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1. INTRODUCTION 

The computer PERCOlA is designed for lengthy numerical 

simutations on a percolation problem in Statistical Mechanics 

of disordered media. The project that the computer is engaged 

on at present is intended to improve the true values of critical 

indices characteristic of the behaviour of electrical 

conductivity at percolation threshold in a system of random 

resistors. The architecture is based on an efficient highly 

iterative algorithm to compute the electrical conductivity of 

random resistor networks. This computer runs programs of 

percolation problems considered 10 percent faster than the 

Cray X-MP with the same 64bit floating-point precision. 

Operating since May 1987, months of calculation have already 

been performed. 

Although best suited to a class of algorithms, the 

processor includes a powerful 32-bit integer random number 

generator and has many characteristics of general purpose 

64.bit floating-point microprogrammable computers that 

can run programs for various type of problems with a peak 

performance of more than 25 Mflops. This high computing 

speed is not the result of one all-powerful feature, but a 

balance among several factors including supercomputer 

derived features such as mainly : concurrent functional units 

separately controlled from independent microcode fields, 

distinct buses for data, addresses and instructions, flexible 

and powerful address generators for matrix processing and an 

advanced pipeline design implementing high performance VLSI 

Weitek’s and Analog Devices components. 
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2. PHYSICS PROBLEM AND EQUATIONS 

The percolation concept allows systems composed of large 

numbers of possibly interconnected objects to be described 

statistically. The number of objects and interconnections 

govern whether communication over long distances is feasible 

or not. Between the two categories, there is a precise 

transition threshold, termed the percolation threshold. The 

design of PERCOLA is optimized to study the critical behaviour 

at percolation threshold of the electrical conductivity of a 

random resistor network. The electrical resistances r of each 

bound are random variables taking two values, rl with 

probability p and r2 with probability l-p. Two kinds of 

problems are considered : a mixture of conductor-insulator 

(r, =l and r2=m) where above the treshold pc the 

conductivity behaves as (p-pJf [I]; and a mixture of 

superconductor-conductor (r,=O and r2=l) where as p goes 

to po from underneath the conductivity diverges as (p,-p)-’ 

[2]. The aim is to increase by an order of magnitude the 

accuracy with which the critical indices t and s are presently 

known in two and three dimensions and also to explore the 

four-dimensional case. 

The algorithm considered is based on the calculation of 

the electrical conductivity using the so-called strip method 

and the transfer matrix ideas [l]. To simulate an infinite 

medium in a d-dimensional space, only one dimension (the 

longitudinal one of size L) is made as large as possible, while 

finite size scaling arguments are used to take into account 

finite size effects in other directions (the transverse ones of 

size I). For a given type of lattice (e.g. hypercubic) and a 

transverse cross section with N=ld-’ sites, the resistor 

network (a IxL strip in d=2, a IxlxL bar in d=3,...) is built 

by adding bounds one by one, see Fig. 1. At each step of this 

procedure, the system is described as an N-access black box 

characterized by an NxN impedance or admittance matrix 2. 

The resistance p of each new link is chosen at random. Then an 
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Fig. 1. A 2dimensional strip of a random resistor 

network, with periodic boundary conditions from 

top to bottom. Potentials V and currents I are 

related through V=ZI. 

exact calculation, using Kirchoff’s laws, yields the matrix Z’ 

of the new system in terms of the previous matrix Z and the 

resistance p of the bound added. This non-linear matrix 

relation Z’=f(Z, p) has to be iterated to build a very long 

strip in order to reach the desired accuracy. Indeed, the 

convergence towards the limit for an infinite strip is like 

l/dL . An increase by a factor ten of the present result 

precision requires lengths L of order log, a hundred times 

longer than those considered up to now. The calculation is 

performed for different transverse sizes I at percolation 

threshold. To obtain significant results, the transverse sizes 

I, and therefore also N=ld-‘, must be large enough. Values of N 

up to 256 are sufficient to study the 2 and 3-dimensional 

cases and even a first approach for d=4. 

