
A Threaded/Flow Approach to Reconfigurable Distributed Systems
and Service Primitives Architectures

Lester F. Ludwig

Bell Communications Research
Red Bank, New Jersey

ABSTRACT

This paper discusses a methodology for managing the assembly,
control, and disassembly of large numbers of independent
small-scale configurations within large-scale reconfigurable
distributed systems. The approach is targeted at service
primitives architectures for enhanced telecommunications
networks, but can apply to more general settings such as multi-
tasking supercomputers and network operations systems.*
Study of the methods presented here was a key motivation in
founding the Bell Communications Research Integrated Media
Architecture Laboratory (IMAL) /I/.

The Threaded/Flow approach uses data-flow constructs to
assemble higher level functions from other distributed functions
and resources with arbitrary degrees of decentralization.
Equivalence between algorithms and hard and virtual reeources
is accomplished via threaded-interpretive constructs. Function
autonomy, concurrency, conditional branching, pipelining, and
setup/execution interaction are implicitly supported. SOme

elementary performance comparisons are argued.

This work is motivated by telecommunications applications
involving coordinated multiple-media in open architectures
supporting large numbers of users and outside service vendors.
In such networks it is desired that services may be flexibly
constructed by the network, service vendors, or by users
themselves from any meaningful combination of elementary
primitives and previously defined services. Reliability, billing,
call progress, real-time user control, and network management
functions must be explicitly supported. These needs are
handled with apparent high performance by the approach.

1. INTRODUCTION

This paper discusses a methodology for managing the assembly,
control, and disassembly of large numbers of independent
small-scale configurations within large-scale reconfigurable
distributed systems. The methods are targeted at service
primitives architectures for enhanced telecommunications
networks discussed at the end of the paper. However, the
approach also applies to more general settings such as multi-

tasking supercomputers and network operations systems as we11
as very general settings involving a functionally-distributed
system which is reconfigurable.

The approach employs a functional substrate which equates
hard resources, virtual resources, and algorithms. This permits
an existing service (typically an algorithm) to be freely
combined with resources of different types in a unified way; in
fact, services and resources are managed and allocated in the
same basic manner. A system for fetching service descriptions
from databases and constructing data-flows between named
entities provides the basic foundation for the method. A named
entity is either a resource (controlled by a resource manager) or
another algorithm which may itself control other algorithms and
resources. A given entity may exist and execute its tasks
anywhere in the network and can itself be of a distributed
nature. Branching, concurrency, pipelining, and arbitrary
degrees of decentralization are naturally supported. It is
straightforward to pipeline the setup and execution phases of
the data-flow so that parts of the data-flow which are already
set up may execute as remaining parts are themselves being set
up; this permits conditional setup of a data-flow as a function
of events encountered in earlier parts of its execution. Since an
existing stand-alone service can be Iinked to (i.e., peer
connections) or included in (i.e., hierarchical connections)
another service, the system acts very much like a threaded
interpretive language. It is also straightforward to replace
service description fetches from databases with user downloads,
permitting user definition of services from service primitives.
Filters t o preserve integrity of the network will require
straightforward design but are not explicitly considered here to
limit the discussion.

The approach presented here was developed for use in ISDN
prior to the CCITT standards that established ISDN as it is
recognized today. It differs somewhat in style from
conventional trends in distributed processing since the key
application concerns control in the context of extremely large-
scale telecommunications (campus-wide, city-wide, or nation-
wide) networks. The emphasis is on executions of well-defined
control procedures rather than execution of arbitrary user
programs.

1.1 Need For Service Primitives In Advanced
Telecommunications Networks

The main reasons for resorting to a service primitives approach
in a telecommunications network are the potential combinatoric
complexity of service details, evolution of services in un foreseen
directions, and a need for simple ways of linking existing
services and and other functional elements to create new
expanded services.

’ Moat oj this work WLIB performed in 1881 and rcjincd/rom 1983 _ 1086 while the author wao at U. C. Berkeley.

