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Abstract 
Warp is a programmable, systolic array computer 

developed by Carnegie Mellon and produced by GE. A 

lo-cell Warp machine can perform 100 million floating-point 

operations per second (10 MFLOPS). A variety of applica- 

tions have been mapped onto Warp. The experience has been 

that the mapping is not a real problem; in fact, usually near- 

optimal mapping is relatively easy to obtain, and the actual 

implementation of the mapping on the machine can often be 

automated. This paper explains why this is the case by 

examining some computational models which are frequently 

used on Warp. Carnegie Mellon and Intel are jointly develop- 

ing a VLSI version of Warp, called iWarp. It is expecti that 

many applications can be efficiently mapped onto low-cost 

iWarp arrays to achieve an effective computation bandwidth 

of about one G&FLOPS. 

1. Introduction 
Many parallel computers are being used in a variety of 

applications today. Shared memory parallel computers in- 
clude MIMD machines such as Alliant, Encore, Sequent, and 
Cray X-MP. Distributed memory computers include MIMD 
machines such as Hypercube and Transputer, and SIMD 
machines such as Connection Machine and DAP. Many more 
parallel machines of enhanced capabilities are under develop- 
ment. A happy experience shared by many users is that it has 
been relatively easy to map applications onto parallel com- 
puters. 
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In 1984-87 Carnegie Mellon developed a programmable 

systolic array machine called Warp, that has a one- 
dimensional (1D) array of 10 or more processing elements 
[ 11. The machine is currently produced and marketed by 

General Electric Company. Anticipating the future need for 
integrated Warp systems, Carnegie Mellon and Intel Corpora- 
tion have been developing a VLSI Warp chip, called the 
iWarp chip. The &Warp system will be available in 1989-90. 

Warp has achieved high performance in many application 
areas including low-level vision, signal processing, neural 
network simulation, and scientific computing. Like applica- 
tions experience with many other parallel computers, the 
Warp experience is that mapping applications onto the 
machine has not been a real problem; usually near-optimal 
mapping is not difficult to obtain, and the actual implemen- 
tation of the mapping on a parallel computer can often be 
automated. This paper explains informally how the mapping 
is done on Warp. 

There are roughly three stages in solving an application 
problem on a parallel computer: 

Step 1: Application definition (e.g., by math- 
ematical formula) 

Step 2: Computation specification (e.g.. by 
program) 

Step 3: Computation on the parallel machine 

Computational models characterize the inter-processor com- 
munication behavior of Step 3. We use computational models 
to describe important ways in which applications sre mapped 
ontc Warp. 

Section 2 provides background information on Warp. Five 
frequently used computational models for Warp are presented 
in Section 3. These are models corresponclmg to local com- 
putation, domain- partition, pipeline, multi-function pipeline 
and ring. The last section contains some concluding remarks. 

2. Overview of Warp 
The Warp machine has three components -the Warp array, 

the interface unit, and the host, as depicted in Figure 1. We 
describe the machine only briefly here; details sre available 
from a separate paper [ 11. The Warp array performs the bulk 
of the computation. The interface unit handles the 
input/output between the array and the host. The host sup- 
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plies data to and receives results from the array, in addition to 
executing the parts of the application programs that are not 
mapped onto the Warp array. 

INTERFACE 

UWIT 

l- 
WARP ARRAY 

------------------ J 

Figure 1. Warp machine overview 

The Warp array is a 1D systolic array with identical 
processing elements called Warp cells. Data flow through the 
array on two communication channels Q and Y), as shown in 
Figure 1. The direction of the Y channel is statically con- 
figurable at compile time. By configuring the Y channel in 
the opposite direction from the X channel, a ring intercon- 
nection can be formed inside the 1D array. Another way to 
form a ring is to use the interface unit to connect the first and 
last cells of the array. 

Each Warp cell is implemented as a progrsmmable horizon- 
tal micro-engine, with its own microsequencer and program 
memory. The cell data path includes a 5 MFLOPS floating- 
point multiplier (Mpy), a 5 MFLOPS floating-point adder 
(Add), a local memory, and two data input queues for the X 
and Y channels. All these components are connected through 
a crossbar. An output port of the crossbar can receive the 
value of any input port in each cycle. Via the crossbar the 
floating-Point units can directly access data at the front of any 
input queue, and insert computed results at the end of any 
input queue of the next cell. Data at the front of any input 
queue cm also be sent diiectly to the next cell. A (much) 
simplified description of the Warp cell data path is given in 
Figure 2. 

