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Abstract 

The purpose of a vectorizer is to perform pr* 
gram restructuring in order to exhibit the most 

efficiently exploitable forms of vector loops. 
This is guided by a suitable form of seman- 

tic analysis, Dependence Testing, which must 
be precise in order to fully exploit the archi- 

tecture. Most studies reduce this phase to the 

application of a series of explicitely computable 

arithmetic criteria. In many cases, this will fail 
if the criteria cannot be computed numerically, 
and contain symbols which cannot be evalu- 
ated. This also makes the use of other infor- 

mation pertaining to these symbols difficult. It 
is shown here that it is possible to eztract sym- 

bolic equations from some of the classical ctite- 

ria, merge them with other symbolic knowledge 
about the program, and use the global system 

to decide the non-existence of a dependence. In 
the context of the VATIL vectorizer (17,161, it 

is also shown possible to control the computa- 
tion cost, and obtain a good overall efficiency. 
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1 Introduction 

In order to restructure loops for vector or par- 

allel execution, it is essentia.1 to obtain very 
detailed information on the data and control 
dependence6 between multiply indexed occur- 

rences of instructions. Roughly speaking, the 

original instructions are contained in a nested 
set of loops, tihich provide indexed sets of in- 

struction occurrences. One llooks for a differ- 

ent order of execution of these occurrences, 

permitting the parallel or vector execution of 

some loops, while retaining the original seman- 
tics.(Cf. [13],[17]). It is therefore essential that 

dependence analysis be capable to account for 
subscripted variables, and exploit available in- 
formation on index variation (and range. 

Since the seminal work of I). J. Kuck and his 
team[l3], many authors have approached this 

subject from several standpoints: 

A Methods have been derived to determine 
subscripted data dependence, by reduction 

of subscript expressions, and loop index 
variations, to appropriate arithmetic cri- 
teria. (Cf. 121, [4], (3],[23:1). The extension 

of such techniques to the cases where vari- 

able aliasing and reshaping are permitted 

is discussed in [6,22]. 

B Methods have been sought to collect glob- 

ally the required semantic symbolic predi- 

cates in programs, from the standpoint of 
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non-standard denotational semantics (Cf. 

[15]), or from an ad-hoc construction of 
sets of linearized predicates (Cf. [22]). 

C General methods have been developped 

to solve symbolic equations occurring in 

the assessment of program semantics (Cf. 
Cousot [S]). To prove the theoretical 

results, a form of monotonicity is re- 

quired. Further approximations are neces- 

sary since in the most general cases one is 
confronted with undecidable subproblems. 

We will discuss in the sequel how to exploit 

the information generated by such meth- 

ods in the context of the vectorizer. 

D Methods have been developped to solve de- 

cidable classes of sets of symbolic equa- 

tions and inequations, as well as to ap- 
proximate intractable ’ problems by sim- 

pler ones, which can be solved algorith- 

mically, yielding some approximate infor- 

mat ion. (Cf. Bledsoe [5], Shostak[20]). 

The feasibility of approximation relies on 
the problem related fact that it is safe to 

replace a problem by a new one having 

a larger set of solutions, when the paral- 

lelization criteria possess the property of 

monotonicity,(Cf.[17]) The only price to 
be paid is that some vectorizable state- 
ments may not be vectorized. 

Individually, each of these approaches have 
both strong advantages, and serious drawbacks, 

and we have found surprisingly few attempts to 

combine them in the litterature. Among these, 
the most notable are the following: Burke & 

Cytron[G] discuss the class A methods of Baner- 
jee [4,3], Wolfe [23] and Allen (21, and the class 

D method of Shostak [20], but not their com- 

bination. Triolet[22] obtains semantic informs 
tion localizing variables in regions *, and main- 

tains their polyhedral nature, but applies a sim- 

ple class D solver a , to disprove directly the 

array-index aliasing equation (2). An appar- 
ent ly more general non-standart denot at ional 

semantic approach is taken by Jouvelot [ 151, but 
reduces to similar problem solving techniques. 

