
A Simple Solution to Lamport’s Concurrent Programming Problem
with Linear Wait

Boleslaw K. Szymanski

Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY 12180, USA

Abstract

A new simple solution to the Lamport’s concurrent
programming problem is presented. The algorithm uses five
distinct values of shared memory per process. The shared
values can be stored either in a single variable or in three
one-bit boolean variables assigned to each process. The
algorithm exhibits strong fairness property by enforcing the
linear wait. It can be made immune to two types of errors
typical to VLSI chip based multiprocessor systems: process
failures and restarts, and read errors occurring during
writes.

The algorithm requires a small number of writes to

shared memory. At most 4xp- f writes are needed for
I1

p entries to critical section by n competing processes. The
algorithm’s scheme is similar to that of Morris’s solution to
the mutual exclusion based on three weak semaphores.

l.Introduction

Mutual exclusion is one of the most fundamental prob-
lems that involve controlling parallelism. The issue here is
to limit parallelism of a number of concurrent processes at
certain instances of their execution. The code executed in
those instances typically contains accesses to memory loca-
tions, or to some other resources that permit only one pro-
cess at a time to access them. Such code is often referred to
as a critical section or a crirical region [Dijkstra, 19651.
Processes can proceed in parallel outside their critical sec-
tions but only one process at a time can execute its critical
section.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

o 1988 ACM 0-89791-272-l/88/0007/0621 $1 SO

TO provide mutual exclusion in uniprocessor systems,
it is often enough to disable interrupts when a process is in
its critical section. Such solution is efficient only if critical
sections are short. Otherwise the system response time
would degrade, or disabled interrupts could be mishandled.
The other limitation of this technique is that
disablinglenabling interrupts cannot be made available to
user programs in most systems.

In multiprocessors with shared memory the technique
using special test-and-set instruction can be effective.

However, it requires synchronized accesses from all
processes to the memory. In a multiprocessor, multiport
memory system it is impossible to create a test-and-set by
merely controlling the access cycle of a single processor
[Ferguson, 1984; Peterson, 19831. For example, there
always is some time delay in a clock pulse across the chip.
Consequently, on a VLSI chip with thousands of proces-
sors, the processors cannot run on the same clock. Grow-
ing popularity of parallel and distributed architectures has
led to renewed interest in algorithmic solutions to the
mutual exclusion problem [Davidson, 1987; Ferguson,
1984; Peterson, 1983; Raynal, 19861.

The question of how to implement mutual exclusion
algorithmicly has been studied extensively [Dijkstra, 1965;
Knuth, 1966; Eisenberg and McGuire, 1972; Raynal, 19861.
In [Lamport, 19741, Lamport presented a new extended
definition of the mutual exclusion problem. The new
definition takes into account possible process failures and
imposes restrictions on use of shared memory. In this new
form, the problem became even more relevant to VLSI chip
based multiprocessor systems, in which nonuniform condi-
tions in the chip’s wafer result in varying reliability of indi-
vidual processors.

Acknowledgment: This work was partially supported by the Office of

Naval Research through contract #NOOO14-86-K-0442 and by the Army

Research OfEce through contract #DAAL03-86-K-0112.

621

http://crossmark.crossref.org/dialog/?doi=10.1145%2F55364.55425&domain=pdf&date_stamp=1988-06-01

Lamport’s Bakery Algorithm [Lamport, 19741 uses
shared variables of unbounded size and is not immune to
infinite failures. Bounded-size solutions that are immune to
infinite failures were published in [Katseff, 1978; Peterson,
1983; Rivest, 19761. All these solutions, however, require
unbounded number of writes to shared memory.

An important characteristic of any Lamport’s con-
current programming problem solution is the maximum
number of distinct values of shared memory used by each
process. Peterson presented the solution that uses only four
distinct values but which does not satisfy the strong fair-
ness condition (the solution supports quadratic and not
linear delay) [Peterson, 19831. The algorithm given here is
not only simpler than the one presented by Peterson, but it
also enforces linear wait.

The presented algorithm uses just five distinct values
of shared memory per process. These values can be packed

into a single variable or represented by three boolean vari-
ables. The implementation with three boolean variables can
be made immune to the following two types of errors con-
sidered by Lamport:

(1) unbounded (possibly infinite) number of process
failures and restarts, and

(2) read errors occurring during writing of a shared vari-
able.

Another important characteristic of the solution is the
number of required writes to the shared memory. If the
waiting processes are suspended, and not cycling in a busy
wait, then the number of writes dictates memory traffic as
well as the number of wake-ups of suspended processes.