I Local Memory 

A feature that distinguishes a Warp cell from many other 
processors of similar computation power is its high I/O 
bandwidth-an important characteristic for systolic arrays. 
Each Warp cell can transfer up to 20 million words (80 
Mbytes) to and from its neighboring cells per second This 
high inter-cell communication bandwidth makes it possible to 
transfer large volumes of intermediate data between neigh- 
boring cells and support fine-grain parallelism on the Warp 
array. 

The host consists of a Sun-3 workstation that serves as the 
master controller of the Warp machine, and a VME-based 
multi-processor “external host”, so named because it is 
external to the workstation. The workstation provides a UNM 
environment for running application programs. The external 
host controls the peripherals and contains a large amount of 
memory for storing data to be processed by the Warp array. 
Its dedicated Processors transfer data to and f&n the Warp 
array and perform operations on the data, with low operating 
system overhead. 

Warp programs are written in a high level Pascal-like lan- 
guage called W2. which is supported by an optimiziig com- 
piler [5,13]. To the application programmer, Warp is a 1D 
array or a ring of simple sequential processors, communicat- 
ing asynchronously. Based on the user’s program for this 
abstract array or ring, the compiler generates code for the 
host. interface unit and Warp array automatically. W2 
programs are developed in a Lisp-based programming en- 
vironment supporting interactive program development snd 
debugging. A C or Lisp program can call a W2 program from 
any UNIX computer on the local area network. 

Carnegie Mellon and Intel are jointly developing a large 
VLSI chip, called the rWarp chip, to implement an integrated 
version of the Warp cell. The Warp chip is a programmabIe 
processor capable of delivering at least 20 or 10 MFLOPS for 
single or double precision floating-point computations, 
respectively. In addition, it has on-chip, built-in routing 
hardware for message passing. Thus the chip is both a ccm- 
putation and a communication engine. This chip together 
with a local memory form the iWarp cell, as depicted in 
Figure 3. The rWarp cell is a powerful building-block cell for 
a variety of processor arrays, including 1D and 2D arrays. 

I iWarp Cell 

Local Local 

MWfW~y MWfW~y 

Figure 3. iWarp cell consisting of iwarp chip 
and local memory 

Figure 2. Warp cell data path (much simplied) 



3. Computational Models for Warp 
We will describe the following computational models: 

1. local computation; 

2. domain partition; 

3. pipeline; 

4. multi-function pipeline; and 

5. ring. 
These models correspond to different ways in which cells 
interchange their intermediate results during computation. 
Under each model there may also be different ways in han- 
dling Inputting and outputting for the processor array (see 
discussions below concerning the local computation model). 
Therefore the computational models are based on the com- 
munication behavior for intermediate results rather than input 
and output. 

In the diagrams, cells in a 1D processor array are denoted 
by square boxes, and named as ccl1 1, cell 2. - - . , cell N from 
left to right. Solid arrows denote data flows of intermediate 
results between cells. 

3.1. Local Computation Model 
The local computation model corresponds to the case where 

cells do not exchange their intermediate results during com- 
putation at all. Many computational problems have the 
property that elements in the output set are computed in- 
dependently from each other. The use of the local computa- 
tion model is natural in solving these problems on a parallel 
computer. In this model each output is computed entirely 
within a cell, and all the cells compute different outputs 
simultaneously. The main characteristic is that the entire 
computation for each output is done totally at a cell, i.e., the 
computation does not depend on intermediate results com- 
puted by other cells. 

Various methods can be used to take care of the inputting 
and outputting for each cell. For example, before or during 
computation, the required input to a cell can be shifted in via 
the cells to the left, and during or after the computation the 
output produced by a cell can be shifted out via the cells to 
the right. This is depicted by Figure 4. where dotted arrows 
denote the shift-in and shift-out paths for input and output, 
respectively. To achieve high performance, it is important 
that the I/O time and computation time can be overlapped as 
much as possible. 