This algorithm leads to a highly iterative computation 

organized in several nesting loops : a loop over the L slices of 

one step in the longitudinal direction of the strip ; a loop over 

the d.N bounds of a slice ; for each bound : a choice of its 

resistance p from a random number generator algorithm and a 

loop over the update of N(N+1)/2 matrix elements of the 

symmetrical matrix Z according to Z’=f(Z, p). In the most 

complicated case (the addition of a transverse bound between 
sites a and j3 in a superconductor-conductor mixture) this 

updating equation reads : 

qi = zii - ZNN - 
(Ziu - ZiB)(Z,j - 2s’) (1) 

G4Ci - zap + zpp - zpa + PI 

provided that Z,, - Z,6 + ZpB - Zga be non-zero, otherwise 

Z’=Z. 

On the whole, such a calculation represents L.d.N random 

numbers and L.d.N2.(N+l)/2 computations of one matrix 

element. These figures take huge values for the simulations 

considered, e.g. respectively 8. 10’ ’ and 6.56 1013 for d-2, 

N=40 and L=lOg. Furthermore, these calculations hlave to be 

performed with a high precision in order to be able to 

distinguish the resistance p of order one from 1:he matrix 

elements of order L. 

3. GENERAL REQUIREMENTS FOR THE DESIGN 

The idea of special purpose computers is to optimize the 

architecture to the problem considered. The design of a CPU 

then arises from compromises between several choices and 

requirements often strongly dependent of each other. Let us 

emphasize the main ones. 1) The choice of a computation 

scheme, i.e. a splitting of the equations to be solved into a 

sequence of elementary operations, elementary with respect to 

the functional units available. 2) The choice of computing 

speed taking into account the amount of time one can or wishes 

to spend for solving the problem. 3) The choice of technology, 

and especially a choice of the components which perform the 

main arithmetic or logic operations. 4) The choice of the type 

of architecture, i.e. monoprocessor, parallel, pipeline, . . . . 

5) A constant care for checking, this must be a “leitmotiv” 

from the design to the operation. 6) A will to enlarge the 

operation capabilities of the processor. Although this seems to 

be inconsistent with the idea of specialization, this approach 

is justified for several reasons. A first one is the regard for 

checking mentioned previously, which leads to introduce 

computation capabilities in view of this only end. A second 

reason is to be able to cope with unexpected numerical 

problems which may arise from larger simulations than the 

ones already performed. Finally, a third reason is related to 

the valuation which has to be done between the interest of the 

particular problem to be solved and the amount of material 

and above all human investment required for the design and 

the realization of a high level computer. 

To reach our aim for the percolation problem, five 

conditions are essential : 

- Computation speed. Thousand hours of computation time on a 

Cray 1s should be necessary to get the accuracy we want. In 

order that the total amount of computing time remains 

reasonable, one has to realize a computer giving a 

performance equal to that of a Cray lS, i.e. about 100 ns per 

update of one matrix element. 

- Precision. Only 64-bit floating-point arithmetic fits with 

the high precision requirements (much larger than 

L=10g=230) and with the wide dynamic-range needs. 

- Data storage. At least, the N2 (with N1256) matrix 
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elements have to be stored in a high performance RAM in 

order to be able to read and to write one matrix element per 

updating cycle. 

- Random number generation. This is a crucial point for all 

lengthy simulations which require a huge number of random 

values. 

- Nesting loop control. At least, three nesting loops are needed. 

Let us emphasize that these requirements (apart from 

the data memory size which is rather small) are quite general 

for a large number of scientific calculations. This enhances 

the interest of PERCOLA project since it appears as a good 

laboratory to acquire a know-how. The main requirement is to 

perform at a very high speed 64-bit floating-point 

arithmetic. Actually, it is the recent commercial availability 

of very fast 64-bit floating-point VLSI components that made 

the realization of PERCOLA feasible. We implement the first 

available chips of this family, namely the Weitek’s 64-bit 

ALU (WTL 1065) and multiplier (WTL 1064). These two 

chips produce in pipeline mode one new 64-bit result every 

120 ns and 480 ns, respectively. This high maximum 

processing speed allows us to reach our aim of computation 

time with a monoprocessor architecture updating one new 

matrix element every 120 ns. This processor has a high 

degree of parallelism of low level, i.e. its design is optimized 

by implementing several independent functional units (ALU’s, 

multiplier, address generators, sequencer, random number 

generator,...) working in parallel. The data processing unit 

has a synchronous pipeline architecture. indeed, the maximum 

throughput of Weitek’s components is obtained in this 

operation mode. Furthermore, the most iterative part of the 

algorithm considered can easily be vectorized as shown below. 

