
Introducing Symbolic Problem Solving Techniques in the
Dependence Testing phases of a Vectorizer

A. Lichnewsky* F. Thomasset

I.N.R.I.A. I.N.R.I.A.

78153 Le Chesnay CEDEX 78153 Le Chesnay CEDEIX

Abstract

The purpose of a vectorizer is to perform pr*
gram restructuring in order to exhibit the most

efficiently exploitable forms of vector loops.
This is guided by a suitable form of seman-

tic analysis, Dependence Testing, which must
be precise in order to fully exploit the archi-

tecture. Most studies reduce this phase to the

application of a series of explicitely computable

arithmetic criteria. In many cases, this will fail
if the criteria cannot be computed numerically,
and contain symbols which cannot be evalu-
ated. This also makes the use of other infor-

mation pertaining to these symbols difficult. It
is shown here that it is possible to eztract sym-

bolic equations from some of the classical ctite-

ria, merge them with other symbolic knowledge
about the program, and use the global system

to decide the non-existence of a dependence. In
the context of the VATIL vectorizer (17,161, it

is also shown possible to control the computa-
tion cost, and obtain a good overall efficiency.

*On leave from UniversitC de Paris-Sud, 91405 Orsay

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

0 1988 ACM O-89791-272-1/88/0007/0396 $1.50

1 Introduction

In order to restructure loops for vector or par-

allel execution, it is essentia.1 to obtain very
detailed information on the data and control
dependence6 between multiply indexed occur-

rences of instructions. Roughly speaking, the

original instructions are contained in a nested
set of loops, tihich provide indexed sets of in-

struction occurrences. One llooks for a differ-

ent order of execution of these occurrences,

permitting the parallel or vector execution of

some loops, while retaining the original seman-
tics.(Cf. [13],[17]). It is therefore essential that

dependence analysis be capable to account for
subscripted variables, and exploit available in-
formation on index variation (and range.

Since the seminal work of I). J. Kuck and his
team[l3], many authors have approached this

subject from several standpoints:

A Methods have been derived to determine
subscripted data dependence, by reduction

of subscript expressions, and loop index
variations, to appropriate arithmetic cri-
teria. (Cf. 121, [4], (3],[23:1). The extension

of such techniques to the cases where vari-

able aliasing and reshaping are permitted

is discussed in [6,22].

B Methods have been sought to collect glob-

ally the required semantic symbolic predi-

cates in programs, from the standpoint of

396

http://crossmark.crossref.org/dialog/?doi=10.1145%2F55364.55403&domain=pdf&date_stamp=1988-06-01

non-standard denotational semantics (Cf.

[15]), or from an ad-hoc construction of
sets of linearized predicates (Cf. [22]).

C General methods have been developped

to solve symbolic equations occurring in

the assessment of program semantics (Cf.
Cousot [S]). To prove the theoretical

results, a form of monotonicity is re-

quired. Further approximations are neces-

sary since in the most general cases one is
confronted with undecidable subproblems.

We will discuss in the sequel how to exploit

the information generated by such meth-

ods in the context of the vectorizer.

D Methods have been developped to solve de-

cidable classes of sets of symbolic equa-

tions and inequations, as well as to ap-
proximate intractable ’ problems by sim-

pler ones, which can be solved algorith-

mically, yielding some approximate infor-

mat ion. (Cf. Bledsoe [5], Shostak[20]).

The feasibility of approximation relies on
the problem related fact that it is safe to

replace a problem by a new one having

a larger set of solutions, when the paral-

lelization criteria possess the property of

monotonicity,(Cf.[17]) The only price to
be paid is that some vectorizable state-
ments may not be vectorized.

Individually, each of these approaches have
both strong advantages, and serious drawbacks,

and we have found surprisingly few attempts to

combine them in the litterature. Among these,
the most notable are the following: Burke &

Cytron[G] discuss the class A methods of Baner-
jee [4,3], Wolfe [23] and Allen (21, and the class

D method of Shostak [20], but not their com-

bination. Triolet[22] obtains semantic informs
tion localizing variables in regions *, and main-

tains their polyhedral nature, but applies a sim-

ple class D solver a , to disprove directly the

array-index aliasing equation (2). An appar-
ent ly more general non-standart denot at ional

semantic approach is taken by Jouvelot [151, but
reduces to similar problem solving techniques.