Figure 4. Local computation model, with input and output 
shifted in and out 

Many image processing computations involve transforming 
an input image to an output image, using a kernel operator 
defined by, say, a 3x3 window. Figure 5 depicts such a 
transformation, with which each pixel in the output image 
depends on a neighborhood of the corresponding pixel in the 
input image. Clearly, all the pixels in the output image can be 
computed simultaneously and independently. Therefore the 

local computation model applies here. The figure illustrates 
that four cells can work on the four subregions of the output 
image independently, provided that the input pixels needed by 
each cell’s computation are pre-stored in the cell. Note that 
cells computing adjacent subregions have overlapped input; 
the larger is the kernel the larger is the overlap. 

Input 

Figure 5. Local computation model for image processing 
using a kernel operator 

As illustrated by the figure. the partitioning of the image 
processing task for the local computation model is straightfor- 
ward All that needs to be done is to partition the output 
image equally for all the cells. ‘This partitioning has been 
automated- Carnegie Mellon has developed a compiler called 
Apply, which can generate W2 programs for image process- 

ing computations using a kernel operator. and other computa- 
tions of similar kind [7]. 

Apply-generated W2 programs are able to overlap I/O with 
computation. While computing a row of pixels for the output 
image, a cell can output a previous row of pixels already 
computed and input a new row of pixels required for future 
computations. The Warp array supports this overlapping 
well, since the array has a high intercell communication 
bandwidth, and each cell is a horizontal micro-engine capable 
of performing many computation and I/O operations in each 
cycle. Because with Apply this overlapping is done automati- 
cally, Apply-generated Warp programs are often more ef- 
ficient than the corresponding hand-generated code. 

There is another interesting form of overlapping input with 
computation for the local computation model. Although all 
the cells compute different parts of the output set, the cells 
may share some input. In this case the shared input may be 
pumped systolically from cell to cell during computation. In 
the following this is illustrated with a matrix multiplication 
example. 

Given nxn matrices A and B. we want to compute their 
product C on a linear processor aray of k cells. We assume 
that k is much less than n. and in the illustration below, k=4. 
We evenly partition columns of B and C as shown in Figure 6 
(a). Using the local computation model, cell i will compute 
the entries of submatrix Ci. As its inputs, cell i needs A and 
Bi. Therefore input A is shared by all cells. Cell i will first 
load entries of Bi into its local memory. Then during com- 
putation, ennies of matrix A will be input to the left-most cell 
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in the row-major ordering, and shifted to the right from cell to 
cell, as depicted in Figure 6 (b). Cell i will perform inner 
produCts for all pairs of TOW and column in A and B, XSIXC- 
tively. (Each entry of A will be input repeatedly as it will be 
used by each cell multiple times, one for each of the c~hunns 
of B that the cell has.) Each inner product involves reading in 
a row of A from one of its input queues and a c~lttmn of Bi 
born the cell’s local memory, and performing a sequence of 
multiply-accumulate operations. By shifting in entries of A 
on-the-fly, each cell does not have to store the entire matrix. 
This can significantly save memory storage and access time 
for each cell [l 11. (3 

! 
A 

04 

- 

I 
I 
I 
I 
I 

II c4 

I 

I 
I 

cell 1 cell2 cell 3 cell4 

Figure 6. Matrix multiplication: (a) partitioning of 
matrices B and C. and (b) distribution of the 

resulting submatrices of B to the cells; entries 
of A moving to the right during computation 

There are many other examples based on the local compnta- 
tion model. They include the discrete cosine transform 
[2] and the labeled histogram computation [12]. 

3.2. Domain Partition Model 
Ear some applications the computation depicted in Figure 5 

is repeated many times; each time a new output image is 
computed based on the previous output image. This computa- 
tional process, called successive relaxation [15, 161. is 
depicted in Figure 7. where the grids correspond to the 
images. 

Grid 1 Grid 2 Grid 3 

Figure 7. Successive relaxation 

The successive relaxation process is often used in scientific 
computing. Consider, for example, the solution of the follow- 
ing elliptic partial differential equations using successive 
over-relaxation [ 181: 

!g + !$ =f(x,y). 

