
WARP EXPERIENCE: WE CAN MAP COMPUTATIONS
ONTO A PARALLEL COMPUTER EFFICIENTLY

H. T. Kung

Department of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213
U. S. A.

Abstract
Warp is a programmable, systolic array computer

developed by Carnegie Mellon and produced by GE. A

lo-cell Warp machine can perform 100 million floating-point

operations per second (10 MFLOPS). A variety of applica-

tions have been mapped onto Warp. The experience has been

that the mapping is not a real problem; in fact, usually near-

optimal mapping is relatively easy to obtain, and the actual

implementation of the mapping on the machine can often be

automated. This paper explains why this is the case by

examining some computational models which are frequently

used on Warp. Carnegie Mellon and Intel are jointly develop-

ing a VLSI version of Warp, called iWarp. It is expecti that

many applications can be efficiently mapped onto low-cost

iWarp arrays to achieve an effective computation bandwidth

of about one G&FLOPS.

1. Introduction
Many parallel computers are being used in a variety of

applications today. Shared memory parallel computers in-
clude MIMD machines such as Alliant, Encore, Sequent, and
Cray X-MP. Distributed memory computers include MIMD
machines such as Hypercube and Transputer, and SIMD
machines such as Connection Machine and DAP. Many more
parallel machines of enhanced capabilities are under develop-
ment. A happy experience shared by many users is that it has
been relatively easy to map applications onto parallel com-
puters.

The research was supponed in part by Defense Advanced Research
Projects Agency (DOD) monitored by the Space and Naval Warfare
Systems Command under Contract NOOO39-87-C-02.51, and in part
by the Office of Naval Research under Contracts NOOO14-87-K-0385
and NCIOO14-87-K-0533.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

o 1988 ACM O-89791-272-1/88/0007/0668 $1.50

In 1984-87 Carnegie Mellon developed a programmable

systolic array machine called Warp, that has a one-
dimensional (1D) array of 10 or more processing elements
[11. The machine is currently produced and marketed by

General Electric Company. Anticipating the future need for
integrated Warp systems, Carnegie Mellon and Intel Corpora-
tion have been developing a VLSI Warp chip, called the
iWarp chip. The &Warp system will be available in 1989-90.

Warp has achieved high performance in many application
areas including low-level vision, signal processing, neural
network simulation, and scientific computing. Like applica-
tions experience with many other parallel computers, the
Warp experience is that mapping applications onto the
machine has not been a real problem; usually near-optimal
mapping is not difficult to obtain, and the actual implemen-
tation of the mapping on a parallel computer can often be
automated. This paper explains informally how the mapping
is done on Warp.

There are roughly three stages in solving an application
problem on a parallel computer:

Step 1: Application definition (e.g., by math-
ematical formula)

Step 2: Computation specification (e.g.. by
program)

Step 3: Computation on the parallel machine

Computational models characterize the inter-processor com-
munication behavior of Step 3. We use computational models
to describe important ways in which applications sre mapped
ontc Warp.

Section 2 provides background information on Warp. Five
frequently used computational models for Warp are presented
in Section 3. These are models corresponclmg to local com-
putation, domain- partition, pipeline, multi-function pipeline
and ring. The last section contains some concluding remarks.

2. Overview of Warp
The Warp machine has three components -the Warp array,

the interface unit, and the host, as depicted in Figure 1. We
describe the machine only briefly here; details sre available
from a separate paper [11. The Warp array performs the bulk
of the computation. The interface unit handles the
input/output between the array and the host. The host sup-

668

http://crossmark.crossref.org/dialog/?doi=10.1145%2F55364.55430&domain=pdf&date_stamp=1988-06-01

plies data to and receives results from the array, in addition to
executing the parts of the application programs that are not
mapped onto the Warp array.

INTERFACE

UWIT

l-
WARP ARRAY

------------------ J

Figure 1. Warp machine overview

The Warp array is a 1D systolic array with identical
processing elements called Warp cells. Data flow through the
array on two communication channels Q and Y), as shown in
Figure 1. The direction of the Y channel is statically con-
figurable at compile time. By configuring the Y channel in
the opposite direction from the X channel, a ring intercon-
nection can be formed inside the 1D array. Another way to
form a ring is to use the interface unit to connect the first and
last cells of the array.