The approach we have been using in the

VATIL vectorizer attempts to combine the use
of class A and clcrss D methods. This is done
by evaluating some of the classical criteria sym-

bolically when it cannot be done explicitely nu-

merically. At this point, we try to disprove

the resulting set of predicates in the context of

the available semantic information using clues
D approximate decision methods. Thus we

are able to stay very close to well known cri-

teria, which have been specifically optimized
for the purpose of a vectorizer, and yet not
limited by their classical numerically explicit

implementation. Our current choice of class
D problem solving procedure, is the Sup-Inf

method of Bledsoe [5], which has a high level

of generality, but already requires some form of

Ycomputational complexity controln in our en-

vironment ’ . Within the LeLisp [7] written
implementation of VATIL, which makes heavy

use of symbolic oriented routines, it has been

easy to extend the existing programs to collect

symbolic equations rather than signal failure to

evaluate explicitely. Our techniques are exten-
sible to make use of information collected by

the methods of closeerr B d C (Cf.[S]), but we
have no large scale experience on this ’ .

A major difficulty is related to the fact that

the general symbolic systems which can be gen-

erated are potentially undecidable or impracti-
cable because of their high computational cost.
Thus, we rely on the fact that approximations

can be made safely (171 , and on the adapted

construction of the required symbolic systems.
The overall efficiency of our approach is due to

the use of costly general decision procedures
only when classical criteria have failed, and

even in such a case starting from well adapted

generalized 6 versions of these specific arith-

‘The notion of intractable problem ranges from (PCS
tentially) undecidable ones, to problems whose solution
in too coetly.(Cf.[ll,l9,24~)

aUnions of array element sets, each delimited by con-
vex polyhedra in index space.

3Namely the Fourier-Motskin Method 191

‘Among our longer term plans, is the characterisation
of useful class D methods, adapted to the set of real
problems.

‘It ie likely that the efficient selection of facts in the
larger set of accumulated predicates will be a difficulty.

‘The generalisation involves embedding the (in) -

397

metic criteria. This is very different to the

standpoint of the papers cited above, where it

is proposed to start from scratch with the pred-
icate decision procedure (Cf. [15,22]).

2 General Framework

2.1 Expressions and Predicates

We will be manipulating symbolic expressions

and predicates in several contexts, and use the

following notations:

- variables belong to the variable set V and

represent elements of domain D. We shall

in the sequel use mnemonic variable names
for application related variables like the
loop indez I.

- constant names represent elements of P,

the set of constants is noted C.

- expressions are made up of variables and

constants, combined with operators in OP,
they are elements of E.

- basic predicates are formed from expres-

sions using relation operators in OR.

- predicates are formed from basic pred-

icates using quantifier and logical opera-

tors, they form the set PR.

We will often specify the context in which

we will be working by the indication of

{D,OP,OR}. Moreover, we shall make use of
abbreviations and some simple isomorphisms to

avoid the rigidity of formal theory.

2.2 Program Fragments

In order to simplify the exposition we will re-
strain ourselves to a single loop, involving an

explicit loop index I. This is not a constraint

equation where unevaluated variables and expressions
remain, in a set of symbolic (in) - equations, after stan-
dardisation and may be simplification.

in the application of our methods. More pre-

cisely, let us consider the following loop:

CSPRAGMA{predicate-list:}
DO 1 I=l,N

:A: X(expl(I))=
:B: = X(exp2(1)) (1)

1 CONTINUE

where:

. - expi ,exp2 are mdex expressions involv-

ing the loop index variable I, whereas N
is an expression involving only loop invari-

ant vaiablea. These may have been found
explicitely in the program, or may have
been generated after loop standardisation,

index linearization or aliasing explicitation

(Cf.(6,1,17,13,6]). These expressions are.
made of constants, loop invariant integer

variables , renamed variables assuming a

single value ’ , and the loop index I. Since

we will be creating new symbols as a result
of several subalgorithms, we will denote by

