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Abstract 

A new simple solution to the Lamport’s concurrent 
programming problem is presented. The algorithm uses five 
distinct values of shared memory per process. The shared 
values can be stored either in a single variable or in three 
one-bit boolean variables assigned to each process. The 
algorithm exhibits strong fairness property by enforcing the 
linear wait. It can be made immune to two types of errors 
typical to VLSI chip based multiprocessor systems: process 
failures and restarts, and read errors occurring during 
writes. 

The algorithm requires a small number of writes to 

shared memory. At most 4xp- f writes are needed for 
I1 

p entries to critical section by n competing processes. The 
algorithm’s scheme is similar to that of Morris’s solution to 
the mutual exclusion based on three weak semaphores. 

l.Introduction 

Mutual exclusion is one of the most fundamental prob- 
lems that involve controlling parallelism. The issue here is 
to limit parallelism of a number of concurrent processes at 
certain instances of their execution. The code executed in 
those instances typically contains accesses to memory loca- 
tions, or to some other resources that permit only one pro- 
cess at a time to access them. Such code is often referred to 
as a critical section or a crirical region [Dijkstra, 19651. 
Processes can proceed in parallel outside their critical sec- 
tions but only one process at a time can execute its critical 
section. 

Permission to copy without fee all or part of this material is granted provided 
that the copies are not made or distributed for direct commercial advantage, 
the ACM copyright notice and the title of the publication and its date appear, 
and notice is given that copying is by permission of the Association for 
Computing Machinery. To copy otherwise, or to republish, requires a fee and/ 
or specific permission. 

o 1988 ACM 0-89791-272-l/88/0007/0621 $1 SO 

TO provide mutual exclusion in uniprocessor systems, 
it is often enough to disable interrupts when a process is in 
its critical section. Such solution is efficient only if critical 
sections are short. Otherwise the system response time 
would degrade, or disabled interrupts could be mishandled. 
The other limitation of this technique is that 
disablinglenabling interrupts cannot be made available to 
user programs in most systems. 

In multiprocessors with shared memory the technique 
using special test-and-set instruction can be effective. 

However, it requires synchronized accesses from all 
processes to the memory. In a multiprocessor, multiport 
memory system it is impossible to create a test-and-set by 
merely controlling the access cycle of a single processor 
[Ferguson, 1984; Peterson, 19831. For example, there 
always is some time delay in a clock pulse across the chip. 
Consequently, on a VLSI chip with thousands of proces- 
sors, the processors cannot run on the same clock. Grow- 
ing popularity of parallel and distributed architectures has 
led to renewed interest in algorithmic solutions to the 
mutual exclusion problem [Davidson, 1987; Ferguson, 
1984; Peterson, 1983; Raynal, 19861. 

The question of how to implement mutual exclusion 
algorithmicly has been studied extensively [Dijkstra, 1965; 
Knuth, 1966; Eisenberg and McGuire, 1972; Raynal, 19861. 
In [Lamport, 19741, Lamport presented a new extended 
definition of the mutual exclusion problem. The new 
definition takes into account possible process failures and 
imposes restrictions on use of shared memory. In this new 
form, the problem became even more relevant to VLSI chip 
based multiprocessor systems, in which nonuniform condi- 
tions in the chip’s wafer result in varying reliability of indi- 
vidual processors. 
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Lamport’s Bakery Algorithm [Lamport, 19741 uses 
shared variables of unbounded size and is not immune to 
infinite failures. Bounded-size solutions that are immune to 
infinite failures were published in [Katseff, 1978; Peterson, 
1983; Rivest, 19761. All these solutions, however, require 
unbounded number of writes to shared memory. 

An important characteristic of any Lamport’s con- 
current programming problem solution is the maximum 
number of distinct values of shared memory used by each 
process. Peterson presented the solution that uses only four 
distinct values but which does not satisfy the strong fair- 
ness condition (the solution supports quadratic and not 
linear delay) [Peterson, 19831. The algorithm given here is 
not only simpler than the one presented by Peterson, but it 
also enforces linear wait. 

The presented algorithm uses just five distinct values 
of shared memory per process. These values can be packed 

into a single variable or represented by three boolean vari- 
ables. The implementation with three boolean variables can 
be made immune to the following two types of errors con- 
sidered by Lamport: 

(1) unbounded (possibly infinite) number of process 
failures and restarts, and 

(2) read errors occurring during writing of a shared vari- 
able. 