Each Warp cell is implemented as a progrsmmable horizon-
tal micro-engine, with its own microsequencer and program
memory. The cell data path includes a 5 MFLOPS floating-
point multiplier (Mpy), a 5 MFLOPS floating-point adder
(Add), a local memory, and two data input queues for the X
and Y channels. All these components are connected through
a crossbar. An output port of the crossbar can receive the
value of any input port in each cycle. Via the crossbar the
floating-Point units can directly access data at the front of any
input queue, and insert computed results at the end of any
input queue of the next cell. Data at the front of any input
queue cm also be sent diiectly to the next cell. A (much)
simplified description of the Warp cell data path is given in
Figure 2.

I Local Memory

A feature that distinguishes a Warp cell from many other
processors of similar computation power is its high I/O
bandwidth-an important characteristic for systolic arrays.
Each Warp cell can transfer up to 20 million words (80
Mbytes) to and from its neighboring cells per second This
high inter-cell communication bandwidth makes it possible to
transfer large volumes of intermediate data between neigh-
boring cells and support fine-grain parallelism on the Warp
array.

The host consists of a Sun-3 workstation that serves as the
master controller of the Warp machine, and a VME-based
multi-processor “external host”, so named because it is
external to the workstation. The workstation provides a UNM
environment for running application programs. The external
host controls the peripherals and contains a large amount of
memory for storing data to be processed by the Warp array.
Its dedicated Processors transfer data to and f&n the Warp
array and perform operations on the data, with low operating
system overhead.

Warp programs are written in a high level Pascal-like lan-
guage called W2. which is supported by an optimiziig com-
piler [5,13]. To the application programmer, Warp is a 1D
array or a ring of simple sequential processors, communicat-
ing asynchronously. Based on the user’s program for this
abstract array or ring, the compiler generates code for the
host. interface unit and Warp array automatically. W2
programs are developed in a Lisp-based programming en-
vironment supporting interactive program development snd
debugging. A C or Lisp program can call a W2 program from
any UNIX computer on the local area network.

Carnegie Mellon and Intel are jointly developing a large
VLSI chip, called the rWarp chip, to implement an integrated
version of the Warp cell. The Warp chip is a programmabIe
processor capable of delivering at least 20 or 10 MFLOPS for
single or double precision floating-point computations,
respectively. In addition, it has on-chip, built-in routing
hardware for message passing. Thus the chip is both a ccm-
putation and a communication engine. This chip together
with a local memory form the iWarp cell, as depicted in
Figure 3. The rWarp cell is a powerful building-block cell for
a variety of processor arrays, including 1D and 2D arrays.

I iWarp Cell

Local Local

MWfW~y MWfW~y

Figure 3. iWarp cell consisting of iwarp chip
and local memory

Figure 2. Warp cell data path (much simplied)

3. Computational Models for Warp
We will describe the following computational models:

1. local computation;

2. domain partition;

3. pipeline;

4. multi-function pipeline; and

5. ring.
These models correspond to different ways in which cells
interchange their intermediate results during computation.
Under each model there may also be different ways in han-
dling Inputting and outputting for the processor array (see
discussions below concerning the local computation model).
Therefore the computational models are based on the com-
munication behavior for intermediate results rather than input
and output.

In the diagrams, cells in a 1D processor array are denoted
by square boxes, and named as ccl1 1, cell 2. - - . , cell N from
left to right. Solid arrows denote data flows of intermediate
results between cells.

3.1. Local Computation Model
The local computation model corresponds to the case where

cells do not exchange their intermediate results during com-
putation at all. Many computational problems have the
property that elements in the output set are computed in-
dependently from each other. The use of the local computa-
tion model is natural in solving these problems on a parallel
computer. In this model each output is computed entirely
within a cell, and all the cells compute different outputs
simultaneously. The main characteristic is that the entire
computation for each output is done totally at a cell, i.e., the
computation does not depend on intermediate results com-
puted by other cells.