A TTL technology has been implemented since Weitek’s 

components have TTL compatible inputs and outputs. 

Furthermore, this technology offers several advantages with 

respect to other ones like ECL which could be considered for 

high speed logic : a greater number of components available, 

lower power dissipation, simpler to interface with a host 

computer of the same technology and finally easier to 

implement although special cares must be taken for running at 

high speed. We use advance Schottky (AS) and Fairchild 

Advanced Schottky (FAST) integrated circuits. Most of control 

logics are performed by very high speed programmable array 

logic devices (MMl’s PAL series B). 

The architecture is optimized for the most time 

consuming part of the calculation, i.e. the updating of 2 

through Eq. (1). Having in mind a pipeline architecture, and 

taking into account the symmetrical character of the matrix 

2. the updating procedure of this matrix is decomposed into 

five steps. Two scalar steps : 

1) For given a and 5, the computation of the denominator : 

D = Z,, - z,p + zpp - zga + P* 

where p is determined from a random number. Meanwhile, one 

checks if Z,,-Z,8+Z6p- Zga is positive. If it is true, the 

calculation proceeds, otherwise a new bound a’ 5’ is 

considered. 

2) Computation of the inverse square root of D : S=i/JD. 

Two pipeline steps : 

3) A loop, called pipeline 1, over the computation of the N 

components of a vector V : 

Vi = (Z, - Zia) X S, i = 1, . . . . N. (3) 

4) A loop, called pipeline 2, over the updating of N(N+1)/2 

matrix elements of Z : 

Z’ij = (Zij - ZNN) - (Vi x Vj), i = 1. . . . . N ; j = 1, . . . . i. (4) 

A last scalar step : 

5) The accumulation of the diagonal matrix element Z,, : 

R’=R+zNN. (5) 
In the first place, one has to optimize the pipeline steps 

of the calculation. Starting from the equations above, we 

successively consider the needs and the solutions adopted for 

data processing, address generation, sequencing tasks, random 

number generation and communication with the external word. 

It is emphasized that although optimized for a class of 

algorithms, the fully micro-programmable character of each 

functional unit provides a potential for future use on others 

problems. 

3. DESCRIPTION OF THE ARCHITECTURE 

64-bit floating-point data processing unit. Step 4, the 

longest one, requires two subtractions and one multiplication. 

Following the strategy of analogic computers, to update one 

matrix element every 120 ns-cycle in pipeline mode, one 

allocates independent arithmetic units running at the same 

speed for each of the operations. Hence, there are two ALU’s 

WTL 1065 GC and one multiplier consisting of four WTL 

1064 GC chips in parallel, working sequentially. Actually, 

during trouble-shooting these last chips were not able to 

properly operate with a 60 ns-clock and they have been 

replaced by four multipliers WTL 1264 GCD. In pipeline 

mode, each ALU and the multiplier can load two operands per 

cycle, i.e. one 64-bit operand per 60 ns-phase, and turn out 

one 64-bit result per cycle, unloaded as two 32-bit words, 

one per phase. In order to supply operands at such a high rate, 
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Fig. 2. Schematic diagram of the 64-bit floating-point processing unit implementing the 8 

Weitek’s components. 

two independent fast static RAM’s are introduced, both able to 

read or to write one 64-bit word per phase. The main 

256x256=64Kx64-bit word memory Ml (64xHitachi 

HM6787DG-30) is devoted to the storage of the N2 matrix 

elements of Z. The 256x64-bit word memory M2 

(16xCypress CY7C122-25) provides storage for the N 

components of the vector V. Both memories Ml and M2 can 

read or (exclusive) write one 64-bit word per phase. The 

initialization of inverse square root required for step 2 is 

obtained from two 32-bit Weitek’s register files WTL 1066 

GC, working in parallel to handle 64-bit data. These two chips 

denoted as RF, also form a multiple port 32x64-bit word.RAM 

which provides the necessary data bandwidth to fully utilize 

Weitek’s pipelined floating-point arithmetic chips and to 

interface to data buses. Indeed, RF has a read port XY outputing 

one 64-bit word per phase while 64-bit words can be written 

through 32-bit write ports W and Z in two phases, fitting the 

output data flow of the ALU’s and multiplier. Through the 

bidirectional 64-bit port D one can read and write one 64-bit 

word per cycle. This processing unit is designed to normally 

handle 64-bit floating-point operands in conformance with 

the requirement of FAST IEEE Standard 754, Version 10.0. 
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Nevertheless the whole set of Weitek’s functions and mode 

controls is available from the microcode. 