6~ a set of unique symbols not initially in

v(*)-

- {predicate-list} is a list of true pred-

icates obtained from some more global se-

mantic analysis tool, involving the vari-

ables ’ in V and may be the loop in-

dex I. We are making use of two types of
predicates: bounds :: z 5; y and congru-
ences lo ::

s=ymodce%E.Z z=y+cz

- 7 is the set of current hypotheses, whose

elements are predicates in PR. Initially 3
is formed out of {predicate-list}, later
on known properties and necessary condi-

tions for the existence of a, solution to the

‘Some precautions like this have to be taken when em-
bedding our program reman&s problem in a quite gen-
eral mathematical setting

“and which are created by the metkfunction u NcwS -.
‘Here also some precautions are to be taken when

identifying program variables with symbols in V .m.
‘“here c ie an integer constant

398

problem at hand will be added to it. Thus,

if a contradiction is found, independence is

proved.

A special function AddP is provided to add a

predicate to the set of currently assumed pred-

icates also noted 7. The function News creates

new symbols in V.

3 Dependence Analysis

A dependence exists between the statements

:A: and :B: of(l), if: 31 E Z, 35 E Z:

e@(l) = ezp2(J) (2)

IOJ (3)
151 , J<N (4

{predicate - list} I= I, J (5)

Where 0 can be > (respectively 5) in the case
of an anti-dependence (resp. data-dependence)
(Cf. [17,13]). The last equation simply means

that I and J are values for I which satisfy the

{predicate-list}. Of course, any other vari-

able appearing in (2-5) is implicitely bound to

an existential quantifier.

The exploitation of the precise knowledge

of existing dependences is the major goal of
program restructuring. This permits vector-
ization ((17,13,12]), parallelization ([S,lO], en-

hancement of data-locality ([14]),... Of course,

the aim will most often be to prove that no de

pendence exists, and therefore that the system
(2) has no solution. When solutions do exist,
characterizing them in a more precise way can

be of interest to apply more sophisticated tech-

niques.

4 Dependence Criteria

After showing the basic steps on the example

of the direct resolution of equation (2), we will

recall two classical criteria, and detail the ap

preach used to extract symbolic information
from them when they fail to fully evaluate nu-

merically. Since, we will show in the 55 that we

can make use of such symbolic information, we

will speak of eztended criteria.

4.1 Index Equality Equation

The conceptually simplest method is to try to
directly disprove equation (2). Although our

implementation does not involve tackling di-

rectly this problem, but the genercrlizcd critc-

ria shown below, we will describe now the di-

rect approach to equation (2)) many features of
which will be of interest in the ensuing discus-

sion.
We will use several devices to reduce the

problem (P) to a series of approximate ones

!ZLti0#:

which satisfy the appropriate s&y

Solutions(P) C Solutions(P’) (6)

and then attempt to prove the last one has no

solution. This can be done along the following

steps:

Ri: Algebraically simplify equations (2,...,5),

using for instance the techniques of

Moses[l8]. At the same time, the problem

is reduced to integer arithmetic by observ-

ing that the expressions in (2) have inte-

ger values, thus non integer terms have to
be converted. We add variables to achieve

this:

conv(expr) --+ 0 := News

and forget about the remaining equation:

B = convtexpr)

It would be feasible to add predicates to

take into account further properties:

conv(ein(expr>) --+ -15 19 < 1

We also take the opportunity to get rid

of any function or operator other than

+, *, min, maz, using the same mecha-
nism. We are thus left with a problem in a

{Z,(+,*),(<,=)} first order theory, which

is undecidable [191.