Various methods can be used to take care of the inputting
and outputting for each cell. For example, before or during
computation, the required input to a cell can be shifted in via
the cells to the left, and during or after the computation the
output produced by a cell can be shifted out via the cells to
the right. This is depicted by Figure 4. where dotted arrows
denote the shift-in and shift-out paths for input and output,
respectively. To achieve high performance, it is important
that the I/O time and computation time can be overlapped as
much as possible.

Figure 4. Local computation model, with input and output
shifted in and out

Many image processing computations involve transforming
an input image to an output image, using a kernel operator
defined by, say, a 3x3 window. Figure 5 depicts such a
transformation, with which each pixel in the output image
depends on a neighborhood of the corresponding pixel in the
input image. Clearly, all the pixels in the output image can be
computed simultaneously and independently. Therefore the

local computation model applies here. The figure illustrates
that four cells can work on the four subregions of the output
image independently, provided that the input pixels needed by
each cell’s computation are pre-stored in the cell. Note that
cells computing adjacent subregions have overlapped input;
the larger is the kernel the larger is the overlap.

Input

Figure 5. Local computation model for image processing
using a kernel operator

As illustrated by the figure. the partitioning of the image
processing task for the local computation model is straightfor-
ward All that needs to be done is to partition the output
image equally for all the cells. ‘This partitioning has been
automated- Carnegie Mellon has developed a compiler called
Apply, which can generate W2 programs for image process-

ing computations using a kernel operator. and other computa-
tions of similar kind [7].

Apply-generated W2 programs are able to overlap I/O with
computation. While computing a row of pixels for the output
image, a cell can output a previous row of pixels already
computed and input a new row of pixels required for future
computations. The Warp array supports this overlapping
well, since the array has a high intercell communication
bandwidth, and each cell is a horizontal micro-engine capable
of performing many computation and I/O operations in each
cycle. Because with Apply this overlapping is done automati-
cally, Apply-generated Warp programs are often more ef-
ficient than the corresponding hand-generated code.

There is another interesting form of overlapping input with
computation for the local computation model. Although all
the cells compute different parts of the output set, the cells
may share some input. In this case the shared input may be
pumped systolically from cell to cell during computation. In
the following this is illustrated with a matrix multiplication
example.

Given nxn matrices A and B. we want to compute their
product C on a linear processor aray of k cells. We assume
that k is much less than n. and in the illustration below, k=4.
We evenly partition columns of B and C as shown in Figure 6
(a). Using the local computation model, cell i will compute
the entries of submatrix Ci. As its inputs, cell i needs A and
Bi. Therefore input A is shared by all cells. Cell i will first
load entries of Bi into its local memory. Then during com-
putation, ennies of matrix A will be input to the left-most cell

670

in the row-major ordering, and shifted to the right from cell to
cell, as depicted in Figure 6 (b). Cell i will perform inner
produCts for all pairs of TOW and column in A and B, XSIXC-
tively. (Each entry of A will be input repeatedly as it will be
used by each cell multiple times, one for each of the c~hunns
of B that the cell has.) Each inner product involves reading in
a row of A from one of its input queues and a c~lttmn of Bi
born the cell’s local memory, and performing a sequence of
multiply-accumulate operations. By shifting in entries of A
on-the-fly, each cell does not have to store the entire matrix.
This can significantly save memory storage and access time
for each cell [l 11. (3

!
A

04

-

I
I
I
I
I

II c4

I

I
I

cell 1 cell2 cell 3 cell4

Figure 6. Matrix multiplication: (a) partitioning of
matrices B and C. and (b) distribution of the

resulting submatrices of B to the cells; entries
of A moving to the right during computation

There are many other examples based on the local compnta-
tion model. They include the discrete cosine transform
[2] and the labeled histogram computation [12].

3.2. Domain Partition Model
Ear some applications the computation depicted in Figure 5

is repeated many times; each time a new output image is
computed based on the previous output image. This computa-
tional process, called successive relaxation [15, 161. is
depicted in Figure 7. where the grids correspond to the
images.

Grid 1 Grid 2 Grid 3

Figure 7. Successive relaxation

The successive relaxation process is often used in scientific
computing. Consider, for example, the solution of the follow-
ing elliptic partial differential equations using successive
over-relaxation [181:

!g + !$ =f(x,y).