The architecture presented in Fig. 2 synthesizes all 

requirements previously listed : it optimizes the calculating 

time for pipelines 1 and 2 ; it enables a fast execution of 

scalar parts of the calculation, especially the computation of 

1/4x (or l/x and 4x if needed) by an iterative 

Newton-Raphson procedure involving RF, MUL and ALU2 ; it 

offers a large variety of data-paths for cross-checks (in 

“interface mode” as well as in “computing mode”) and for 

other future applications. Let us emphasize that the control 

mode implemented for data-paths allows to take the best 

advantage of the concurrent processing and storage units and 

furthermore enlarge the computing capabilities. For each of 

buses I, J, M and N, a microcode field specifies every cycle 

which one of the possible data sources (all of them are 

available) is enable during independently each phase. Then, 

the several receiving devices on a same bus can concurrently 

be loaded according to their own microcode instructions. The 

pipeline stage registers systematically store data at the rising 

edge of their clock. A logical unit ensures a hardware conflict 

management on these buses. 

ADOF 1 

CNTIJZ mux Pl /P2 mux 
---- 1,1 

ALU 

CNTIJ 1 

mux Pl&P2 

__--_ _ 
- 

dj 
3 ) 
P 

- PI 
- p2 

Fig. 3. Schematic diagram of the matrix address generator for memory Ml. 

Address generation. The algorithm considered requires triangle stored. This mechanism is necessary in pipeline 1 for 

high performance address generators for memories Ml and the addresses ia and ij3, where a and p are fixed while i varies. 

M2 optimized for matrix and vector addressing. The idea is to -Rectangular mode, i.e. a scanning of a rectangular matrix is 

address any ii-matrix element by the concatenation of the two also available for general purpose. -Random mode, i.e. a 

words i and j. Then for Ml, a distinct processing of each index scanning over a particular sequence of addresses. This mode is 

i and j (respectively row and column) allows several fast required for the loop over bounds of a strip slice, especially 

addressing modes : -Vectorial mode, i.e. a scanning of a row or the sequence of transverse bounds ap. This problem has been 

a column. This mode is required for pipeline 1, where a and 3 settled thanks to an independent RAM, called M3, which can be 

are fixed in Eq. (3). -Triangular mode, i.e. a scanning of the initialized from the host computer. Then, M3 is addressed by 

lower or upper triangle, first diagonal included, of a square an internal counter of the sequencer, thereby handling loops 

matrix. This mode allows in pipeline 2 to take into account the over any loaded sequence of addresses. In addition to the 

symmetrical character of the matrix 2, thereby reducing the address ap, the calculation step 1 requires the addresses aa 

computing time by a factor of almost two. Then, it is and 33, which can conveniently be obtained from ap through a 

convenient to only store the triangle considered in the matrix. broadcasting mechanism over the two words cx and j3. For M2, a 

This implies to fetch any matrix element either at the ij or vectorial addressing mode is required in pipeline 1. For 

the ji address according to wether it belongs or not to the pipeline 2, one needs a triangular addressing mode, i.e. 
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alternately addressing the i and j components of V in 

concordance with the triangular scanning of Ml. A similar 

rectangular mode is also available. 

To reach the maximum speed performances of data 

processing units requires that the address generators of each 

memory Ml and M2 outputs one new address every 60 

ns-phase. Furthermore, during pipeline 2 the address 

generator of Ml has to alternately produce a reading and a 

writing address of a matrix element, the lag between these two 

address sequences being the updating time for one matrix 

element. This leads to an architecture with two independent 

address generators, one for each of the two phases of a 120 

ALU1 ,=s 

ALU2 s = s 

Effective random bit 

End of loops 

ABORT, BRAKE 

End of loops Ml, M2 

ns-cycle. A similar structure has also been adopted for the 

address generator of M2. 