R2: select an approximate problem form which

can be solved in practice. Among the can-

didates are:

“because of monotonicity, Gf.(l?‘j

399

Cl: Similar problems over the reals, in

{R,(+,*),(I)}. Here, the problem has
become decidable, but with exponen-

tial complexity. Moreover, even in

very simple situations, working with

the reals or rationals is not satisfac-

tory for our application. This has led
to the development of the GCD(s4.2)
and Ezact Banerjee[3] tests.

C3: Linearized problems, and linear pro-

gramming problems over the reals.

C3: First order Presburger arithmetic in

{Z,(f),& =)} These problems can
theoretically be solved by exact de-

cision methods which are extremely

costly’2 or by approximate meth-
ods. We have chosen such an approz-
imate method, with restrictions on the
allowed quantifiere, for our present
implementation (Cj. 5.3).

Cd: Linearized problems, and linear pro-

gramming problems over the integers.

(Cf.llll)
R3: reduce the problem to the class selected.

For instance, reduction to the class C-3

means that variables in V will represent

integers in 2, and involves replacing non-
linear terms by a set of rules illustrated in

figure 1.

Several facts must be noted about this ap-

proximation procedure. First of all, we forget
about the old expressions whose values are rep-

resented by the newly introduced Si: we will
not check that the initial problem indeed pos-

sesses a solution, but try to establish that the
new approximate problem has no solution. Sec-
ond, it is possible to enrich the predicate set 7
for the Bi by using additional rules like avail-

able bounds for expressions. For instance, we
could have added to the rule Wl (resp. W4)

in the figure 1 the rule W5 (resp. W6 and W7)

shown in the figure 2. At this point, we are left
with an approximate problem P’, to which the

decision procedure of 55.3 is to be applied.

“The minimal bound is of order 2”” for the general
case. More restricted classes have lower complexity in
the (only) 2Cn range.

4.2 The GCD Test

This test assumes that the equation (2) is linear

in the loop index:

(el,e2,e) C E; ell + eJ = e (7)

When (er,e2,e) c C, this test consists of oh+

serving that a necessary condition is:

e G 0 (mod gcd(e,,tJ) (8)

This is generalized by:

Gl: When it is determined ‘s that el and ez
have a common constant factor a, either
check the divisibility oj e immediately or

add the predicate: e z 0 (mod a) to 3.

If required, the decision procedure described in

paragraph 5.2 is then invoked.

4.3 The Allen - Banerjee - Wolfe
Approximate Test

The linear form of equation (2) with respect to

the loop index is also assumed here, and the

context {Z,(+,*),(s,=)} is used in the follow-

ing derivation. A necessary condition for the

existence of a solution to equations (2),(3),(4)

is that the function (I, J) -+ erI+ezJ -e takes
both signs when evaluated at the three corner
of the triangle described by (3) and (4). This
results in the lemma:

Lemma 1 A necessary condition for equations

(219 PA (4) t o h ave a solution is that the joilow-
ing holds: (Cf. [4,2,23])

e2 - (e; - e2)+(N - 2) 5 e - el - e2 (9)
e - el - e2 5 e2 + (e;+ + e2)+(N - 2) (10)

The standard procedure is to check if one of the
inequations can be completely evaluated and

yields a contradiction. Our extension enable to

consider the case where this does not occur and

symbolie terms remain:

62: When (Q) and (10) fail to evaluate and
draw to* a conclusion: jirst, simplify the

ISEither by inspection of the expressions or using F.

400

Hypothesis Rewrite rule Side Effects I

Wl x ,YEE

(XYY) P z
x * y-e B:= News

w2
x ,yE&
x-i-y $2 z

x+-y--t8 8:= News
J

w3 XE i C aEN
{

e:= News
x**a + e

I a-l 3 mod2 AddP(l -C 8’ - 1

W4
x EE

x+ - e
e := NE ,WS

XGZ AddP(0 se)

Figure 1: Linearizing for (Z,+,I}.

x ,YEE
w5 (X*Y) c z

)

{predicate-list}+ x * ‘- ’
0 5 x*y <a
x EE

W6 {predicate-list} t x+ + x
=+x/o

x EE
W7 {predicate-list} > x+ - 6

*xl0

{

e:= News
AddP(0 5 B <a)

Figure 2: Improving Predicate List

expressions. Then choose the contezt

-lz,(+MI, =I), 1 inearize eventually the
predicates in 7, and add equations (9) (10)
after rewriting them according to the rules
of figures 9 14, 2 and 1.