The system is solved by repeatedly combiig the current
values of u on a 2D grid using the following recurrence:

fi j+“* ‘- +“i j.+l+“i+l j+‘i-l j

U’i, j = (1-O) Ui, j + a, ’ IJ ’ ’ * ’ ’ I

where 0 is a constant parameter. In thi recurrent values
associated with location (i.1) of the grid have indices (i,j).

Suppose that the partitioning scheme of Figure 5 is used.
Then when computing a new grid, each cell must import from
its neighboring cells values computed for the previous grid.
The required bi-directional data flows between neighboring
cells are shown in Figure 8.

Figure 8. Bidirectional data flows for successive relaxation

With this example, the concept of the hifl partition
ntodel can be easily introduced. The model arises when a
problem domain (such as the grid space corresponding to an
image, or to a fmite difference or finite element modeling) is
partitioned so that each cell handles a subdomain. This model
differs from the local computation model in that each output
is not computed entirely by a single cell. That is, once in a
while the cell needs to receive intermediate results from its
neighboring cells before it can proceed further with its com-
putation. Figure 9 depicts the domain partition model.

- - I 1

Figure 9. Domain partition model

There are many computations that can be naturally carried
out using the domain partition model. Numerical simulations
of properties of a physical object, formulated by either dif-
ferential equations or Monte Carlo methods, can be par-
titioned along the physical space. A large file can be sorted
on a 1D array by using the bi-directional communication to
merge sublists sorted by individual cells. The merging can be
done with only nearest neighbor communications, in a manner
similar to that used in the odd-even transposition sort [3].
Labeling of connected components in an image csn be done
by using the bi-directional communication to merge labels of
subimages computed by individual cells [121.

671

3.3. Pipeline Model
There is another (elegant) method to carry out the succes-

sive relaxation computation depicted in Figure 7 on a ID
array. This method uses pipelining. Instead of the data space,
i.e., the grid, we partition along the time axis. That is.
successive relaxation steps ere done on successive cells. In
the row-major ordering, each cell receives inputs from the
preceding cell, performs its relaxation step, and outputs the
results to the next cell. Consider for example the successive
over-relaxation computation described in Section 3.2. While
a cell is performing the fi relaxation step on row i. the
preceding and next cells perform the k-ln and k+l” relaxa-
tion steps on rows i+2 and i-2. respectively. Thus, in one
pass of the u values through a k-cell processor array, the
above recurrence is applied k times. 7%~ process is repeated,
under control of the external host, until convergence is ach-
ieved. In a similar way we can implement many other itera-
tive methods such as Jacobi and Gauss-Seidel methods in a
pipelined manner.

has computed the values of the first two points in row i. ‘We
have implemented a version of this pipeline computation on
Warp to solve a path planning problem using a dynamic
programming technique [4].

3.4. Multi-function Pipeline Model
A single computation may involve a series of subcom-

putations each executing a different function. If these func-
tions can be chained together on a 1D array, then a one-pass
execution of the entire computation will be possible. This is
the basic idea of the multi-function pipeline model [6]. In his
model, the 1D array is a pipeline of several groups, each
consisting of a number of cells devoted to a different function.
The number of cells in each group is adjusted so that every
group will take about the same time, in order to maximize the
pipeline throughput.

In this pipeline model, the computation for each output is
partitioned into a sequence of identical stages, and cell i is
responsible for stage i. A characteristic of this model is that
cell i+l uses computed results of cell i, as depicted in Figure
10. Intermediate results move iu one diiection and fina
results emerge from the last cell. I/O and computation are
automatically overlapped; this is a major advantage of the
model. The pipeline model is natural when implementing
systolic algorithms where the partial results move from cell to
cell and get updated at each cell they pass [9].

This model is illustrated in the following example. which is
a laser radar simulation implemented on Warp:

Step 1: For every 102~point input block, per-
form a 1024~point complex FET. Partition each
FFT output into 30 overlapped ‘256-element sub-
sequences.