Permission to copy without fee al1 or part of this material is granted provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 1988 ACMO-89791-245-4/88/0001/0306 $1.50
306

http://crossmark.crossref.org/dialog/?doi=10.1145%2F55483.55515&domain=pdf&date_stamp=1987-08-01

s Display Vld8olGraphicti
ImegelText

l Two Way Audio
0 Some media conversion:

- Printing
- Image digitirara
-T8Xt-b8fXWCh 8ytlthesk
-(vldeOC8llW8)

0 son key8
s Real-time oontrd xmtkcv:

- Window management
- MouwkeyboWlcey pad
- AudkMvMeo cues

l twlt$tg and transmiaaian:

*video
:pgf
n Resl-tints control (user-user
- SignaIling lnb (uw-new a f

l Community i/O
l Speeiak8d/alternatlVe/anh8nc8d

SeWiCe

Figure 1 illustrates the potential service combinatorics. Each of
the user, network, and service vendor domains is predicting and
working toward support of a number of telecommunications
features as shown. It is startling to notice how astronomical the

potential combinations of “reasonable” user expectatrons for
telecommunications might be. It is impossible to address these
sophistications and combinations using the existing
methodology of monolithic software generics and hardware
upgrades oriented around one additional single-feature service
at a time. In addition, it is natural to expect services to become
linked or incorporated into others. For example, users may
subscribe to automated calendar management services or have
one in their own network-accessible systems. A service vendor
could link these with a network-provided call forwarding service
to form a meeting scheduling service; subscribers could name
meeting participants and constraints and the automated service
would forward potential dates and places to participants,
optimize, and finally distribute word of the meeting time and
place as well as supporting documentation using call and mail
utilities. Later, another service vendor may link this meeting
scheduling service with a travel booking service to
automatically arrange transportation. From the user viewpoint,
it is natural to expect that such capabilities should be made
available from an advanced communications and applications
environment.

The highly succinct explanations above illustrate that the key
to managing the immense possibilities within future
telecommunications networks is a flexible, powerful, and
simple-to-use service primitives system. A reasonable set of
goals for such a service primitive system include:

1. Span the possible service combinatorics made possible by
technology, including the management and linking of
simultaneous calls;

2. Support simple ways of linking existing services and other
functional elements;

3. Provide monitoring, billing, and reliable failure recovery
functions;

4. Provide ways for the network, its users, or outside service
vendors to create their own services in an open
architecture.

The service primitives solution suggested in this paper uses an
architecture for the direct implementation of data-flow
descriptions of services. An example of such a description is
shown in Figure 2. Each named process can be an elementary
resource function a service element (i.e., raw resource functions
with controlling programs), or a full stand-alone service.
Because of this, what is viewed as a fundamental “service
primitive” can be quite arbitrary: they could be any subset of
the possible collections of raw resource functions, explicitly
constructed primitive service elements, or existing stand-alone
services. This allows a network or service architect to

l A data flow d88Crlptbn of transactions and interconnections
between entities governed bv named servers

l Each entity i8 either a “proC8%$” Or 8 “r8SoUrC8”

l Each process may have subprocess (specified at
lower levels)

Service Descriptions

Figure 2

307

experiment with custom designed collections of service
primitives which may be freeIy modified. Because of this, the
suggested approach is actually a generalized service primitives
architecture; in fact, it is a programmable seruieea primitives
engine on a network scale with explicit attention given to
architectural, operations, maintenance, administrative, fault-
tolerance, failure recovery, billing, and monitoring design issues
that are relevant to large-scale network implementations.

Rather than naming specific primitives explicitly se has been
suggested in other service primitives methods, this approach
only needs to explicitly define and implement the following
elements:

1. Service description database system;

2. Service Execution Coordinators (SE&) and their servers;

3. Resource managers;

4. Control messages and their precise formats;

5. Overall systems management utilities;

6. Monitoring and reporting utilities

With this substrate, creation of explicit service primitives and
services themselves can be done with very short “program-like’
files which are easy to create and change. This approach
naturally permits easy introduction and evolution of service
primitives. It also lends itself well to laboratory
experimentation.

1.2 Strategy of the Paper

Figure 3 illustrates the evolution of the ideas as developed in
this paper. The development is structured as follows:

1. Drawing from threaded-interpretive language ideas [2], a
generic method for constructing functions from resources
and previously created functions is developed. The
method employs two parts: (1) descriptions of particular
configurations within the reconfigurable system and (2)
the passing of parameters, files, or software to specific
functional elements in the configuration. This method
permits functions to be associated in a well-defined manner
with linguistic descriptions, but does not provide a meana
of handling the actual assembly or disassembly oj the
junctions it concerns.