The system is solved by repeatedly combiig the current 
values of u on a 2D grid using the following recurrence: 

fi j+“* ‘- +“i j.+l+“i+l j+‘i-l j 

U’i, j = (1-O) Ui, j + a, ’ IJ ’ ’ * ’ ’ I 

where 0 is a constant parameter. In thi recurrent values 
associated with location (i.1) of the grid have indices (i,j). 

Suppose that the partitioning scheme of Figure 5 is used. 
Then when computing a new grid, each cell must import from 
its neighboring cells values computed for the previous grid. 
The required bi-directional data flows between neighboring 
cells are shown in Figure 8. 

Figure 8. Bidirectional data flows for successive relaxation 

With this example, the concept of the hifl partition 
ntodel can be easily introduced. The model arises when a 
problem domain (such as the grid space corresponding to an 
image, or to a fmite difference or finite element modeling) is 
partitioned so that each cell handles a subdomain. This model 
differs from the local computation model in that each output 
is not computed entirely by a single cell. That is, once in a 
while the cell needs to receive intermediate results from its 
neighboring cells before it can proceed further with its com- 
putation. Figure 9 depicts the domain partition model. 

- - I 1 

Figure 9. Domain partition model 

There are many computations that can be naturally carried 
out using the domain partition model. Numerical simulations 
of properties of a physical object, formulated by either dif- 
ferential equations or Monte Carlo methods, can be par- 
titioned along the physical space. A large file can be sorted 
on a 1D array by using the bi-directional communication to 
merge sublists sorted by individual cells. The merging can be 
done with only nearest neighbor communications, in a manner 
similar to that used in the odd-even transposition sort [3]. 
Labeling of connected components in an image csn be done 
by using the bi-directional communication to merge labels of 
subimages computed by individual cells [ 121. 
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3.3. Pipeline Model 
There is another (elegant) method to carry out the succes- 

sive relaxation computation depicted in Figure 7 on a ID 
array. This method uses pipelining. Instead of the data space, 
i.e., the grid, we partition along the time axis. That is. 
successive relaxation steps ere done on successive cells. In 
the row-major ordering, each cell receives inputs from the 
preceding cell, performs its relaxation step, and outputs the 
results to the next cell. Consider for example the successive 
over-relaxation computation described in Section 3.2. While 
a cell is performing the fi relaxation step on row i. the 
preceding and next cells perform the k-ln and k+l” relaxa- 
tion steps on rows i+2 and i-2. respectively. Thus, in one 
pass of the u values through a k-cell processor array, the 
above recurrence is applied k times. 7%~ process is repeated, 
under control of the external host, until convergence is ach- 
ieved. In a similar way we can implement many other itera- 
tive methods such as Jacobi and Gauss-Seidel methods in a 
pipelined manner. 

has computed the values of the first two points in row i. ‘We 
have implemented a version of this pipeline computation on 
Warp to solve a path planning problem using a dynamic 
programming technique [4]. 

3.4. Multi-function Pipeline Model 
A single computation may involve a series of subcom- 

putations each executing a different function. If these func- 
tions can be chained together on a 1D array, then a one-pass 
execution of the entire computation will be possible. This is 
the basic idea of the multi-function pipeline model [6]. In his 
model, the 1D array is a pipeline of several groups, each 
consisting of a number of cells devoted to a different function. 
The number of cells in each group is adjusted so that every 
group will take about the same time, in order to maximize the 
pipeline throughput. 

In this pipeline model, the computation for each output is 
partitioned into a sequence of identical stages, and cell i is 
responsible for stage i. A characteristic of this model is that 
cell i+l uses computed results of cell i, as depicted in Figure 
10. Intermediate results move iu one diiection and fina 
results emerge from the last cell. I/O and computation are 
automatically overlapped; this is a major advantage of the 
model. The pipeline model is natural when implementing 
systolic algorithms where the partial results move from cell to 
cell and get updated at each cell they pass [9]. 

This model is illustrated in the following example. which is 
a laser radar simulation implemented on Warp: 

Step 1: For every 102~point input block, per- 
form a 1024~point complex FET. Partition each 
FFT output into 30 overlapped ‘256-element sub- 
sequences. 