Since no commercially available integrated device meet 

our requirements, the address generators have been specially 

designed for the computer, implementing some fifty chips. The 

schematic diagram of the address generator for Ml is given in 

Fig. 3. It is composed of four cascaded stages, each of them 

separately controlled every cycle by its own microc,ode field . 

The first stage is made of two identical and independent pairs 

of counters. Each pair of counters generates one address per 

cycle and each counter controls one index. The seconcl stage is a 

phase multiplexor which outputs one address per phase. This 
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Fig. 4. Schematic diagram of the sequencing unit based on the Analog Devices sequencer ADSP 

1401. 
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stage also provides a broadcasting mechanism which, .from a 

stored ij address, generates both addresses ii and jj. The third 

stage is an index multiplexor associated with a comparator of 

input indices. This stage allows index permutations, either 

systematic or according to the comparison between both input 

indices. The last step provides offset capabilities separately 

for each index. Since the loops executed by the counter stage 

always ending to the address 0, the address offset allows to 

fully utilize the memory space available. The design and the 

operating mode of the address generator fo M2 are similar, 

although simpler. These address generators are initiated 

through the 16-bit bus X, see Fig. 4. This bus can be driven 

from a 16-bit data microcode field, the data port of the 

sequencer or the 4Kxl6-bit word static RAM M3 4xlnmos 

lM.S1423-25). These several data sources provides as much 

additional addressing modes. The six internal ports of the 

32-register RF are each directly addressed from the 

microcode. 

Sequencing unit. The schematic diagram of this unit is 

shown in Fig. 4. Each 120 ns-cycle, a 148”bit instruction 

specifies the operations to be performed by all elementary 

functional units of the processor. The set of these instructions 

is stored in the microcode memory which is an independent 

4Kx148-bit word static RAM (37xlnmos IMSl423-25) 

having its own data and address buses. The micoprogram 

sequencer provides the appropriate microprogram addressing 

to support programming requirements, such as mainly 

several nesting loops and conditional branchings (according to 

the random bit and the result of a comparison in step 1 of the 

calculation). The powerful VLSI program sequencer Analog 

Devices ADSP-1401 KD meets our requirements of speed and 

functionalities. The whole set of instructions provided by 

Analog Devices for this chip is available. A 16-bit 

bidirectional data port, connected to the bus S, permits loading 

or dumping of all internal registers and supplies direct or 

indirect jump addresses. Four external maskable interrupts 

are implemented : an ABORT (from host computer) and a 

BRAKE (from microcode), both inducing the execution of a 

programmed dump of the sequencing unit into memory M3 ; an 

end of loop signal for each of address generators for Ml and 

M2. An external flag input can control conditional 

instructions. This pin is connected to the output of a 1 of 8 bit 

selector controlled from microcode. The eight inputs of this 

multiplexor are the following : two sets of three bits coming 

from the status registers of each Weitek’s ALU’s (each bit 

corresponds to one of the comparisons C, = and 5) : the 

effective random bit outputs by the random bit handling unit 

(see latter) ; and an end of loop signal which is the OR of both 

end of loop signals for Ml and M2. 

A microcode field provides many instructions of the type 

source-destination to transfer data between the several units 

shown in Fig. 4. Most of these instructions transfer one 

16-bit word per cycle. Some instructions executes two 

simultaneous transfers per cycle, e.g. RXS into M3 and SEQ 

into PM3. Furthermore, when a one-transfer instruction only 

involves bus S, bus X is driven by M3 as default option. 

Random number generation. We need a random bit b such 

that b=l with probability p and 0 with probability l-p, 

where p is a parameter within the range [O,l]. To treat 

anisotropic media requires a possible change of p at any 

random number request. Furthermore, in the most simple 

case (the addition of a longitudinal bound at site a in a 

superconductor-conductor mixture) only one matrix element 

of Z has to be updated according to z’,,=Zaa+p. Then, to 

perform a loop over the updating for these longitudinal bounds 

at the maximum pipeline speed demands one new random bit 

per 120 ns-cycle. Last but not least, it has already been noted 

that we need a huge number of random values, more than 

10”. Actually, the ability to generate satisfactory sequences 

of random numbers is one of the key links between Computer 

Science and Statistics. For reasons of speed, simplicity and 

repeatability, random numbers are produced by a given 

algorithm, chosen in such a way that the results pass 

extensive tests of randomness. Indeed, if the maximum period 

can often be analytically determined, it is not the same with 

correlations. Hence, for any “best” procedure, there is no 

certainty that either larger simulations or other types of 

simulations will not find the algorithm unsatisfactory. 