The approach we have been using in the 

VATIL vectorizer attempts to combine the use 
of class A and clcrss D methods. This is done 
by evaluating some of the classical criteria sym- 

bolically when it cannot be done explicitely nu- 

merically. At this point, we try to disprove 

the resulting set of predicates in the context of 

the available semantic information using clues 
D approximate decision methods. Thus we 

are able to stay very close to well known cri- 

teria, which have been specifically optimized 
for the purpose of a vectorizer, and yet not 
limited by their classical numerically explicit 

implementation. Our current choice of class 
D problem solving procedure, is the Sup-Inf 

method of Bledsoe [5], which has a high level 

of generality, but already requires some form of 

Ycomputational complexity controln in our en- 

vironment ’ . Within the LeLisp [7] written 
implementation of VATIL, which makes heavy 

use of symbolic oriented routines, it has been 

easy to extend the existing programs to collect 

symbolic equations rather than signal failure to 

evaluate explicitely. Our techniques are exten- 
sible to make use of information collected by 

the methods of closeerr B d C (Cf.[S]), but we 
have no large scale experience on this ’ . 

A major difficulty is related to the fact that 

the general symbolic systems which can be gen- 

erated are potentially undecidable or impracti- 
cable because of their high computational cost. 
Thus, we rely on the fact that approximations 

can be made safely (171 , and on the adapted 

construction of the required symbolic systems. 
The overall efficiency of our approach is due to 

the use of costly general decision procedures 
only when classical criteria have failed, and 

even in such a case starting from well adapted 

generalized 6 versions of these specific arith- 

‘The notion of intractable problem ranges from (PCS 
tentially) undecidable ones, to problems whose solution 
in too coetly.(Cf.[ll,l9,24~) 

aUnions of array element sets, each delimited by con- 
vex polyhedra in index space. 

3Namely the Fourier-Motskin Method 191 

‘Among our longer term plans, is the characterisation 
of useful class D methods, adapted to the set of real 
problems. 

‘It ie likely that the efficient selection of facts in the 
larger set of accumulated predicates will be a difficulty. 

‘The generalisation involves embedding the (in) - 
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metic criteria. This is very different to the 

standpoint of the papers cited above, where it 

is proposed to start from scratch with the pred- 
icate decision procedure (Cf. [15,22]). 

2 General Framework 

2.1 Expressions and Predicates 

We will be manipulating symbolic expressions 

and predicates in several contexts, and use the 

following notations: 

- variables belong to the variable set V and 

represent elements of domain D. We shall 

in the sequel use mnemonic variable names 
for application related variables like the 
loop indez I. 

- constant names represent elements of P, 

the set of constants is noted C. 

- expressions are made up of variables and 

constants, combined with operators in OP, 
they are elements of E. 

- basic predicates are formed from expres- 

sions using relation operators in OR. 

- predicates are formed from basic pred- 

icates using quantifier and logical opera- 

tors, they form the set PR. 

We will often specify the context in which 

we will be working by the indication of 

{D,OP,OR}. Moreover, we shall make use of 
abbreviations and some simple isomorphisms to 

avoid the rigidity of formal theory. 

2.2 Program Fragments 

In order to simplify the exposition we will re- 
strain ourselves to a single loop, involving an 

explicit loop index I. This is not a constraint 

equation where unevaluated variables and expressions 
remain, in a set of symbolic (in) - equations, after stan- 
dardisation and may be simplification. 

in the application of our methods. More pre- 

cisely, let us consider the following loop: 

CSPRAGMA{predicate-list:} 
DO 1 I=l,N 

:A: X(expl(I))= . . . . 
:B: = X(exp2(1)) (1) 

1 CONTINUE 

where: 

. - expi ,exp2 are mdex expressions involv- 

ing the loop index variable I, whereas N 
is an expression involving only loop invari- 

ant vaiablea. These may have been found 
explicitely in the program, or may have 
been generated after loop standardisation, 

index linearization or aliasing explicitation 

(Cf.(6,1,17,13,6]). These expressions are. 
made of constants, loop invariant integer 

variables , renamed variables assuming a 

single value ’ , and the loop index I. Since 

we will be creating new symbols as a result 
of several subalgorithms, we will denote by 