At this point we are left with a set of predicates
to which the decision method of $5.3 can be
applied.

5 Decision Procedures for
the Symbolic System

The main decision procedure we are using is
the approximate method due to Bledsoe [5] and
improved by Shostak[Zl]. As this last author
pinpoints in [21, p. 5341, this approximate
method, and the reduction techniques for in-
equalities that it uses, make it well suited to

“This ruleset is optional, see remark below

test for problems that have solutions in the in-
tegers if and only if they have real solutions.
This is very much in the same spirit as the ap
proximate test of Allen-Banerjee- Wolfe ($4.3).
However the divisibility test is inherently Dio-
phantine, and we treat it differently.

5.1 Framework

First of all, we observe that we wish to prove
predicate systems of quite particular forms, be-
cause of the origin of the problem, and the
above listed transformations:

t/VlVV:,...kfVi 1 (D, v II*... v Dd) (11)

x = (l,..., I) DA = (Bl A . . . A Bm*) (12)

where the B, are basic predicates in OR. More-
over, in most practical cases, the disjunction
contains only one term D1, and we have intro
duced so far only a single rule that may con-
tribute to disjunctions in Figure 3. Of course,

401

‘max(x,O)= &=NewS
W8 x EE x+ - max(x,O) < AddP((B 2 O),

A((84 = xl v 1
Figure 3: More precise treatment of Maxima

this is equivalent to proving the impossibility
Of:

3vlElv*...3v; (01 v Dp.. v 4) (13)

5.2 Divisibility Criterion

In order to exploit the divisibility criterion Gl,

and take into account the information in 7, we

simply use the basic predicates in 7 that can

be put under the form:

v = expr v E V

where the expression expr does not use variable

v, to eliminate as many variables as possible in

e of Gl. At each step, the expression is sim-
plified and tested for the divisibility criterion,

until a contradiction is found.

5.3 The Sup-Inf Method

This method applies to predicate systems in

{Z,(+, max, min),(<)}, describing quasi-linear
inequalities, of the form (11). Also, since we
will be working in this framework, we could

have avoided the rule W4, and the explicita-
tion of max through quantifiers in rule W8 “.

The special form involving only inequalities is

achieved by effectively replacing equalities by

the rules illustrated in Figure 4. It makes

strong use of the fact that variables represent

integers, and shows that the method is more
oriented towards bounding the set of possible

solutions of (13) in a (possibly empty) set, than

to the proof of precise equalities among inte-

gers. Furthermore, to simplify the handling of
constants, rational constants are allowed l6 in

“This may be useful to achieve the requested form
(ll), also to avoid disjunctions. (Cf. 86.1

“This avoids having to constantly reduce to common
denominator.

the computations and the estimates obtained

by the method, but not in the reduction by W8
phase. Rational variables are not permitted.

We will not develop here the Sup-Inf Method

with much detail, since this can be found in the
original papers of Bledsoe [5]. The 1 subprob-

lems of the disjunction are corrsidered one at

a time, and separately tested for solvability”.
The test procedure SI consists of recursively

calculating bounds for the variables.

Variables whose bounds are being calculated

are considered aa frozen within the inner stages

of the recursion. The procedure SI stops when-
ever an empty interval of the integers has been

found, and otherwise returns precise bounds for

the variables, in the reals, which are useless for
our problem, since we do not want to go into

the enumeration of possible integer values, be-

cause of computational cost. In the first fa-
vorable case, this implies that the approximate

problem has no solution, and therefore that no

dependence exists.