To produce the random bit b, one generates a “uniform” 

sequence of random numbers {Xi). Each of these numbers is 

compared with the threshold P equal to the renormalized value 

of p with respect to the range of variation of Xi’s* The result of 

this comparison is the random bit b, either 0 if XiZP or 1 if 

Xi<P. The random numbers generator is of lagged-Fibonacci 

type handling integers mod 2” . From an initial set of values 

x1 1 x2, *-*, xr and two lags r and s with rzs, one generates 

successive elements by the recurrence : 

i>r Xi = Xi-r + Xi-s mod 2”. 

This algorithm has been chosen for its facility of 

implementation (only one addition is needed), and above all 

for its statistical properties [3]. The precision we want for p 

requires to work with 32-bit integers. We consider three 

couples of (r,s), i.e. (17,5), (31,13) and (55,24), 
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Fig. 5. Schematic architecture of the random bit generator : an independent 32-bit integer 

processor. 

:orresponding to three generators of maximum period variables are occupation probabilities of sites instead of bound 

(2’-1)2”-‘, respectively 2.8 1014, 4.6 1018 and 7.7 1025. variables) requires a dedicated logical unit which generates an 

Comparison between simulations performed with these three effective random bit for each bond in terms of the occupation 

generators provides useful informations about the statistical probabilities of sites. These latter bits are produced by the 

properties of the sequences generated by this algorithm, random bit generator described above, and stored in a 

especially in the new field of more than 10” random values. 256x4-bit static RAM. 

The schematic diagram of the random bit generator is 

given in Fig. 5. The computation cycle of one random bit is 

split into three 40 ns-phases. In phase 1 two identical 

256x32-bit word static RAM’s (16xCypress CY7C122-15) 

MA and MB simultaneously provide the operands Xi-r and Xi-s 

to be added in a 32-bit integer ALU (full look-ahead adder 

with 8x74AS181A and 2~74AS882). The result Xi is stored 

in a 32-bit register AC. In phase 2 the ALU executes a 

comparison between Xi and the threshold P previously loaded 

in MB. The result of this comparison is the random bit b. 

During the last step 3 the value Xi is simultaneously written 

in place of the no longer needed value Xi-r. Indeed, at each 

cycle one only requires the last r values generated of the x’s to 

proceed the recursion. The sequencing tasks of this 

independent 32-bit arithmetic unit are defined by a microcode 

in registered PROM (4xMMI 63RA481A). A cyclic counter, 

pre-loaded according to the parameters (r,s) chosen, 

produces the PROM addresses. 

To handle site percolation (where the independent random 

Communication with the external word and start-up and 

ha/t controls. Communication with the special purpose 

computer is established from a host computer by two 

interfaces, one in each of these computers, connected through 

cables. The processor has two operating modes : the 

“computing mode” controlled by the microcode and the “frozen 

mode”, where all processor clocks (except the sequencing unit 

clock) are simultaneously halted at a definite time. Yn “frozen 

mode” the master of data and address buses can be either the 

processor or the interface with the host computer. This last 

case is the “interface mode” which, answering our constant 

care for checking, provides the access to any memory location, 

a memory cell as well as a simple register (including all 

64-bit pipeline stage registers, except for RMJ, the address 

pointer of each memory and a status register). The processor 

can be (re)started either at any absolute address of the 

microcode memory, or sequentially at the address stored in 

the program counter of the sequencer. The halt of the 

processor, i.e. its setting into the “frozen mode”, can be 
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Fig. 6. Photography of the 64-bit data processing unit board (except Ml), a ten layer printed 

circuit board of size 41 cm x 32 cm implementing the 8 Weitek’s components (144-pin 

PGA). 

triggered by a microcode bit, by the detection of a maskable 

Weitek’s error (e.g. overflow and underflow) or at any time 

by the host computer. The “frozen mode” is an original feature 

which is important for checking and program debugging (with 

the sequential start-up facilities, a step by step execution of 

programs is possible). 