6~ a set of unique symbols not initially in 

v(*)- 

- {predicate-list} is a list of true pred- 

icates obtained from some more global se- 

mantic analysis tool, involving the vari- 

ables ’ in V and may be the loop in- 

dex I. We are making use of two types of 
predicates: bounds :: z 5; y and congru- 
ences lo :: 

s=ymodce%E.Z z=y+cz 

- 7 is the set of current hypotheses, whose 

elements are predicates in PR. Initially 3 
is formed out of {predicate-list}, later 
on known properties and necessary condi- 

tions for the existence of a, solution to the 

‘Some precautions like this have to be taken when em- 
bedding our program reman&s problem in a quite gen- 
eral mathematical setting 

“and which are created by the metkfunction u NcwS -. 
‘Here also some precautions are to be taken when 

identifying program variables with symbols in V .m. 
‘“here c ie an integer constant 
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problem at hand will be added to it. Thus, 

if a contradiction is found, independence is 

proved. 

A special function AddP is provided to add a 

predicate to the set of currently assumed pred- 

icates also noted 7. The function News creates 

new symbols in V. 

3 Dependence Analysis 

A dependence exists between the statements 

:A: and :B: of(l), if: 31 E Z, 35 E Z: 

e@(l) = ezp2(J) (2) 

IOJ (3) 
151 , J<N (4 

{predicate - list} I= I, J (5) 

Where 0 can be > (respectively 5) in the case 
of an anti-dependence (resp. data-dependence) 
(Cf. [17,13]). The last equation simply means 

that I and J are values for I which satisfy the 

{predicate-list}. Of course, any other vari- 

able appearing in (2-5) is implicitely bound to 

an existential quantifier. 

The exploitation of the precise knowledge 

of existing dependences is the major goal of 
program restructuring. This permits vector- 
ization ((17,13,12]), parallelization ([S,lO], en- 

hancement of data-locality ([14]),... Of course, 

the aim will most often be to prove that no de 

pendence exists, and therefore that the system 
(2) has no solution. When solutions do exist, 
characterizing them in a more precise way can 

be of interest to apply more sophisticated tech- 

niques. 

4 Dependence Criteria 

After showing the basic steps on the example 

of the direct resolution of equation (2), we will 

recall two classical criteria, and detail the ap 

preach used to extract symbolic information 
from them when they fail to fully evaluate nu- 

merically. Since, we will show in the 55 that we 

can make use of such symbolic information, we 

will speak of eztended criteria. 

4.1 Index Equality Equation 

The conceptually simplest method is to try to 
directly disprove equation (2). Although our 

implementation does not involve tackling di- 

rectly this problem, but the genercrlizcd critc- 

ria shown below, we will describe now the di- 

rect approach to equation (2)) many features of 
which will be of interest in the ensuing discus- 

sion. 
We will use several devices to reduce the 

problem (P) to a series of approximate ones 

!ZLti0#: 

which satisfy the appropriate s&y 

Solutions(P) C Solutions( P’) (6) 

and then attempt to prove the last one has no 

solution. This can be done along the following 

steps: 

Ri: Algebraically simplify equations (2,...,5), 

using for instance the techniques of 

Moses[l8]. At the same time, the problem 

is reduced to integer arithmetic by observ- 

ing that the expressions in (2) have inte- 

ger values, thus non integer terms have to 
be converted. We add variables to achieve 

this: 

conv(expr) --+ 0 := News 

and forget about the remaining equation: 

B = convtexpr) 

It would be feasible to add predicates to 

take into account further properties: 

conv(ein(expr>) --+ -15 19 < 1 

We also take the opportunity to get rid 

of any function or operator other than 

+, *, min, maz, using the same mecha- 
nism. We are thus left with a problem in a 

{Z,(+,*),(<,=)} first order theory, which 

is undecidable [ 191. 

