-*, xr and two lags r and s with rzs, one generates

successive elements by the recurrence :

i>r Xi = Xi-r + Xi-s mod 2”.

This algorithm has been chosen for its facility of

implementation (only one addition is needed), and above all

for its statistical properties [3]. The precision we want for p

requires to work with 32-bit integers. We consider three

couples of (r,s), i.e. (17,5), (31,13) and (55,24),

61

I
PROM

512 32-bit

words
Ad.

Sequencer

Interface

mode

Random bit

request

Threshold

address

in MB

32

1

In
Ad.

MA

256 32-bit

words

out

w
In

Ad.
MB

256 32-bit

words

out

I

9 +$I
Random bit

Fig. 5. Schematic architecture of the random bit generator : an independent 32-bit integer

processor.

:orresponding to three generators of maximum period variables are occupation probabilities of sites instead of bound

(2’-1)2”-‘, respectively 2.8 1014, 4.6 1018 and 7.7 1025. variables) requires a dedicated logical unit which generates an

Comparison between simulations performed with these three effective random bit for each bond in terms of the occupation

generators provides useful informations about the statistical probabilities of sites. These latter bits are produced by the

properties of the sequences generated by this algorithm, random bit generator described above, and stored in a

especially in the new field of more than 10” random values. 256x4-bit static RAM.

The schematic diagram of the random bit generator is

given in Fig. 5. The computation cycle of one random bit is

split into three 40 ns-phases. In phase 1 two identical

256x32-bit word static RAM’s (16xCypress CY7C122-15)

MA and MB simultaneously provide the operands Xi-r and Xi-s

to be added in a 32-bit integer ALU (full look-ahead adder

with 8x74AS181A and 2~74AS882). The result Xi is stored

in a 32-bit register AC. In phase 2 the ALU executes a

comparison between Xi and the threshold P previously loaded

in MB. The result of this comparison is the random bit b.

During the last step 3 the value Xi is simultaneously written

in place of the no longer needed value Xi-r. Indeed, at each

cycle one only requires the last r values generated of the x’s to

proceed the recursion. The sequencing tasks of this

independent 32-bit arithmetic unit are defined by a microcode

in registered PROM (4xMMI 63RA481A). A cyclic counter,

pre-loaded according to the parameters (r,s) chosen,

produces the PROM addresses.

To handle site percolation (where the independent random

Communication with the external word and start-up and

ha/t controls. Communication with the special purpose

computer is established from a host computer by two

interfaces, one in each of these computers, connected through

cables. The processor has two operating modes : the

“computing mode” controlled by the microcode and the “frozen

mode”, where all processor clocks (except the sequencing unit

clock) are simultaneously halted at a definite time. Yn “frozen

mode” the master of data and address buses can be either the

processor or the interface with the host computer. This last

case is the “interface mode” which, answering our constant

care for checking, provides the access to any memory location,

a memory cell as well as a simple register (including all

64-bit pipeline stage registers, except for RMJ, the address

pointer of each memory and a status register). The processor

can be (re)started either at any absolute address of the

microcode memory, or sequentially at the address stored in

the program counter of the sequencer. The halt of the

processor, i.e. its setting into the “frozen mode”, can be

62

Fig. 6. Photography of the 64-bit data processing unit board (except Ml), a ten layer printed

circuit board of size 41 cm x 32 cm implementing the 8 Weitek’s components (144-pin

PGA).

triggered by a microcode bit, by the detection of a maskable

Weitek’s error (e.g. overflow and underflow) or at any time

by the host computer. The “frozen mode” is an original feature

which is important for checking and program debugging (with

the sequential start-up facilities, a step by step execution of

programs is possible).

The host computer is the ISADORA built at Saclay from

VME standard boards based on a Motorola 68000

microprocessor with 2M byte memory, a double port

VME-VMX 1M byte memory (to allow fast DMA between the

host and the processor), one floppy and two hard Winchester

disks to periodically save results and store microcode and

interface control programs. This host is connected to the

netlink “TRANSPAC” allowing its full remote control.

Assembling. Six multi-layer printed circuit boards have

been realized, all of them including ground and Vcc planes.

Each of the 620 integrated circuits is decoupled by a capacitor

and plugged into a socket. Five boards of size 41 cm x 32 cm

are inserted into the processor rack : an interface (4 layers),

the random bit generator (6 layers), the memory Ml (6

layers), the sequencing unit and address generators (8

layers), and the 64-bit data processing unit (10 layers), see

Fig. 6. The sixth board is the other interface (8 layers)

63

plugged into the VME rack of the host computer.