Step 2: For each of the 30 256element sub-
sequences, perform the following operations:

(i) multiply each element by a weight,
which is a complex number

(ii)perform a 256~point complex inverse
FFT, and

INTERMEDIATE RESULTS

INPUT j-d@ -h-b OUTPUT

STAGE 1 STAGE 2 STAGE N

Figure 10. Pipeline model

Under the pipeline model. cell i+l cannot start its operation
until cell i completes at least a stage of computation. Thus for
this model minimizing the latency between the starting tunes
of adjacent cells is a major concern. This is in contrast with
the domain partition model, for which the starting time of a
cell does not depend upon any computed results of other cells.

(iii) compute the amplitude. of each of the
256 outputs.

Step 3: Threshold the resulting 30x256 image
using 3 x3 windows.

These steps are implemented with consecutive segments of
the Warp array, as depicted in Figure 11.

1024-pt
Sample

lOPI-pt FFT I 256-pt FFT 1 Amplitude
6 II

For some computations the pipeline model represents the
only efficient parallel implementation. To see such a case.
consider a variant of the image processing task depicted in
Figure 5. For this variant, in computing the value of each
point, the new values of its neighbors will be used whenever
possible. Suppose that using a 3x3 window, the computation
follows the row-major ordering. Then computing the value of
each new point uses the new values of the left neighbor and
the upper three neighbors, which were computed earlier. A
way of using the pipeline model is that cell i computesvalues
of points in row i in the left to right order. Cell i is pre-stored
with values of points in rows i and i+ 1. During computation,
a copy of each new value cell i computes is sent to cell i+ 1.
Note that cell i + 1 can start its computation as soon as cell i

Multiplication

672

"
Thresholding

Figure 11. Multi-function pipeline model to implement a
radar simulation on Warp

Figure 12 illustrates another possible use of the multi-
function pipeline model in implementing the geometry system
portion of 3-D computer graphics. The fust cell performs the
matrix multiplications, the next three cells do clipping, and
the last cell does the scaling operation. Three cells are
devoted to clipping as it requires more arithmetic operations
than either matrix multiplication or scaling [8],

I I I I I I
GROUP 1 GROUP 2 GROUP 3

(FOR MATRIX MLlLT) (FOR CLIPPING) (FOR SCALING)

Figure 12. Multi-function pipeline. model to implement
a geometry system

The multi-function pipeline model is useful when a com-
putation requires a number of small functions, each of which
is not large enough to make an effective use of all the cells in
a 1D array. Concatenating these hu~ctions in a chain offers an
opportunity to use more cells effectively. Also, for some
computations, it is inherent that one or few cells must perform
functions different from the rest. For example, when per-
forming a 2D convolution on a 1D array, some cells need to
buffer a row of image and none of the other cells need to do
that [lo]. For some computations. the first and last cells of a
1D array carry out special functions such as interface with the
outside world or preparation of data for the next phase of
computation on the array. An example of this is a neural
network simulation on Warp, where only the last cell per-
forms weight updates based on weight changes computed by
other cells [14].

To support the multi-function model, the processor array
must allow heterogeneous progmmming, that is, different
programs to be executed at different cells at a given time.
Further, the rate of the input to a group may not be compatible
to that of the output from the preceding group. Thus some
buffering and flow control mechanisms need to be provided
between each pair of cells. For the Warp array, all cells can
be individually controlled, and dedicated hardware queues
capable of performing flow control are available between
adjacent cells.

In summary, the multi-function model differs from the
pipeline model described early in that cells are now allowed
to perform different functions. This flexibility in the usage
offers the opportunity of effectively using a large number of
cells in a 1D array.

3.5. Ring
A 1D array becomes a ring when the first cell is connected

to the last cell. In the ring modfd intermediate results flow on
a ring of cells.