The described algorithm requires at most 4xp- f
11

writes

for p entries to the critical section made by n competing
processes.

The algorithm’s scheme is similar to that of Morris’s
solution to the mutual exclusion based on three weak sema-
phores [Morris, 19791.

2. The Problem Statement

The Lamport’s concurrent programming problem has
been fully defined elsewhere [Lamport, 19741, so only a
general description is given here. There are n (n>l>
processes that are numbered from 0 to n-l. The processes
are executing independently of each other, possibly on
different processors. The code of each process is divided
into two parts: a critical section, which typically contains
accesses to some resources, and a noncritical section.
There is no assumption about the rate at which processes
execute. However, each process in a critical section makes
a finite progress. This means that a finite, but possibly
unbounded, amount of time elapses between the execution
of individual instructions of code. Finally, a process enter-

ing its critical section is assumed to leave it after a finite

amount of time.

Processes start execution at a specified location in
their noncritical part of code, with all variables set to initial

values. Each process can enter the critical section any
number of times. Processes can communicate with each
other through the shared memory.

Algorithmic solutions of this problem consists of two
sections of code which snrrounder the critical section in
each process. The first section is executed before critical
section and is called a prologue. The second section is exe-
cuted after critical section, and is called accordingly an epi-
logue. The assumption about finite progress in execution of
the critical section is extended to the prologue and epilogue
as well. However, this does not mean that a process which
started to execute its prologue or epilogue, has to leave any
of them in a finite time. In other words, an infinite looping
is excluded by assumption, and should be avoided through
proper design of the prologue and epilogue. We are
interested in a uniform solution, in which all processes exe-
cute the same prologue and epilogue.

There are four properties required from the correct
solution.

1.

2.

3.

4.

Mutual exclusion: There will be at most one process
executing the critical section at a time.

Freedom from deadlock: The critical section will not
become inaccessible to all processes. This means that
if a number of processes attempts to execute their crit-
ical sections, then after finite amount of time some
process will be allowed to do so.

Fairness (freedom form starvation): No process will be
denied entry to its critical section forever. Thus, a pro-
cess requesting an entry to its critica section will
enter it after waiting for a finite amount of time. The
stronger fairness property requires that no process can
enter its critical section twice while another process is
waiting (linear wait).

Robustness: The solution should be immune to the fol-
lowing two types of failures:
(1) Process failure: a prooess may repeatedly fail and
restart. However, process failing in the critical section,
prologue or epilogue is assumed to leave the respec-
tive section of code and reset all its variables to their
initial values.

(2) Read errors during writes (flickering bits): when a
process writes a new value to a shared variable, a
sequence of reads may return any sequence of the old
and new values.

The robustness requirement implies that global vari-
ables cannot be used, for the process associated with a glo-
bal variable may fail and take. the variable with it. Simi-
larly, in general no process can rely on another’s variables.

622

Thus, a robust algorithm shall use only so called process
specific shared variables [Raynal, 19861.

A process specific shared variable can be written only
by one process (“owner” of that variable). It may be read
by all processes. As pointed out in [Peterson, 19831, read
errors during writes can easily occur when two processors
running on different clocks communicate. The sum of
pulses from the two processors may create so called runt
pulse, which causes the read to return a random value.
Thus, the algorithm robustness is an essential requirement
for solutions targeted to VLSI chip based multiprocessor
systems. Since space is at premium in a chip, then minim-
izing amount of needed shared memory is also of impor-
tance in such systems.

3. The Algorithm

The idea behind the algorithm is simple. The prologue
contains a waiting room with two doors. At the course of
the execution, processes assume different states in relation
to the entry to the critical section (Comp. Figure 1). All
processes requesting entry to the critical section at roughly
the same time gather first in the waiting room. Then, when
there are no more processes requesting entry, waiting
processes move to the end of the prologue. From there, one
by one, they enter their critical sections. Any other process
requesting entry to its critical section at that time has to
wait in the initial part of the prologue (before the waiting
room).

In the waiting room of the prologue, always one door
is opened while the other is closed. Initially, the door-in is
opened. Each process passing through this door checks
whether there is any other process intending to enter critical
section. If there is, than the door-in remains opened and
the passing process moves to the waiting room. Otherwise,
it closes door-in and opens door-out. The process which
has the lowest order number among processes that passed
the door-in enters its critical section. The door-in is opened
(and the door-out is closed) when the last process from
those that already passed the door-in leaves the epilogue.