R2: select an approximate problem form which 

can be solved in practice. Among the can- 

didates are: 

“because of monotonicity, Gf.(l?‘j 
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Cl: Similar problems over the reals, in 

{R,(+,*),(I)}. Here, the problem has 
become decidable, but with exponen- 

tial complexity. Moreover, even in 

very simple situations, working with 

the reals or rationals is not satisfac- 

tory for our application. This has led 
to the development of the GCD(s4.2) 
and Ezact Banerjee[3] tests. 

C3: Linearized problems, and linear pro- 

gramming problems over the reals. 

C3: First order Presburger arithmetic in 

{Z,(f),& =)} These problems can 
theoretically be solved by exact de- 

cision methods which are extremely 

costly’2 or by approximate meth- 
ods. We have chosen such an approz- 
imate method, with restrictions on the 
allowed quantifiere, for our present 
implementation (Cj. 5.3). 

Cd: Linearized problems, and linear pro- 

gramming problems over the integers. 

(Cf.llll) 
R3: reduce the problem to the class selected. 

For instance, reduction to the class C-3 

means that variables in V will represent 

integers in 2, and involves replacing non- 
linear terms by a set of rules illustrated in 

figure 1. 

Several facts must be noted about this ap- 

proximation procedure. First of all, we forget 
about the old expressions whose values are rep- 

resented by the newly introduced Si: we will 
not check that the initial problem indeed pos- 

sesses a solution, but try to establish that the 
new approximate problem has no solution. Sec- 
ond, it is possible to enrich the predicate set 7 
for the Bi by using additional rules like avail- 

able bounds for expressions. For instance, we 
could have added to the rule Wl (resp. W4 ) 

in the figure 1 the rule W5 (resp. W6 and W7) 

shown in the figure 2. At this point, we are left 
with an approximate problem P’, to which the 

decision procedure of 55.3 is to be applied. 

“The minimal bound is of order 2”” for the general 
case. More restricted classes have lower complexity in 
the (only) 2Cn range. 

4.2 The GCD Test 

This test assumes that the equation (2) is linear 

in the loop index: 

( el,e2,e) C E; ell + eJ = e (7) 

When (er,e2,e) c C, this test consists of oh+ 

serving that a necessary condition is: 

e G 0 (mod gcd(e,,tJ) (8) 

This is generalized by: 

Gl: When it is determined ‘s that el and ez 
have a common constant factor a, either 
check the divisibility oj e immediately or 

add the predicate: e z 0 (mod a) to 3. 

If required, the decision procedure described in 

paragraph 5.2 is then invoked. 

4.3 The Allen - Banerjee - Wolfe 
Approximate Test 

The linear form of equation (2) with respect to 

the loop index is also assumed here, and the 

context {Z,(+,*),(s,=)} is used in the follow- 

ing derivation. A necessary condition for the 

existence of a solution to equations (2),(3),(4) 

is that the function (I, J) -+ erI+ezJ -e takes 
both signs when evaluated at the three corner 
of the triangle described by (3) and (4). This 
results in the lemma: 

Lemma 1 A necessary condition for equations 

(219 PA (4) t o h ave a solution is that the joilow- 
ing holds: (Cf. [4,2,23]) 

e2 - (e; - e2)+(N - 2) 5 e - el - e2 (9) 
e - el - e2 5 e2 + (e;+ + e2)+(N - 2) (10) 

The standard procedure is to check if one of the 
inequations can be completely evaluated and 

yields a contradiction. Our extension enable to 

consider the case where this does not occur and 

symbolie terms remain: 

62: When (Q) and (10) fail to evaluate and 
draw to* a conclusion: jirst, simplify the 

ISEither by inspection of the expressions or using F. 
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Hypothesis Rewrite rule Side Effects I 