Step 2: For each of the 30 256element sub- 
sequences, perform the following operations: 

(i) multiply each element by a weight, 
which is a complex number 

(ii)perform a 256~point complex inverse 
FFT, and 

INTERMEDIATE RESULTS 

INPUT j-d@ -h-b OUTPUT 

STAGE 1 STAGE 2 STAGE N 

Figure 10. Pipeline model 

Under the pipeline model. cell i+l cannot start its operation 
until cell i completes at least a stage of computation. Thus for 
this model minimizing the latency between the starting tunes 
of adjacent cells is a major concern. This is in contrast with 
the domain partition model, for which the starting time of a 
cell does not depend upon any computed results of other cells. 

(iii) compute the amplitude. of each of the 
256 outputs. 

Step 3: Threshold the resulting 30x256 image 
using 3 x3 windows. 

These steps are implemented with consecutive segments of 
the Warp array, as depicted in Figure 11. 

1024-pt 
Sample 

lOPI-pt FFT I 256-pt FFT 1 Amplitude 
6 II 

For some computations the pipeline model represents the 
only efficient parallel implementation. To see such a case. 
consider a variant of the image processing task depicted in 
Figure 5. For this variant, in computing the value of each 
point, the new values of its neighbors will be used whenever 
possible. Suppose that using a 3x3 window, the computation 
follows the row-major ordering. Then computing the value of 
each new point uses the new values of the left neighbor and 
the upper three neighbors, which were computed earlier. A 
way of using the pipeline model is that cell i computesvalues 
of points in row i in the left to right order. Cell i is pre-stored 
with values of points in rows i and i+ 1. During computation, 
a copy of each new value cell i computes is sent to cell i+ 1. 
Note that cell i + 1 can start its computation as soon as cell i 

Multiplication 
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" 
Thresholding 

Figure 11. Multi-function pipeline model to implement a 
radar simulation on Warp 

Figure 12 illustrates another possible use of the multi- 
function pipeline model in implementing the geometry system 
portion of 3-D computer graphics. The fust cell performs the 
matrix multiplications, the next three cells do clipping, and 
the last cell does the scaling operation. Three cells are 
devoted to clipping as it requires more arithmetic operations 
than either matrix multiplication or scaling [8], 

I I I I I I 
GROUP 1 GROUP 2 GROUP 3 

(FOR MATRIX MLlLT) (FOR CLIPPING) (FOR SCALING) 

Figure 12. Multi-function pipeline. model to implement 
a geometry system 



The multi-function pipeline model is useful when a com- 
putation requires a number of small functions, each of which 
is not large enough to make an effective use of all the cells in 
a 1D array. Concatenating these hu~ctions in a chain offers an 
opportunity to use more cells effectively. Also, for some 
computations, it is inherent that one or few cells must perform 
functions different from the rest. For example, when per- 
forming a 2D convolution on a 1D array, some cells need to 
buffer a row of image and none of the other cells need to do 
that [lo]. For some computations. the first and last cells of a 
1D array carry out special functions such as interface with the 
outside world or preparation of data for the next phase of 
computation on the array. An example of this is a neural 
network simulation on Warp, where only the last cell per- 
forms weight updates based on weight changes computed by 
other cells [14]. 

To support the multi-function model, the processor array 
must allow heterogeneous progmmming, that is, different 
programs to be executed at different cells at a given time. 
Further, the rate of the input to a group may not be compatible 
to that of the output from the preceding group. Thus some 
buffering and flow control mechanisms need to be provided 
between each pair of cells. For the Warp array, all cells can 
be individually controlled, and dedicated hardware queues 
capable of performing flow control are available between 
adjacent cells. 

In summary, the multi-function model differs from the 
pipeline model described early in that cells are now allowed 
to perform different functions. This flexibility in the usage 
offers the opportunity of effectively using a large number of 
cells in a 1D array. 

3.5. Ring 
A 1D array becomes a ring when the first cell is connected 

to the last cell. In the ring modfd intermediate results flow on 
a ring of cells. 