A practical alterna-
tive, proposed by Shostak[21] to the enumer-
ation phase is to interpret the obtained bounds

over the reals. According to the observation of
[21, Theorem 171, the set of solutions S of (13)
in the context l8 {R,(+, a),(<)} is convex and
the bounds computed by the procedure SI are

exact. It is possible to test for the emptiness

of S by choosing iteratively arbitrary “slices”

of S of decreasing dimensions and applying the
above procedure S,7 in the reals. Whenever an

empty interval” is found, it implies that S is

empty, and we can conclude to the absence of

“The computational cost implication is clear, and we
restrict the use of disjunction creating rules.

“Here we use the symbol i. to denote multiplication
by numeric constants in R, since we cannot use the iso-
morphism with repeated addition here.

l@over the Reals.

402

.WQ * E; x=y---+x5yAy<x

x<y--+x+l<y

Figure 4: From equalities to inequalities

dimeaaion a(lO24)
c$PRAGMA AlTR (((*Be’ k 2))) predicate)
c$PRAGMA ATTR (((cge> j 2))) predicate)

do 1 i =1,64
a(l+(i-1)*64) - a (i+(i+k-1)*64)

+ + a(j+(j-1)*64)
1 cant inue

kl - - 64+64+k
k2 = - 64+(64*j+j)

C$DIRECTIVE SHORTLOOP,DOVEC
DO 1 i = 1 ,64 .l

a(-63+64+i) - a(66*i+kl)+a(k2)
1 CONTINIE

Figure 5: Source and Vectorized Codes

dependence.

6 Implementation

6.1 Efficiency Issues

We basically recommand the use of our ex-
tended syinbolic criteria after the failure’of
the well optimized classical tests, which avoids
the issue of adding cost unnecessarily. In the
VA?IL current implementationzO, we avoid
some bookkeeping by applying each extended
test immediately upon failing to setup the For-
responding classical test due to remaining sym-
bolic terms. we first apply the GCD, test, and
then the A!len - Banerjee - Wolfe test. The
extremely high potential cost of the symbolic
decision procedure is alleviated by the fact that
ye do limit the amount of computer time given
to the Znf-Sup method. Also, for the sake of
efficiency we reduce the use of disjunction gen-
erating rules like W8 and W9. The first one is
not necessary since max and min opeiators are
allowed. For the second one, we observe that
since we are working with linear equations, it is
always possible to eliminate one variable from

‘“This implementation is &rrently in use by the GIP-
SMQO MVF Vectoriser.[lG]

such an equation. This works globally well, and
we plan to make a thorough experimental study
of the efficiency matter for single and multiply
nested loops before deciding of a more refined
strategy.

Since we have implemented in VATIL the
above strategy, we have been able to supress the
use of the ezact Bancrjee test ‘with no apparent
loss of information” in processing meaningful
programs. We also estimate that our present
strategy is better suited for the study of both
single and multiple loops.

The direct use of the Zndez Equality Equa-
tion is also an alternative which we have tried
only on a very restricted set of examples, with
poor performance compared to Gl and 62.

6.2 Results

The figures 5, 7 and ? show actual input and
output from the current VATIL implementa-
tion. The figures 6 and 8 show the actual cri-
terion &ed to decide the data dependence be-
tween the left hand side and the first term of
the right hand side in these examples. These
should enable the rea4er to figure out the type
of predicate system which occurs in practice,

alexcept on loops constructed ad hoc

403

31311 -63+64*I = 65*Il+Kl

I<11 ; l<I,Il<64

Predicates: KL2 ; 522

Renaming : Kl=-64+64*K ; K2=-64+(64*J*J)

3K -65*62< 129+Kl 50

Sup Inf: K>2 ; K<-65 - 64

Figure 6: Index Equality Equation and G2 Criterion

C+** KERNEL 2 ICCG EXCERPT (INCOMPLETE
DO 200 L- 1,Loop
IL- P
IPNTP- 0

222 IPNT- IPNTP
IPNTP- IPNTP+IL
IL- IL/2
i= IPNTP

c$PRAGMA ATTR (((i . ipnt)) avail)
DO 2 k- IPIJT+2,IPNTP.2

i- i+l
2 X(i)= X(k) - V(k)*X(k-1) - V(k+l)