Another important characteristic of the solution is the 
number of required writes to the shared memory. If the 
waiting processes are suspended, and not cycling in a busy 
wait, then the number of writes dictates memory traffic as 
well as the number of wake-ups of suspended processes. 

The described algorithm requires at most 4xp- f 
11 

writes 

for p entries to the critical section made by n competing 
processes. 

The algorithm’s scheme is similar to that of Morris’s 
solution to the mutual exclusion based on three weak sema- 
phores [Morris, 19791. 

2. The Problem Statement 

The Lamport’s concurrent programming problem has 
been fully defined elsewhere [Lamport, 19741, so only a 
general description is given here. There are n (n>l> 
processes that are numbered from 0 to n-l. The processes 
are executing independently of each other, possibly on 
different processors. The code of each process is divided 
into two parts: a critical section, which typically contains 
accesses to some resources, and a noncritical section. 
There is no assumption about the rate at which processes 
execute. However, each process in a critical section makes 
a finite progress. This means that a finite, but possibly 
unbounded, amount of time elapses between the execution 
of individual instructions of code. Finally, a process enter- 

ing its critical section is assumed to leave it after a finite 

amount of time. 

Processes start execution at a specified location in 
their noncritical part of code, with all variables set to initial 

values. Each process can enter the critical section any 
number of times. Processes can communicate with each 
other through the shared memory. 

Algorithmic solutions of this problem consists of two 
sections of code which snrrounder the critical section in 
each process. The first section is executed before critical 
section and is called a prologue. The second section is exe- 
cuted after critical section, and is called accordingly an epi- 
logue. The assumption about finite progress in execution of 
the critical section is extended to the prologue and epilogue 
as well. However, this does not mean that a process which 
started to execute its prologue or epilogue, has to leave any 
of them in a finite time. In other words, an infinite looping 
is excluded by assumption, and should be avoided through 
proper design of the prologue and epilogue. We are 
interested in a uniform solution, in which all processes exe- 
cute the same prologue and epilogue. 

There are four properties required from the correct 
solution. 

1. 

2. 

3. 

4. 

Mutual exclusion: There will be at most one process 
executing the critical section at a time. 

Freedom from deadlock: The critical section will not 
become inaccessible to all processes. This means that 
if a number of processes attempts to execute their crit- 
ical sections, then after finite amount of time some 
process will be allowed to do so. 

Fairness (freedom form starvation): No process will be 
denied entry to its critical section forever. Thus, a pro- 
cess requesting an entry to its critica section will 
enter it after waiting for a finite amount of time. The 
stronger fairness property requires that no process can 
enter its critical section twice while another process is 
waiting (linear wait). 

Robustness: The solution should be immune to the fol- 
lowing two types of failures: 
(1) Process failure: a prooess may repeatedly fail and 
restart. However, process failing in the critical section, 
prologue or epilogue is assumed to leave the respec- 
tive section of code and reset all its variables to their 
initial values. 

(2) Read errors during writes (flickering bits): when a 
process writes a new value to a shared variable, a 
sequence of reads may return any sequence of the old 
and new values. 

The robustness requirement implies that global vari- 
ables cannot be used, for the process associated with a glo- 
bal variable may fail and take. the variable with it. Simi- 
larly, in general no process can rely on another’s variables. 
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Thus, a robust algorithm shall use only so called process 
specific shared variables [Raynal, 19861. 

A process specific shared variable can be written only 
by one process (“owner” of that variable). It may be read 
by all processes. As pointed out in [Peterson, 19831, read 
errors during writes can easily occur when two processors 
running on different clocks communicate. The sum of 
pulses from the two processors may create so called runt 
pulse, which causes the read to return a random value. 
Thus, the algorithm robustness is an essential requirement 
for solutions targeted to VLSI chip based multiprocessor 
systems. Since space is at premium in a chip, then minim- 
izing amount of needed shared memory is also of impor- 
tance in such systems. 