Wl x ,YEE 

(XYY) P z 
x * y-e B:= News 

w2 
x ,yE& 
x-i-y $2 z 

x+-y--t8 8:= News 
J 

w3 XE i C aEN 
{ 

e:= News 
x**a + e 

I a-l 3 mod2 AddP(l -C 8’ - 1 

W4 
x EE 

x+ - e 
e := NE ,WS 

XGZ AddP(0 se) 

Figure 1: Linearizing for (Z,+,I}. 

x ,YEE 
w5 (X*Y) c z 

) 

{predicate-list}+ x * ‘- ’ 
0 5 x*y <a 
x EE 

W6 {predicate-list} t x+ + x 
=+x/o 

x EE 
W7 {predicate-list} > x+ - 6 

*xl0 

{ 

e:= News 
AddP(0 5 B <a) 

Figure 2: Improving Predicate List 

expressions. Then choose the contezt 

-lz,(+MI, =I), 1 inearize eventually the 
predicates in 7, and add equations (9) (10) 
after rewriting them according to the rules 
of figures 9 14, 2 and 1. 

At this point we are left with a set of predicates 
to which the decision method of $5.3 can be 
applied. 

5 Decision Procedures for 
the Symbolic System 

The main decision procedure we are using is 
the approximate method due to Bledsoe [5] and 
improved by Shostak[Zl]. As this last author 
pinpoints in [21, p. 5341, this approximate 
method, and the reduction techniques for in- 
equalities that it uses, make it well suited to 

“This ruleset is optional, see remark below 

test for problems that have solutions in the in- 
tegers if and only if they have real solutions. 
This is very much in the same spirit as the ap 
proximate test of Allen-Banerjee- Wolfe ($4.3). 
However the divisibility test is inherently Dio- 
phantine, and we treat it differently. 

5.1 Framework 

First of all, we observe that we wish to prove 
predicate systems of quite particular forms, be- 
cause of the origin of the problem, and the 
above listed transformations: 

t/VlVV:,...kfVi 1 (D, v II*... v Dd) (11) 

x = (l,..., I) DA = (Bl A . . . A Bm*) (12) 

where the B, are basic predicates in OR. More- 
over, in most practical cases, the disjunction 
contains only one term D1, and we have intro 
duced so far only a single rule that may con- 
tribute to disjunctions in Figure 3. Of course, 

401 



‘max(x,O)= &=NewS 
W8 x EE x+ - max(x,O) < AddP((B 2 O), 

A((84 = xl v 1 
Figure 3: More precise treatment of Maxima 

this is equivalent to proving the impossibility 
Of: 

3vlElv*...3v; (01 v Dp.. v 4) (13) 

5.2 Divisibility Criterion 

In order to exploit the divisibility criterion Gl, 

and take into account the information in 7, we 

simply use the basic predicates in 7 that can 

be put under the form: 

v = expr v E V 

where the expression expr does not use variable 

v, to eliminate as many variables as possible in 

e of Gl. At each step, the expression is sim- 
plified and tested for the divisibility criterion, 

until a contradiction is found. 

5.3 The Sup-Inf Method 

This method applies to predicate systems in 

{Z,(+, max, min),(<)}, describing quasi-linear 
inequalities, of the form (11). Also, since we 
will be working in this framework, we could 

have avoided the rule W4, and the explicita- 
tion of max through quantifiers in rule W8 “. 

The special form involving only inequalities is 

achieved by effectively replacing equalities by 

the rules illustrated in Figure 4. It makes 

strong use of the fact that variables represent 

integers, and shows that the method is more 
oriented towards bounding the set of possible 

solutions of (13) in a (possibly empty) set, than 

to the proof of precise equalities among inte- 

gers. Furthermore, to simplify the handling of 
constants, rational constants are allowed l6 in 

“This may be useful to achieve the requested form 
(ll), also to avoid disjunctions. (Cf. 86.1 

“This avoids having to constantly reduce to common 
denominator. 

the computations and the estimates obtained 

by the method, but not in the reduction by W8 
phase. Rational variables are not permitted. 