An important usage of the ring model is the implementation
of a large “logic” array of logical cells, under the pipeline
model, with a small “physical” array of physical cells. One
implementation is to have each physical cell handle a group of
consecutive logical ceils as depicted in Figure 14 (a). This
will incur a large latency between the starting times of two
adjacent physical cells. as the latency will be the sum of all
the latencies incurred by those logical cells which are as-
signed to a physical cell. Another implementation is to use
the physical array in multiple passes to simulate the function
of the logical array, as depicted in Figure 14 (b). This mul-
tiple pass scheme can be implemented with a ring as shown in
Figure 14 (c). The ring is formed by using a queue to connect
the last physical cell to the fist. The queue can store outputs
from the last physical cell while the first is still busy in doing
its computation for the current pass. This ring scheme incurs
the minimum latency between the starting times of two ad-
jacent physical cells.

Another major use of the ring model is in the implemen-
tation of broadcasting. Many computational pxoblems involve
multiple levels of computation as depicted in Figure 13 (a).
Each value in a level depends on all the values computed ln

the previous level. For example, in the figure to compute bl
in level 2 we need all the values in level 1, as indicated by the
lines connecting bl with ul. a2’ ‘5 and ~4. Therefore all the
values computed in a level need to be broadcast to all the cells
which will be computing values in the next level. An ex-
ample of such a computational problem is the back propaga-
tion neural network simulation [17], for which levels of com-
putation correspond to layers of the neural network.

(a)

level 1 Level 2 LCVCl 3 Level 4

Figure 13. (a) Multi-level computation where results
in one level are broadcast to the next level, and

(b) using the ring model to implement
the broadcasting

The ring structure can implement the broadcasting in a
natural way, provided that the computation for each value is
commutative and associative so that inputs in the previous
level can be combined in any order. Figure 13 (b) illustrates
the idea, by considering how values in level 1 can be sent to
cells computing values in level 2. Assume that every value in
a layer is computed by a separate cell, and for each i the cell
which computes ai will also compute bi. Then by pumping
the Ui’S around the ring for a full cycle, as shown in Figure 13
(b), cell i (for every i) will be able to meet all the ai’s so it
will have all the inputs to compute bP The computation of bi
will OCCUT on-the-fly as each Ui parser by. Therefore com-
putation and I/O are totally overlapped.

4. Concluding Remarks
This paper informally described a number of frequently

used computational models for Warp. They represent various
ways in which applications are mapped onto Warp. In
general the mapping process for a parallel machine such as
Warp is quite simple and intuitive; users spend most of their
time in debugging programs rather than figuring out efficient
mapping schemes. As parallel machines become mature,

673

better progr amming tools will be available to remove most of
these programming difficulties, which are associated with any
new computer system.

Besides describing applications usages, computational
models provide a way to classify programming tools for the
automatic generation of parallel programs. For example, the
APPLY progr amming tool is to generate parallel code for the
local computation model. There are several on-going
research projects at Carnegie Mellon intended to generate
parallel programs for the other computational models such as
the pipeline model.

There are a few features in the Warp architecture that con-
tribute to its effectiveness in supporting the computational
models described in this paper. These features include the
powerful Warp cell, its high degree of programmability
through the optimizing compiler, and the simplicity of the
linear array interconnection. These ideas have played
together well in the Warp architecture. The &Warp-the next
generation of Warp-will support a larger set of computa-
tional models, due to its built-in routing hardware for message
passing. Mapping applications onto an &Warp array will be
even easier.

Acknowledgment
Many of the ideas presented in this paper were inspired by

work done under the Warp project at Carnegie Mellon. The
author is especially indebted to those members of the project.
including F. Bitz, G. Gusciora, H. Ribas, P. S. Tseng. and
J. Webb, for their implementation of some of the applications
examples discussed in this paper.

L Assigned to -t L Assigned to
Physical Cell 1 Physical Cell 2

a L Assignedto-I L Assignedto -t
Physical Cell 3 Physical Cell 4

@I

- Passl- - pass2- - pass3-

Figure 14. Implementing a large pipeline with a small
physical array: (a) each physical cell is assigned
to a set of consecutive logical cells, (b) using the
physical array in multiple passes, and (c) using a

ring to implement the multiple passes on the
physical array

674

References
1. Amuuatone, M.. Amould, E., Gross, T., Kung, H. T.. Lam.
M., Menzilcioglu, O., Sarocky, K. and Webb, LA. Warp
Architecture and Implementation. Conference Proceedings of
the 13th Annual International Symposium on Computer Ar-
chitecture, June, 1986, pp. 346-356.