+ *X(k+l)
IB(IL.GT.1) GO TO 222

200 CONTINUE

DO 2 kll = 1 ,l+(ipntp-(2+ipnt))/2
t ,266
k2 = minO(266,

+ (2+(ipntp-(2+ipnt))/2)-kll)
k3 = -l+(ipnt+kll)
k4 = -2+(2*kll+ipnt)

C$DIRECTIVE SHORTLOOP,DOVEC
DO loo01 kl = 1 ,k2 ,l

x(kl+k3) = (x(2*kl+kU)-v(2*kl+k4)
+ * x((-l+k4)+2*kl))-v((l+ k4)+2*kl)
+ * x((l+k4)+2*kl)

1DDGlCONTINUE
2 CONTINUE

k - 2+(2*((ipntp-(l+ipnt))/a)+ipnt)
i - l+(ipnt+(ipntp-(l+ipnt))/2)

Figure 7: Source and Vectorized Codes

3Kl Xl K1+k3 = 2*Ll+k4

K1 <Ll ; 15 Kl,Ll Sk2

Predicates: k2 5 256 ; k2 I (2 + (ipntp - (2 + ipnt))/2) - kll)

1 5 kll ; kll 5 1 + (ipntp - (2 + i&)/2

Renaming : k3 = -1 + All + ipnt

k4 = -2 + ipnt + 2 * kll

3kll 2fklllO ; 05 -2+2*k2+kll

Sup Inf: inf k2 = 2 ; sup k2 = 256

Sup Inf:P{hz,z) inf kll = 1 ; supkll = -2

Figure 8: Index Equality Equation and G2 Criterion

404

and how the knowledge about program seman-
tics is put to practical use by the VATIL soft-
ware.

The application of the generalized GCD cri-
terion Gl is illustrated on figure (9). This fur-
thermore illustrates the ability of our technique
to take advantage of informations generated by
algorithms studied by P. Cousot of congruence

type.
The application of the generalized Banerjee-

Wolfe criterion 62 is illustrated on figures (5,6)
and (7, 8). In the figure 8, one will notice that
the method of testing emptiness of the solution
set in the reals taking “slices” of lower dimen-
sion haa been used, restricting to k2 = 2.

7 Conclusion

We have presented a method which permit the
extension of classical dependence test in the di-
rection of symbolic problem solving. This has
been shown to be feasible while retaining the ef-
ficient classical tests and building upon existing
sophisticated criteria. This approach has been
shown capable to take into account information
coming from semantic analyses for scalar vari-
ables, and to result in an efficient implementa-
tion. Naturally, the same process can be used
in other similar areas of program analysis and
restructuring.

Acknowledgments

The authors are grateful to P. Flajolet and W.
Jalby for helpful discussions, and B. Mel&se for
careful proofreading.

References

[l] A. V. Aho, R. Sethi & J. D. Ullman,
%ompilers: Principles, Tech-
niques and Tools”, Addison Wesley,
1986.

[Z] R. Allen, “Dependence analysis jar sub-
scripted variables and its application
to program transformations”, Ph. D
Dissertation, Dept. of Mathematical

Sciences, Rice University, Houston,
Texas, April 1983.

[3] U. Banerjee, ‘Speed-up of ordinary pro-
grams”, Phd. Thesis, Rep. 79-989,
Dept. of Computer Science, University
of Illinois at Urbana-Champaign, Oc-
tober 1979.

[4] U.Banerjee, ‘Data Dependence in Ordi-
nary Programs”, Rep 76-897, Dept. of
Computer Science, University of Illi-
nois at Urbana-Champaign, November
1976.

[5] W.W.Bledsoe, “A new Method for prov-
ing certain Presburger formulas”, 4th
Int. Joint Conf. Artij. Intell., Tbilissi,
September 1975, pp. 15-21.

[6] M. Burke, R. Cytron, “Interprocedural
Dependence Analysis and Paralleliza-
tion”, Proc. Compiler Construction
Conf., 1986.

(71 J. Chailloux, “LeLisp, Version 15.2: le
manuel de rkfe’rence”, INRIA, 1986.