We will not develop here the Sup-Inf Method 

with much detail, since this can be found in the 
original papers of Bledsoe [5]. The 1 subprob- 

lems of the disjunction are corrsidered one at 

a time, and separately tested for solvability”. 
The test procedure SI consists of recursively 

calculating bounds for the variables. 

Variables whose bounds are being calculated 

are considered aa frozen within the inner stages 

of the recursion. The procedure SI stops when- 
ever an empty interval of the integers has been 

found, and otherwise returns precise bounds for 

the variables, in the reals, which are useless for 
our problem, since we do not want to go into 

the enumeration of possible integer values, be- 

cause of computational cost. In the first fa- 
vorable case, this implies that the approximate 

problem has no solution, and therefore that no 

dependence exists. 

A practical alterna- 
tive, proposed by Shostak[21] to the enumer- 
ation phase is to interpret the obtained bounds 

over the reals. According to the observation of 
[21, Theorem 171, the set of solutions S of (13) 
in the context l8 {R,(+, a),(<)} is convex and 
the bounds computed by the procedure SI are 

exact. It is possible to test for the emptiness 

of S by choosing iteratively arbitrary “slices” 

of S of decreasing dimensions and applying the 
above procedure S,7 in the reals. Whenever an 

empty interval” is found, it implies that S is 

empty, and we can conclude to the absence of 

“The computational cost implication is clear, and we 
restrict the use of disjunction creating rules. 

“Here we use the symbol i. to denote multiplication 
by numeric constants in R, since we cannot use the iso- 
morphism with repeated addition here. 

l@over the Reals. 
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.WQ * E; x=y---+x5yAy<x 

x<y--+x+l<y 

Figure 4: From equalities to inequalities 

dimeaaion a(lO24) 
c$PRAGMA AlTR (((*Be’ k 2))) predicate) 
c$PRAGMA ATTR (((cge> j 2))) predicate) 

do 1 i =1,64 
a(l+(i-1)*64) - a (i+(i+k-1)*64) 

+ + a(j+(j-1)*64) 
1 cant inue 

kl - - 64+64+k 
k2 = - 64+(64*j+j) 

C$DIRECTIVE SHORTLOOP,DOVEC 
DO 1 i = 1 ,64 .l 

a(-63+64+i) - a(66*i+kl)+a(k2) 
1 CONTINIE 

Figure 5: Source and Vectorized Codes 

dependence. 

6 Implementation 

6.1 Efficiency Issues 

We basically recommand the use of our ex- 
tended syinbolic criteria after the failure’of 
the well optimized classical tests, which avoids 
the issue of adding cost unnecessarily. In the 
VA?IL current implementationzO, we avoid 
some bookkeeping by applying each extended 
test immediately upon failing to setup the For- 
responding classical test due to remaining sym- 
bolic terms. we first apply the GCD, test, and 
then the A!len - Banerjee - Wolfe test. The 
extremely high potential cost of the symbolic 
decision procedure is alleviated by the fact that 
ye do limit the amount of computer time given 
to the Znf-Sup method. Also, for the sake of 
efficiency we reduce the use of disjunction gen- 
erating rules like W8 and W9. The first one is 
not necessary since max and min opeiators are 
allowed. For the second one, we observe that 
since we are working with linear equations, it is 
always possible to eliminate one variable from 

‘“This implementation is &rrently in use by the GIP- 
SMQO MVF Vectoriser.[lG] 

such an equation. This works globally well, and 
we plan to make a thorough experimental study 
of the efficiency matter for single and multiply 
nested loops before deciding of a more refined 
strategy. 

Since we have implemented in VATIL the 
above strategy, we have been able to supress the 
use of the ezact Bancrjee test ‘with no apparent 
loss of information” in processing meaningful 
programs. We also estimate that our present 
strategy is better suited for the study of both 
single and multiple loops. 

The direct use of the Zndez Equality Equa- 
tion is also an alternative which we have tried 
only on a very restricted set of examples, with 
poor performance compared to Gl and 62. 