One process specific shared variable, called flag,
describes the current state of its owner process. This vari-
able assumes one of the following five values:

0 - denoting that the owner process is in the noncritical
set tion,

1 - indicating that the owner process wants to enter its
critical section (declaration of intention),

2 - showing that the owner process waits for other
processes to get through the door-in,

3 - denoting that the owner process has just passed
through the door-in,

4 - indicating that the owner process has crossed the
door-out.

state= 1 - - . ’ intention
state=3 - - -Door-in -

Door-out-

Noncritical critical
Section I I Section

Figure 1. Scheme of Process States During Execution

At any time only one process can have the lowest
order number in a set of processes which passed through
the door-in, so the mutual exclusion is enforced. If a pro-
cess overtakes the other process in entering its critical sec-
tion, this process will not be able to pass through the
door-in until all the processes it overtook leave their criti-
cal sections. Thus, the linear wait is also enforced. Finally,
no process will wait in the waiting room forever, for in a
group of processes which passed through the door-in there
will always be a process that bypasses state 2 and changes
its state from 3 to 4 directly. This is the process which was
the last one to set its state to 3 in this group of processes.
Once the state 4 has been reached by a process in this
group, it will be maintained by at least one process in this
group all the time, until all processes in the group leave the
epilogue. The detailed algorithm is shown in Figure 2.

I

In the algorithm, the condition for closing the door-in
and opening the doo-out is ff j: flaglj]#l. The condition
for closing the door-out and opening the door-in is

V j: flaglj]+l. Each process passing through the door-in
closes it momentarily to check if it should close it per-
manently (state 4) or keep opened (state 2).

Note that step EO is needed to keep the door-out
opened for processes still in the waiting room. We can
move this statement to the prologue, just after the statement
P30, and the algorithm still will be correct. Doing that in
the epilogue increases efficiency of the solution, because a
process can enter its critical section without waiting for any
other process to get out of the waiting room.

623

For each process Pi,OliG+l, the prologue and epilogue are:

specific shared flag in 0..4;
local integer j in O..n-1;

PlO: flag[i]:=l; I
Pll: wait until Y j: flaglj]<3;
P20: flag[i]:=3;
P21: if 3 j: flagu]=l then begin flag[i]:=2;
P22: wait until 3 j: flagljl=4; end;
P30: flag[i]:=4;
P31: wait until SJ jci: flagljlc2;

Critical Section

EO: wait until ‘d j>i: flagljlc2 & flagu]>3;
El: flag[i]:G,

Figure 2. The Algorithm

Lemma 1. The algorithm preserves mutual exclusion.

Proof. For a process to enter its critical section, it
must first set its flag[i] to 4, and then not see any lower
numbered flag set to the value bigger then 1. If for some
jci, the processes Pi and Pj were both in their critical sec-
tions, then at the moment the process Pi entered its critical
section, flagu] was 0 or 1 (Comp. statement P31).

Process Pi could set its state to 4 either directly from
statement P21 or indirectly through a wait in statement P22.
In the former case the process Pj had to be in state 0 at the
moment the process Pi was executing statement P21 (Comp.
condition of P21). At that time flag[i] had been already set
to 3 to be later changed to 4. Thus, process Pj cannot pass
beyond the statement Pll until the process Pi leaves its
critical section (Comp. condition of Pll).

The only remaining possibility is that the process Pj
was in state 1 when the process Pi was executing statement

P21. When the process Pi passed statement Pll, no process
was in state 4. Let’s consider the first moment after that in
which any process reaches state 4. At that moment the pro-
cess Pj has to be in state 0, and therefore it again cannot

pass beyond the statement Pll until the process Pi leaves
its critical section (the wait in EO ensures that the process
first to reach state 4 maintains this state until Pi changes its
state to 4)L7

Lemma 2. The algorithm prevents deadlock.

Proof. The only possible transitions of the process
states in the prologue are: 1 to 3, 3 to 2, 3 to 4, and 2 to 4.
Thus, if the deadlock were to occur, then after the finite
amount of time we would have a group of processes with
their flags set to values greater than 0, and not changing
those values. Let’s assume then, that we have such a group

of waiting processes.

The flag value equal to 3 is temporarily only and a
process always changes this value either to 2 or 4 in a
finite time (thanks to our assumption about finite progress
in prologue and the statement P21). Therefore no process
in the waiting group can have flag set to 3.