The host computer is the ISADORA built at Saclay from 

VME standard boards based on a Motorola 68000 

microprocessor with 2M byte memory, a double port 

VME-VMX 1M byte memory (to allow fast DMA between the 

host and the processor), one floppy and two hard Winchester 

disks to periodically save results and store microcode and 

interface control programs. This host is connected to the 

netlink “TRANSPAC” allowing its full remote control. 

Assembling. Six multi-layer printed circuit boards have 

been realized, all of them including ground and Vcc planes. 

Each of the 620 integrated circuits is decoupled by a capacitor 

and plugged into a socket. Five boards of size 41 cm x 32 cm 

are inserted into the processor rack : an interface (4 layers), 

the random bit generator (6 layers), the memory Ml (6 

layers), the sequencing unit and address generators (8 

layers), and the 64-bit data processing unit (10 layers), see 

Fig. 6. The sixth board is the other interface (8 layers) 
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plugged into the VME rack of the host computer. 

4. PROGRAMMING AND OPERATION 

The programming of the special purpose computer is 

performed in assembly language. It is based on three types of 

information. Two of them are standard for any 

microprocessor, even though the processor is more elaborate, 

i.e. the block diagrams of each functional unit (e.g. Figs. 

Z-4), and the set of mnemonics for each individual control 

fields (e.g. the whole set of instructions provided by Analog 

Devices and Weitek. respectively for the sequencer and the 

64.bit operators). On the other hand the third information is 

non-standard and due to the sophisticated pipeline 

architecture of the machine. Indeed, according to the different 

microcode fields, there exists different delays (in number of 

60 ns -phases) between the cycle where the instruction is 

provided and the phase of its effective implementation. A 

programming aid is provided by programming sheets 

including reservation tables for all buses and the microcode 

fields of each functional unit. From a program written in the 

assembly language, a micro-assembler generates the binary 

microcode file which is loaded from the host computer into the 

microcode memory. A dissassembler is also available for 

debugging. In addition to percolation programs, several 

selective tracing routines for most of functional units are 

available. 

To control and initialize the special purpose computer 

from the host, elementary loading routines have been 

developed in PASCAL and 68000 assembler language to access 

to all memory locations. Then, implementing these basic 

routines, two main programs, with tree-like user friendly 

menus have been written : one for general purpose controls of 

the processor, the other for an easy operation of percolation 

routines. 

First results, concerning critical indices which 

characterize the behaviour of electrical conductivity at 

percolation threshold in a two-dimensional system of random 

resistors, are going to be published 141. In addition, one gets 

useful information about the random number generator 

considered in the new field of more than 10” random values. 

These results are obtained from more than six months of 

computation. Optimize programs for the percolation problem, 

of about one thousand micro-instructions, run ten percent 

faster than the same algorithm written in FORTRAN on a Cray 

X-MP used as a mono-processor. The 64.bit scalar functions 

l/x and 1/4x are respectively performed in 7.32 p.s and 

a.40 PS. 

4. CONCLUSION 

The improvement in VLSI high speed components and the 

implementation oi original architectures allow to get very 

large computational power for special class of algorithms with 

an excellent cost/performance ratio (the overall1 cost of 

PERCOLA is less than a million French francs). At thle price of 

a non-standard programming, which is not a serious drawback 

for dedicated computers, one can take the best advantage of 

new hardware facilities. For future developments, the main 

PERCOLA’s assets are : for data processing, as in analogic 

computers, a pipeline design implementing as much 

concurrent functional units as required by equations ; for 

address generation, a design well adapted to matrix element 

and more generally indexed data handling ; an independent 

random number generators. 

The project PERCOLA was initiated by H.J. Herrmann 

[5]. Design, assembly and programming of the machine are 

the work (almost three years) of J.-M. Normand [6,7], who 

worked as project leader with M. Hajjar, who wrote his thesis 

[6,6]. We are grateful to the Service d’6lectronique et 

d’informatique de particules &$mentaires, Centre d’Etude 

Nuclbaires de Saclay for its hospitality and help, and more 

particularly B. Ollivier concerning the CAD. 
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