3. The Algorithm 

The idea behind the algorithm is simple. The prologue 
contains a waiting room with two doors. At the course of 
the execution, processes assume different states in relation 
to the entry to the critical section (Comp. Figure 1). All 
processes requesting entry to the critical section at roughly 
the same time gather first in the waiting room. Then, when 
there are no more processes requesting entry, waiting 
processes move to the end of the prologue. From there, one 
by one, they enter their critical sections. Any other process 
requesting entry to its critical section at that time has to 
wait in the initial part of the prologue (before the waiting 
room). 

In the waiting room of the prologue, always one door 
is opened while the other is closed. Initially, the door-in is 
opened. Each process passing through this door checks 
whether there is any other process intending to enter critical 
section. If there is, than the door-in remains opened and 
the passing process moves to the waiting room. Otherwise, 
it closes door-in and opens door-out. The process which 
has the lowest order number among processes that passed 
the door-in enters its critical section. The door-in is opened 
(and the door-out is closed) when the last process from 
those that already passed the door-in leaves the epilogue. 

One process specific shared variable, called flag, 
describes the current state of its owner process. This vari- 
able assumes one of the following five values: 

0 - denoting that the owner process is in the noncritical 
set tion, 

1 - indicating that the owner process wants to enter its 
critical section (declaration of intention), 

2 - showing that the owner process waits for other 
processes to get through the door-in, 

3 - denoting that the owner process has just passed 
through the door-in, 

4 - indicating that the owner process has crossed the 
door-out. 

state= 1 - - . ’ intention 
state=3 - - -Door-in - 

Door-out- 

Noncritical critical 
Section I I Section 

Figure 1. Scheme of Process States During Execution 

At any time only one process can have the lowest 
order number in a set of processes which passed through 
the door-in, so the mutual exclusion is enforced. If a pro- 
cess overtakes the other process in entering its critical sec- 
tion, this process will not be able to pass through the 
door-in until all the processes it overtook leave their criti- 
cal sections. Thus, the linear wait is also enforced. Finally, 
no process will wait in the waiting room forever, for in a 
group of processes which passed through the door-in there 
will always be a process that bypasses state 2 and changes 
its state from 3 to 4 directly. This is the process which was 
the last one to set its state to 3 in this group of processes. 
Once the state 4 has been reached by a process in this 
group, it will be maintained by at least one process in this 
group all the time, until all processes in the group leave the 
epilogue. The detailed algorithm is shown in Figure 2. 

I 

In the algorithm, the condition for closing the door-in 
and opening the doo-out is ff j: flaglj]#l. The condition 
for closing the door-out and opening the door-in is 

V j: flaglj]+l. Each process passing through the door-in 
closes it momentarily to check if it should close it per- 
manently (state 4) or keep opened (state 2). 

Note that step EO is needed to keep the door-out 
opened for processes still in the waiting room. We can 
move this statement to the prologue, just after the statement 
P30, and the algorithm still will be correct. Doing that in 
the epilogue increases efficiency of the solution, because a 
process can enter its critical section without waiting for any 
other process to get out of the waiting room. 

623 



For each process Pi,OliG+l, the prologue and epilogue are: 

specific shared flag in 0..4; 
local integer j in O..n-1; 

PlO: flag[i]:=l; I 
Pll: wait until Y j: flaglj]<3; 
P20: flag[i]:=3; 
P21: if 3 j: flagu]=l then begin flag[i]:=2; 
P22: wait until 3 j: flagljl=4; end; 
P30: flag[i]:=4; 
P31: wait until SJ jci: flagljlc2; 

Critical Section 

EO: wait until ‘d j>i: flagljlc2 & flagu]>3; 
El: flag[i]:G, 

Figure 2. The Algorithm 

Lemma 1. The algorithm preserves mutual exclusion. 

Proof. For a process to enter its critical section, it 
must first set its flag[i] to 4, and then not see any lower 
numbered flag set to the value bigger then 1. If for some 
jci, the processes Pi and Pj were both in their critical sec- 
tions, then at the moment the process Pi entered its critical 
section, flagu] was 0 or 1 (Comp. statement P31). 

Process Pi could set its state to 4 either directly from 
statement P21 or indirectly through a wait in statement P22. 
In the former case the process Pj had to be in state 0 at the 
moment the process Pi was executing statement P21 (Comp. 
condition of P21). At that time flag[i] had been already set 
to 3 to be later changed to 4. Thus, process Pj cannot pass 
beyond the statement Pll until the process Pi leaves its 
critical section (Comp. condition of Pll). 