2. Annaratone, M., Arnould, E.. Kung. H. T. and Menzil-
cioglu, 0. Using Warp as a Supercomputer in Signal Process-
ing. Proceedings of ICASSP 86. IEEE, 1986, pp. 2895-2898.

3. Baudet, G. and Stevenson, D. ” Optimal Sorting Al-
gorithms for Parallel Computers”. IEEE Tranwcfions on
Computers C-27, 1 (January 1978), 84-87.

4. Bitz, F. and kung, H. T. Path planning on the Warp
computer: using a linear systolic array in dynamic program-
ming. Proceedings of SPIE Symposium, Vol. 826, Advanced
Algorithms and Architectures for Signal Processing II,
Society of Photo-Optical Instrumentation Engineers, August,
1987. The final version is to appear in Itiernational Journal
of Computer Mathematics (1988).

5. Gross, T. and Lam, M. Compilation for a High-
performance Systolic Array. Proceedings of the SIGPLAN
86 Symposium on Compiler Construction, ACM SIGPLAN.
June, 1986, pp. 27-38.

6. Gross, T., Kung, H.T.. Lam, M. and Webb, J. Warp as a
Machine for Low-level Vision. Proceedings of 1985 IEEE
International Conference on Robotics and Automation,
March, 1985, pp. 790-800.

7. Hamey, L. G. C., Webb,,J. A., and Wu, I. C. Low-level
Vision on Warp and the Apply Programming Model. In
Parallel Compulation and Computers for Artificial
Intelligence, Kluwer Academic Publishers, 1987, pp.
185-199. Edited by J. Kowalik.

8. Hsu, F.H., Kung, H.T.. Niihizawa, T. and Sussmaq A.
Architecture of the Link and Interconnection Chip. Proceed-
ings of 1985 Chapel Hill Conference on VLSI. Cornouter
Science Department, The University of North Carol&a, May,
1985, pp. 186-195.

9. Kung, H.T. “Why Systolic Architectures?“. Computer
Magazine IS, 1 (Jan. 1982), 37-46.

10. Kung, H.T. Systolic Algorithms for the CMU Warp
Processor. Proceedings of the Seventh International Con-
ference on Pattern Recognition, International Association for
Pattern Recognition, 1984, pp. 570-577. A revised revion
appears as Chapter 3 in Systolic Signal Processing Systems,
edited by E. E. Swartzlander, Jr., pp. 73-95. New York, Mar-
cel Dekker, 1987.

11. Kung, H. T. Systolic Communication. Proceedings of
the 1988 International Conference on Systolic Arrays, May,
1988, pp..

12. Kung, H. T. and Webb, J. A. “Mapping Image Process-
ing Operations onto a Linear Systolic Machine”. Distributed
Computing 1,4 (1986), 246-257.

13. Lam, M. S. A Systolic Array Optimizing Compiler.
Ph.D. Th., Carnegie Mellon University, May 1987.

14. Pomerleau. D. A., Gusciora, G. L., Touretzky, D. S. and
Kung, H. T. Neural Network Simulation at Warp Speed:
How We Got 17 Million Connections Per Second. Submitted
to the IEEE Second International Conference on Neural Net-
works, April, 1988.

15. Rosenfeld, A. Iterative methods in image analysis.
proceedings of the IEEE Computer Society Conference on
Pattern Recognition and Image Processing, International As-
sociation for Pattern Recognition, 1977, pp. 14-18.

16. Rosenfeld, A., Hummel, R. A., and Zucker, S. W. “Scene
labelling by relaxation operations”. IEEE Tranr. on Systems,
Man, and Cybernetics SMC-6 (June 1976), 420-433.

17. Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
Leaming Internal Representations by Error Propagation. In
Rumelhart, D. E. and McClelland, J. L.. Ed., Parallel Dis-
tributed Processing: Explorations in the Microstructure of
Cognition. Vol. I: Foundurions, Bradford Books/MIT Press,
Cambridge, MA., 1986, pp. 318-362.

18. Young, D.. Iterative Solution of Large Linear Systems.
Academic Press. New York, 197 1.

6’75