If any process in the waiting group would have its flag
set to 4, then no process in this group could have its flag
equal to 2 (such a process would be able to pass the state-
ment P22, and change the value of its flag to 4). Since in
the previous paragraph we showed that no process can have
its flag set to 3, then it follows that the processes in the
waiting group have their flags equal to 4 or 1. This means
that the process with the highest order number among those
with flags equal to 4 can enter its critical section - a con-
tradiction. Thus, no process in lthe waiting group can have
its flag set to 4.

If any process in the waiting group would have its flag
equal to 1, then at least one waiting process would have the
flag equal to 4. Otherwise, the process with the flag equal
to 1 would be able to pass the statement Pll and change its
flag to 3. Since we already showed in the previous para-
graph that no process can have its flag set to 4, than the
processes in the waiting group cannot have flags equal to 1
either.

The only remaining possibility is that all processes in
the waiting group have their flags equal to 2. Let’s consider
the waiting process that was the last to change its flag from
1 to 3. Executing the statement PZI, this process could not
see processes with flags equal to 1, so it had to change its
flag to 4 and not to 2, as we assumed. This final contradic-
tion shows that the group of processes waiting forever can-
not exist. lJ

Lemma 3. The algorithm e:xhibits linear wait property.

Proof. Suppose that the process Pj set its flag to 1 not
earlier than the process Pi, but after that it entered its criti-
cal section before Pi did. At the moment the process Pj

changed its flag’s value from 1 to 3, no process could have
the flag set to 4. Therefore, either the process Pi had
already its flag set to 3, or no process, including P+ could
set the flag to 4, until the process Pi did SO. It follows, that

at the moment the process Pj set its flag to 4, the process Pi
had already its flag greater than 1. By the time the process
Pj left its critical section, the process Pi had to set its flag
to 4, thanks to the statement EO. Consequently, until the
process Pi does not leave its critical section, the process Pj
cannot get further then the statement Pll in its subsequent
request to enter critical section. 0

The following corollary immediately follows from the
proved lemmas l-3:

Corollary. The presented algorithm solves the mutual
exclusion problem and exhibits the strong fairness property
(linear wait).

624

5. Implementation

The described algorithm can be implemented using
three boolean variables: intent, door-in and door-out. The
values of this variables code the values of the correspond-
ing flag as follows:

Coding of the flag values

flag intent door-in door-out

0 0 0 0

1 1 0 0

2 0 1 0

3 1 1 0

4 1 1 1

The essential feature of this coding is that almost all
changes of the flags’ values in the prologue require writing
a new value to just one boolean variable. Indeed, the
changes of flag values in the prologue call for the following
assignments:

1. 0 to 1 requires intent:=tme,

2. 1 to 3 calls for door-in:=true,

3. 3 to 2 requires intent:=false,

4. 3 to 4 calls for door-out:=true, and

5. 2 to 4 can be made in two steps: intent:=true (it is like
a transition from 2 to 3) and then door-out:=true.
Note, that transition 2 to 3 followed by 3 to 4, is in
the described algorithm functionally equivalent to
direct transition from 2 to 4.

It is easy to verify that this solution is immune to the
bit flickering. For example, if the bit flickering occurs in
case 1, the process reading the value of intent may simply
close the door-in for the process currently writing its intent.
In case 2, the reading process may be able to cross the
door-in. In case 3, the reading process may be delayed at
the door-in, etc.

To make the implementation immune to process

failures and restarts in the prologue and epilogue, the fol-
lowing two modifications has been made in the described
algorithm.

1. It is necessary to prevent deadlock from occurring
when the process which is the last to change its flag
from 1 to 3, fails before setting its flag to 4. In such
case, processes waiting with the flag set to 2 could not
leave the waiting room. The solution here is to extend
the condition for leaving the wait in the statement P22
by boolean term v j: flaglj]#i and to send processes
satisfying this condition back to the statement P20.

2. In the described algorithm, the failing process may
overtake other processes to the entry to its critical sec-
tion after each failure and restart. This could happen,

if the failing .process is the only one with the flag
equal to 4, and it fails in the epilogue. The required
modification is to move the statement EO from the epi-
logue to the prologue (just after the statement P30).

The modified algorithm written in C-like syntax is
shown in Figure 3.