The only remaining possibility is that the process Pj 
was in state 1 when the process Pi was executing statement 

P21. When the process Pi passed statement Pll, no process 
was in state 4. Let’s consider the first moment after that in 
which any process reaches state 4. At that moment the pro- 
cess Pj has to be in state 0, and therefore it again cannot 

pass beyond the statement Pll until the process Pi leaves 
its critical section (the wait in EO ensures that the process 
first to reach state 4 maintains this state until Pi changes its 
state to 4)L7 

Lemma 2. The algorithm prevents deadlock. 

Proof. The only possible transitions of the process 
states in the prologue are: 1 to 3, 3 to 2, 3 to 4, and 2 to 4. 
Thus, if the deadlock were to occur, then after the finite 
amount of time we would have a group of processes with 
their flags set to values greater than 0, and not changing 
those values. Let’s assume then, that we have such a group 

of waiting processes. 

The flag value equal to 3 is temporarily only and a 
process always changes this value either to 2 or 4 in a 
finite time (thanks to our assumption about finite progress 
in prologue and the statement P21). Therefore no process 
in the waiting group can have flag set to 3. 

If any process in the waiting group would have its flag 
set to 4, then no process in this group could have its flag 
equal to 2 (such a process would be able to pass the state- 
ment P22, and change the value of its flag to 4). Since in 
the previous paragraph we showed that no process can have 
its flag set to 3, then it follows that the processes in the 
waiting group have their flags equal to 4 or 1. This means 
that the process with the highest order number among those 
with flags equal to 4 can enter its critical section - a con- 
tradiction. Thus, no process in lthe waiting group can have 
its flag set to 4. 

If any process in the waiting group would have its flag 
equal to 1, then at least one waiting process would have the 
flag equal to 4. Otherwise, the process with the flag equal 
to 1 would be able to pass the statement Pll and change its 
flag to 3. Since we already showed in the previous para- 
graph that no process can have its flag set to 4, than the 
processes in the waiting group cannot have flags equal to 1 
either. 

The only remaining possibility is that all processes in 
the waiting group have their flags equal to 2. Let’s consider 
the waiting process that was the last to change its flag from 
1 to 3. Executing the statement PZI, this process could not 
see processes with flags equal to 1, so it had to change its 
flag to 4 and not to 2, as we assumed. This final contradic- 
tion shows that the group of processes waiting forever can- 
not exist. lJ 

Lemma 3. The algorithm e:xhibits linear wait property. 

Proof. Suppose that the process Pj set its flag to 1 not 
earlier than the process Pi, but after that it entered its criti- 
cal section before Pi did. At the moment the process Pj 

changed its flag’s value from 1 to 3, no process could have 
the flag set to 4. Therefore, either the process Pi had 
already its flag set to 3, or no process, including P+ could 
set the flag to 4, until the process Pi did SO. It follows, that 

at the moment the process Pj set its flag to 4, the process Pi 
had already its flag greater than 1. By the time the process 
Pj left its critical section, the process Pi had to set its flag 
to 4, thanks to the statement EO. Consequently, until the 
process Pi does not leave its critical section, the process Pj 
cannot get further then the statement Pll in its subsequent 
request to enter critical section. 0 

The following corollary immediately follows from the 
proved lemmas l-3: 

Corollary. The presented algorithm solves the mutual 
exclusion problem and exhibits the strong fairness property 
(linear wait). 
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5. Implementation 

The described algorithm can be implemented using 
three boolean variables: intent, door-in and door-out. The 
values of this variables code the values of the correspond- 
ing flag as follows: 

Coding of the flag values 

flag intent door-in door-out 

0 0 0 0 

1 1 0 0 

2 0 1 0 

3 1 1 0 

4 1 1 1 

The essential feature of this coding is that almost all 
changes of the flags’ values in the prologue require writing 
a new value to just one boolean variable. Indeed, the 
changes of flag values in the prologue call for the following 
assignments: 

1. 0 to 1 requires intent:=tme, 

2. 1 to 3 calls for door-in:=true, 

3. 3 to 2 requires intent:=false, 

4. 3 to 4 calls for door-out:=true, and 

5. 2 to 4 can be made in two steps: intent:=true (it is like 
a transition from 2 to 3) and then door-out:=true. 
Note, that transition 2 to 3 followed by 3 to 4, is in 
the described algorithm functionally equivalent to 
direct transition from 2 to 4. 