6.2 Results 

The figures 5, 7 and ? show actual input and 
output from the current VATIL implementa- 
tion. The figures 6 and 8 show the actual cri- 
terion &ed to decide the data dependence be- 
tween the left hand side and the first term of 
the right hand side in these examples. These 
should enable the rea4er to figure out the type 
of predicate system which occurs in practice, 

alexcept on loops constructed ad hoc 
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31311 -63+64*I = 65*Il+Kl 

I<11 ; l<I,Il<64 

Predicates: KL2 ; 522 

Renaming : Kl=-64+64*K ; K2=-64+(64*J*J) 

3K -65*62< 129+Kl 50 

Sup Inf: K>2 ; K<-65 - 64 

Figure 6: Index Equality Equation and G2 Criterion 

C+** KERNEL 2 ICCG EXCERPT (INCOMPLETE 
DO 200 L- 1,Loop 
IL- P 
IPNTP- 0 

222 IPNT- IPNTP 
IPNTP- IPNTP+IL 
IL- IL/2 
i= IPNTP 

c$PRAGMA ATTR (((i . ipnt)) avail) 
DO 2 k- IPIJT+2,IPNTP.2 

i- i+l 
2 X(i)= X(k) - V(k)*X(k-1) - V(k+l) 

+ *X(k+l) 
IB( IL.GT.1) GO TO 222 

200 CONTINUE 

DO 2 kll = 1 ,l+(ipntp-(2+ipnt))/2 
t ,266 
k2 = minO(266, 

+ (2+(ipntp-(2+ipnt))/2)-kll) 
k3 = -l+(ipnt+kll) 
k4 = -2+(2*kll+ipnt) 

C$DIRECTIVE SHORTLOOP,DOVEC 
DO loo01 kl = 1 ,k2 ,l 

x(kl+k3) = (x(2*kl+kU)-v(2*kl+k4) 
+ * x((-l+k4)+2*kl))-v((l+ k4)+2*kl) 
+ * x((l+k4)+2*kl) 

1DDGlCONTINUE 
2 CONTINUE 

k - 2+(2*((ipntp-(l+ipnt))/a)+ipnt) 
i - l+(ipnt+(ipntp-(l+ipnt))/2) 

Figure 7: Source and Vectorized Codes 

3Kl Xl K1+k3 = 2*Ll+k4 

K1 <Ll ; 15 Kl,Ll Sk2 

Predicates: k2 5 256 ; k2 I (2 + (ipntp - (2 + ipnt))/2) - kll) 

1 5 kll ; kll 5 1 + (ipntp - (2 + i&)/2 

Renaming : k3 = -1 + All + ipnt 

k4 = -2 + ipnt + 2 * kll 

3kll 2fklllO ; 05 -2+2*k2+kll 

Sup Inf: inf k2 = 2 ; sup k2 = 256 

Sup Inf:P{hz,z) inf kll = 1 ; supkll = -2 

Figure 8: Index Equality Equation and G2 Criterion 

404 



and how the knowledge about program seman- 
tics is put to practical use by the VATIL soft- 
ware. 

The application of the generalized GCD cri- 
terion Gl is illustrated on figure (9). This fur- 
thermore illustrates the ability of our technique 
to take advantage of informations generated by 
algorithms studied by P. Cousot of congruence 

type. 
The application of the generalized Banerjee- 

Wolfe criterion 62 is illustrated on figures (5,6) 
and (7, 8). In the figure 8, one will notice that 
the method of testing emptiness of the solution 
set in the reals taking “slices” of lower dimen- 
sion haa been used, restricting to k2 = 2. 

7 Conclusion 

We have presented a method which permit the 
extension of classical dependence test in the di- 
rection of symbolic problem solving. This has 
been shown to be feasible while retaining the ef- 
ficient classical tests and building upon existing 
sophisticated criteria. This approach has been 
shown capable to take into account information 
coming from semantic analyses for scalar vari- 
ables, and to result in an efficient implementa- 
tion. Naturally, the same process can be used 
in other similar areas of program analysis and 
restructuring. 
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