4. PROGRAMMING AND OPERATION

The programming of the special purpose computer is

performed in assembly language. It is based on three types of

information. Two of them are standard for any

microprocessor, even though the processor is more elaborate,

i.e. the block diagrams of each functional unit (e.g. Figs.

Z-4), and the set of mnemonics for each individual control

fields (e.g. the whole set of instructions provided by Analog

Devices and Weitek. respectively for the sequencer and the

64.bit operators). On the other hand the third information is

non-standard and due to the sophisticated pipeline

architecture of the machine. Indeed, according to the different

microcode fields, there exists different delays (in number of

60 ns -phases) between the cycle where the instruction is

provided and the phase of its effective implementation. A

programming aid is provided by programming sheets

including reservation tables for all buses and the microcode

fields of each functional unit. From a program written in the

assembly language, a micro-assembler generates the binary

microcode file which is loaded from the host computer into the

microcode memory. A dissassembler is also available for

debugging. In addition to percolation programs, several

selective tracing routines for most of functional units are

available.

To control and initialize the special purpose computer

from the host, elementary loading routines have been

developed in PASCAL and 68000 assembler language to access

to all memory locations. Then, implementing these basic

routines, two main programs, with tree-like user friendly

menus have been written : one for general purpose controls of

the processor, the other for an easy operation of percolation

routines.

First results, concerning critical indices which

characterize the behaviour of electrical conductivity at

percolation threshold in a two-dimensional system of random

resistors, are going to be published 141. In addition, one gets

useful information about the random number generator

considered in the new field of more than 10” random values.

These results are obtained from more than six months of

computation. Optimize programs for the percolation problem,

of about one thousand micro-instructions, run ten percent

faster than the same algorithm written in FORTRAN on a Cray

X-MP used as a mono-processor. The 64.bit scalar functions

l/x and 1/4x are respectively performed in 7.32 p.s and

a.40 PS.

4. CONCLUSION

The improvement in VLSI high speed components and the

implementation oi original architectures allow to get very

large computational power for special class of algorithms with

an excellent cost/performance ratio (the overall1 cost of

PERCOLA is less than a million French francs). At thle price of

a non-standard programming, which is not a serious drawback

for dedicated computers, one can take the best advantage of

new hardware facilities. For future developments, the main

PERCOLA’s assets are : for data processing, as in analogic

computers, a pipeline design implementing as much

concurrent functional units as required by equations ; for

address generation, a design well adapted to matrix element

and more generally indexed data handling ; an independent

random number generators.

The project PERCOLA was initiated by H.J. Herrmann

[5]. Design, assembly and programming of the machine are

the work (almost three years) of J.-M. Normand [6,7], who

worked as project leader with M. Hajjar, who wrote his thesis

[6,6]. We are grateful to the Service d’6lectronique et

d’informatique de particules &$mentaires, Centre d’Etude

Nuclbaires de Saclay for its hospitality and help, and more

particularly B. Ollivier concerning the CAD.

[’ 1

121

[31

141

[51

1’31

REFERENCES

B. DERRIDA and J. VANNIMENUS, J. Phys. A 15 (1982),

L557 ; B. DERRIDA, D. STAUFFER, H.J. HERRMANN and J.

VANNIMENUS, J. Phys. (Paris) Lett. 44 (1983), L701 ; B.

DERRIDA, J. G. ZABOLITZKY, J. VANNIMENUS, and D.

STAUFFER, J. Star. Phys. 36 (1984), 31.

H.J. HERRMANN, B. DERRIDA and J. VANNIMENUS, Phys. Rev.

B 30 (1984), 4080.

G. MARSAGLIA, in “Encyclopedia of Computer Science and

Engineering”, 2nd edition p. 1260, Van Nostrand Reinhold Co.,

New York (1983).

J.-M. NORMAND, H.J. HERRMANN and M. HAJJAR, to be

published in J. Stat. Phys. (1988).

F. HAYOT, H.J. HERRMANN, J.-M. NORMAND, P. FARTHOUAT

and M. MUR, J. Compot. Phys. 64 (1988). 360.

J.-M. NORMAND and M. HAJJAR, SupplBment au Bulletin de /a

Socibtt5 Franpaise de Physique, 65 (1987), 51 ; J.-M.

NORMAND and M. HAJJAR, “PERCOLA : a proyrammable

64.bit floating-point processor optimized for a percolation

problem”, to be published (1988).

64

[7] J.-M. NORMAND, communication in “Algorithmes et

architectures a haut degr6 de parall6lisme” ONERA & TIM3,

La Briantais (Saint-Malo), Novembre 1987, edited by INRIA :

J.-M. NORMAND, CLEFS CEA, N” 8 (1988).

[8] M. HAJJAR, Thesis, University of Paris-Sud, Centre

d’Orsay (1987).

65