It is easy to verify that this solution is immune to the 
bit flickering. For example, if the bit flickering occurs in 
case 1, the process reading the value of intent may simply 
close the door-in for the process currently writing its intent. 
In case 2, the reading process may be able to cross the 
door-in. In case 3, the reading process may be delayed at 
the door-in, etc. 

To make the implementation immune to process 

failures and restarts in the prologue and epilogue, the fol- 
lowing two modifications has been made in the described 
algorithm. 

1. It is necessary to prevent deadlock from occurring 
when the process which is the last to change its flag 
from 1 to 3, fails before setting its flag to 4. In such 
case, processes waiting with the flag set to 2 could not 
leave the waiting room. The solution here is to extend 
the condition for leaving the wait in the statement P22 
by boolean term v j: flaglj]#i and to send processes 
satisfying this condition back to the statement P20. 

2. In the described algorithm, the failing process may 
overtake other processes to the entry to its critical sec- 
tion after each failure and restart. This could happen, 

if the failing .process is the only one with the flag 
equal to 4, and it fails in the epilogue. The required 
modification is to move the statement EO from the epi- 
logue to the prologue (just after the statement P30). 

The modified algorithm written in C-like syntax is 
shown in Figure 3. 

To make the algorithm immune to infinite number of 
failures and restarts, it is necessary to impose a condition 
on the restart of the failured process. Otherwise, a process 
can fail and restore constantly, and after each restart, it can 

For each process Pi,O&n-1, the prologue and epilogue are: 

specific boolean intent, door-in, door-out = false; 
local integer j=O; boolean f=true; 

PlO: intent[i]=true; 
Pll: whilefjcn) if (intentu] & door-inu]) j=O; else j++; 
P20: door-in[i]=true; 
P21: j=O; while ((!intentuJ I door-inu]) & j<n-1) j++; 

if (intentu] & !door-inu]) ( intent[i]=false; 
P22: while (!door-outu] & (j<n-1 I 

f=intentb] & !door-infi] I f & j>O)) 
if (j==n-1) j=O; else j++; 

intent[i]=aue; 
if (!door-outfi]) goto P21; ) 

P30: door-out[i]=true; 
EO: j=i+l; while(i<n) 

if (door&Q] 8z !door-outb]) j=i+l; else j++; 
P31: j=O; while(j<i) if (door-mu]) j=O; else j++; 

Critical Section 

El: intent[i]=false; door-in[i]=false; door-out[i]=false; 

Figure 3. The Implementation of the Modified Algorithm 

immediately request entry to its critical section. If the fail- 
ing process is fast enough in doing that, then all other 
processes waiting for entries to their critical sections may 
constantly see intent set to 1, so these processes would 
wait forever in the waiting room. To prevent this from hap- 
pening it is sufficient to request that the restarted process 
waits until v j: flagul#2. This condition can be imple- 
mented by the following loop: 

RO: j=O; while(j<n) if (!inte& & door-inu]) j=O; else j++; 

Restart 
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The original algorithm is deadlock free, therefore if 
there is a group of processes with their flags equal to 2, 
then after a finite amount of time they will start entering 
their critical sections. At that time the only flag values in 
existence will be 0, 1, and 4. Thus, no process will wait for 
a restart forever. 

5. Conclusion 

A robust, fair mutual exclusion algorithm that can be 
made immune to two types of failures has been presented. 
This algorithm uses just five distinct values of shared 
memory per process. These values may be stored either in a 
single variable or in three one-bit boolean variables per 
process. In the latter implementation, processes may repeat- 
edly fail and restart, and read errors may occur during 
writes. The algorithm uses just one more value per process 
than the solution proposed in [Peterson, 19831. However, 
the presented algorithm exhibits stronger fairness property 
and is much shorter. Another advantage of the presented 
algorithm is the small number of changes of shared values 
made during each prolo ue execution. The algorithm 

requires at most 4xp- $ 
rr 

writes of new values to shared 

memory per p entries to the critical section. Any change in 
conditions for all waits in the prologue and epilogue require 
a new write to be done. Therefore the small number of 
writes to shared memory can make an implementation of 
waiting through process suspension more efficient than 
implementations based on busy wait. 
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