[S] P.Cousot, ‘Semantic Foundation of Pro-

IQ1 p-

gram Analysis”, in S.S. Muchnick &
N. D. Jones eds., ‘Program Flow
Analysis”, Prentice Hall, 1981.

Feautrier, A. Dumay, N. Tawbi,
“PAF: Un ParalEliseur Automatique
pour Fortran”, Rep. MASI, No 185,
UniversitC Paris 7, 1987.

[lo] D.D. Gajski, J.K. Peir, “Toward com-
puter aided programming for multipro-
cessOrsn, in M. Cosnard & al. ed.,
“Parallel Algorithms & Architec-
tures”, North Holland, 1966.

[ll] M. R. Garey, D. S. Johnson, “Comput-
ers and Intractability”, Freeman
and Co, New York, 1979.

1121 K. Kennedy, ’ Automatic translation of
jortran programs to vector form”, Rice
U. Tech. Rep. 476-029-1, 1980.

[13] D.J. Kuck, R.H. Kuhn, B. Leasure, M.
Wolfe, ‘The structure of an advanced
retcrgetable uectorizer”, in Kai Hwang

405

c$PRAGMA ATTR (((*eq> k (*** 2 kl))) predicate)
c$PRAGtdA ATTR (((<eq, 1 (<+a 1 (<*a 2 kl))))
4 + predicate)

do 1 i=l, II
x(k*i-1) = x(kii) + y(k*i)

1 continue

DO 1 ii = 1 .n ,256
nl = min0(266,(l+n)-ii)
k2 - il*k
k3 - -k
kl = k2+k3
k6 = (k2-l)+k3

C$DIRF.CTIW SHORTLOOP,DOVEC
DO 10001 i - 1 ,nl ,l

10001 x(i*k+kS) - x(i*k+k4)+y(i*k+k4)
1 CONTINUE

Figure 9: Application of Extended GCD Test

ed., &Tutorial on Supercomput-
ers: Design and Applications”,
IEEE Press , pp. 163-178, 1984.

[14] D. Gannon & W. Jalby, %rategies far
Cache and Local Memory Management
by Global Program Transformation”,
Journal of Parallel and Distributed
Computing, Special Issue, To appear.

[15] P. Jouvelot, UParalle’lisation Semantique
*, Rep. MASI, No 174, Uniuersitk

Paris 7, 1986.

1161 A. Lichnewsky, M. Loyer, “Un Module
Vectoriel Flottant BUT SPSII. Pourquoi
?“, Bulletin de Liaison de la Recherche
en Injormatique et en Automatique, no
112, 1987.

1171 A. Lichnewsky, F. Thomasset, YTech-
niques de base sur 1 ‘ezploitation au-
tomatique du parallklisme daize les pro-
grammes”, Rapport de Recherche IN-
RIA, no. 460, Dec. 1985.

[18] J. Moses, “Algebraic Simplification: A
Guide for the Perplezed”, Comm.
ACM, Vol 14 No 8, August 1971.

1191 M.O. Rabin,
‘Decidable Theories”, in Barwise J.
ed., %andbook of Mathematical
Logic”, North-Holland, 1977.

[20] R.E. Shostak, UDeciding Linear Inequal-
ities by Computing Loop Residues”,
JACM, Vol28, n0 4, October 1981, pp.
769-779.

[21] R.E. Shostak, “On the Sup-If Method

f or Proving Presburger formulas”,
JACM, Vol24, n0 4, Olctober 1977, pp.
529-543.

1221 R.J. Triolet, ‘Ynterprocedural Analysis
Based Program restructuring “, in M.
Cosnard & al. ed., “Parallel Algo-
rithms & Architectures”, North
Holland, 1986.

[23] M.J. Wolfe , YTechniquee for improving
the inherent parallelism in programs”,
rep. UIUCDCS-R-78-929, 1978.

[24] A. Yasuhara, ‘Recursive F’unc t ion
Theory and Logic”, Academic
Presrr, 1977.

406