An important usage of the ring model is the implementation 
of a large “logic” array of logical cells, under the pipeline 
model, with a small “physical” array of physical cells. One 
implementation is to have each physical cell handle a group of 
consecutive logical ceils as depicted in Figure 14 (a). This 
will incur a large latency between the starting times of two 
adjacent physical cells. as the latency will be the sum of all 
the latencies incurred by those logical cells which are as- 
signed to a physical cell. Another implementation is to use 
the physical array in multiple passes to simulate the function 
of the logical array, as depicted in Figure 14 (b). This mul- 
tiple pass scheme can be implemented with a ring as shown in 
Figure 14 (c). The ring is formed by using a queue to connect 
the last physical cell to the fist. The queue can store outputs 
from the last physical cell while the first is still busy in doing 
its computation for the current pass. This ring scheme incurs 
the minimum latency between the starting times of two ad- 
jacent physical cells. 

Another major use of the ring model is in the implemen- 
tation of broadcasting. Many computational pxoblems involve 
multiple levels of computation as depicted in Figure 13 (a). 
Each value in a level depends on all the values computed ln 

the previous level. For example, in the figure to compute bl 
in level 2 we need all the values in level 1, as indicated by the 
lines connecting bl with ul. a2’ ‘5 and ~4. Therefore all the 
values computed in a level need to be broadcast to all the cells 
which will be computing values in the next level. An ex- 
ample of such a computational problem is the back propaga- 
tion neural network simulation [17], for which levels of com- 
putation correspond to layers of the neural network. 

(a) 

level 1 Level 2 LCVCl 3 Level 4 

Figure 13. (a) Multi-level computation where results 
in one level are broadcast to the next level, and 

(b) using the ring model to implement 
the broadcasting 

The ring structure can implement the broadcasting in a 
natural way, provided that the computation for each value is 
commutative and associative so that inputs in the previous 
level can be combined in any order. Figure 13 (b) illustrates 
the idea, by considering how values in level 1 can be sent to 
cells computing values in level 2. Assume that every value in 
a layer is computed by a separate cell, and for each i the cell 
which computes ai will also compute bi. Then by pumping 
the Ui’S around the ring for a full cycle, as shown in Figure 13 
(b), cell i (for every i) will be able to meet all the ai’s so it 
will have all the inputs to compute bP The computation of bi 
will OCCUT on-the-fly as each Ui parser by. Therefore com- 
putation and I/O are totally overlapped. 

4. Concluding Remarks 
This paper informally described a number of frequently 

used computational models for Warp. They represent various 
ways in which applications are mapped onto Warp. In 
general the mapping process for a parallel machine such as 
Warp is quite simple and intuitive; users spend most of their 
time in debugging programs rather than figuring out efficient 
mapping schemes. As parallel machines become mature, 
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better progr amming tools will be available to remove most of 
these programming difficulties, which are associated with any 
new computer system. 

Besides describing applications usages, computational 
models provide a way to classify programming tools for the 
automatic generation of parallel programs. For example, the 
APPLY progr amming tool is to generate parallel code for the 
local computation model. There are several on-going 
research projects at Carnegie Mellon intended to generate 
parallel programs for the other computational models such as 
the pipeline model. 

There are a few features in the Warp architecture that con- 
tribute to its effectiveness in supporting the computational 
models described in this paper. These features include the 
powerful Warp cell, its high degree of programmability 
through the optimizing compiler, and the simplicity of the 
linear array interconnection. These ideas have played 
together well in the Warp architecture. The &Warp-the next 
generation of Warp-will support a larger set of computa- 
tional models, due to its built-in routing hardware for message 
passing. Mapping applications onto an &Warp array will be 
even easier. 

Acknowledgment 
Many of the ideas presented in this paper were inspired by 

work done under the Warp project at Carnegie Mellon. The 
author is especially indebted to those members of the project. 
including F. Bitz, G. Gusciora, H. Ribas, P. S. Tseng. and 
J. Webb, for their implementation of some of the applications 
examples discussed in this paper. 

L Assigned to -t L Assigned to 
Physical Cell 1 Physical Cell 2 

a L Assignedto-I L Assignedto -t 
Physical Cell 3 Physical Cell 4 

@I 

- Passl- - pass2- - pass3- 

Figure 14. Implementing a large pipeline with a small 
physical array: (a) each physical cell is assigned 
to a set of consecutive logical cells, (b) using the 
physical array in multiple passes, and (c) using a 

ring to implement the multiple passes on the 
physical array 
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