To make the algorithm immune to infinite number of
failures and restarts, it is necessary to impose a condition
on the restart of the failured process. Otherwise, a process
can fail and restore constantly, and after each restart, it can

For each process Pi,O&n-1, the prologue and epilogue are:

specific boolean intent, door-in, door-out = false;
local integer j=O; boolean f=true;

PlO: intent[i]=true;
Pll: whilefjcn) if (intentu] & door-inu]) j=O; else j++;
P20: door-in[i]=true;
P21: j=O; while ((!intentuJ I door-inu]) & j<n-1) j++;

if (intentu] & !door-inu]) (intent[i]=false;
P22: while (!door-outu] & (j<n-1 I

f=intentb] & !door-infi] I f & j>O))
if (j==n-1) j=O; else j++;

intent[i]=aue;
if (!door-outfi]) goto P21;)

P30: door-out[i]=true;
EO: j=i+l; while(i<n)

if (door&Q] 8z !door-outb]) j=i+l; else j++;
P31: j=O; while(j<i) if (door-mu]) j=O; else j++;

Critical Section

El: intent[i]=false; door-in[i]=false; door-out[i]=false;

Figure 3. The Implementation of the Modified Algorithm

immediately request entry to its critical section. If the fail-
ing process is fast enough in doing that, then all other
processes waiting for entries to their critical sections may
constantly see intent set to 1, so these processes would
wait forever in the waiting room. To prevent this from hap-
pening it is sufficient to request that the restarted process
waits until v j: flagul#2. This condition can be imple-
mented by the following loop:

RO: j=O; while(j<n) if (!inte& & door-inu]) j=O; else j++;

Restart

625

The original algorithm is deadlock free, therefore if
there is a group of processes with their flags equal to 2,
then after a finite amount of time they will start entering
their critical sections. At that time the only flag values in
existence will be 0, 1, and 4. Thus, no process will wait for
a restart forever.

5. Conclusion

A robust, fair mutual exclusion algorithm that can be
made immune to two types of failures has been presented.
This algorithm uses just five distinct values of shared
memory per process. These values may be stored either in a
single variable or in three one-bit boolean variables per
process. In the latter implementation, processes may repeat-
edly fail and restart, and read errors may occur during
writes. The algorithm uses just one more value per process
than the solution proposed in [Peterson, 19831. However,
the presented algorithm exhibits stronger fairness property
and is much shorter. Another advantage of the presented
algorithm is the small number of changes of shared values
made during each prolo ue execution. The algorithm

requires at most 4xp- $
rr

writes of new values to shared

memory per p entries to the critical section. Any change in
conditions for all waits in the prologue and epilogue require
a new write to be done. Therefore the small number of
writes to shared memory can make an implementation of
waiting through process suspension more efficient than
implementations based on busy wait.

References

1.

2.

3.

4.

5.

6.

Davidson, C.M., A Note on Concurrent Programming
Control, IEEE Transaction on Software Engineering,
vol. SE-13, no. 7, July, 1987, pp. 865-866.

Dijksna, E.W. Solution to a problem in concurrent
programming control, Communication of the ACM,
vol. 8, no. 9, September, 1967, p. 569.

Eisenberg, M.A., and McGuire, M.R. Further com-
ments on Dijkstra’s concurrent programming control
problem, Communication of the ACM, vol. 15, no. 11,
November, 1972, pp. 999.

Ferguson, M.J. Multiaccess in a Nonqueueing Mailbox
Environment, IEEE Transaction on Software Engineer-
ing, vol. SE-IO, no. 3, May, 1984, pp. 237-243.

Katseff, H.P. A new solution to the critical section
problem, in Conference Record of the Tenth Annual
ACM Symposium on Theory of Computing, San
Diego, CA, May l-3, 1978, pp. 86-88.

Knuth D.E., AdditionaI comments on a problem in
concurrent programming control, Communication of
the ACM, vol. 9, no. 5, May, 1966, p. 321-322.

7.

8.

9.

10.

11.

Lamport, L. A new solution of Dijkstra’s concurrent
programming problem, Communication of the ACM,
vol. 17, no. 8, August, 1974, pp. 453-455

Morris, J.M. A starvation-free solution to the, mutual
exclusion problem, Information Processing Letter, vol.
8, no. 2, 1979, pp. 76-80.

Peterson, G.L. A New Solution to Lamporr’s Con-
current Programming Probbem Using Small Shared
Variables, ACM Transactions on Programming
Languages and Systems, vol. 5, no. 1, January 1983,
pp. 56-65.

Raynal, M. Algorithms for Mutual Exclusion, The
MIT Press, Cambridge, Mass.achusetts, 1986.

Rivest, R.L., and Pratt, V.!R. The mutual e.xclusion
problem for unreliable processes; Preliminary Report.
Proc. 17th Annual Symposium on Foundations of
Computer Science, TX, 19761, pp. l-8.

626