2. Threaded-interpretive language ideas are then used a
second time; here they are coupled with data-flow
concepts [3,4,5,6] to create a specific means of handling
data-flow type subroutines. The result is used, subject to
the structure of configuration description method just
discussed, to create a means for the assembly and
disassembly of the configurations.

MREADED4NTERPRmVE DATA-FLOW LARGE-SCALE

~~::~~~:wYaiTlNE.8*z~

TELECOMMUNICATIONS
NETWORKS

DESCRlPTlON* FOR DATA-FLOW’
I 4 I

CDNFlGiRATlON
ASSEYBLWISASSEMBLY*

MANAGEMENT

\ TiiREADEO/FLOW
TELECOMMUNICATIONS

SERVICE PRIMITIVES’

Development Of The Control Synthesis. The Author
Views Items Denoted (*) As New Work In The Area

Figure 3

3. The two items listed above are united to create an overall
method for managing the assembly, control, and
disassembly of large numbers of independent small-scale
configurations within large-scale reconfigurable
distributed systems. The approach permits arbitrary
degrees of decentralization. It also permits configurations
to be partially assembled, used M such, and then continue

assembly/disassembly steps as a function of the outcomes
of this usage (i.e., assembly, usage, and disassembly may
be freely pipelined). The development to this point is
general, applying to settings such oe multi-tasking
supercomputers, enhanced telecommunications networks,
and network operations systems. The approach to this
point is entitled a “Threaded/Flow” approach for lack of
more creative thoughts.

4. The abstract Threaded flow approach is combined with
perspectives concerning large-scale telecommunications
networks to form a service primitives method for
enhanced telecommunications networks. Discussion of full
detail is somewhat suppressed here in view of the audience
and potential legal and proprietary issues currently under
consideration.

Most of the paper focuses on the abstract Threaded/Flow
approach. The items listed above are supplemented with
remarks on performance, server design, and analytical study.
With the exception of the analytically-oriented Sections 6 and
8, the level of this paper is comparable to that of technical
introductions to the OS1 reference model.

In this paper a number of special terms are defined and used in
subsequent discussion. These terms are printed in bold type
where they are first mentioned and defined.

2. CONFIGURATIONS WITHIN A LARGE-SCALE
DISTRIBUTED SYSTEM

Figure 4 illustrates the basic setting, i.e., a large-scale
reconfigurable system with distributed functional elementa.
The functional elements are treated as shared resources which
are allocated by one or more aarvara. Each server may
administer multiple functional elements. The functional
elements may be either hard or virtual resources. Servers
allocate these resources, in accordance with currently active
network management policies, to a specific task on the basis of
rcaource requests. In particular, each specific task will
require one or more resources which must be arranged and
interconnected with information flows. A specific arrangement
and interconnection is termed a configuration. The large-
scale reconfigurable system exists so that configurations can be
assembled on request from the pool of available functional
elements, applied to serve a specific task, and then dismantled
to free resources for subsequent tasks. In particular it is
assumed the large scale system can support a large number of
such configurations simultaneously and that most of these
configurations will be created, operated, and dismantled
independently from one another. Figure 4a shows the overall
collection of resources and servers, while Figures 4b and 4c
illustrate two possible sets of active configurations. The
collection of active configurations present at a given instant
may be viewed as the configuration state of the large-scale
reconfigurable system. Hence, Figures 4b and 4c illustrate two
possrble contrguratron-states.

2.1 Uniqueness & Operations On Configuration-States

TO clarify terminology, it is required that a given resource may
only be employed in at most one configurations. TWO or more
configurations can be merged to form a new configuration at
which time the original configurations involved are no longer
separately recognized as a feature of the configuration-state;
i.e., a merger results in a change of configuration-state. TWO or

308

0 op qo 2
w
0000000 oooao(o~

(b) -mu

--

c-

Cc) Rco)wIG-SlsTul

In~~n~~ -fbUtiiOnS Within A Reconfigunb~e
SPlm: ($1 Wng, (b) A ConfIguratIon !ittste,

(cl Another ConRgursUon Stale
Figure 4

more eonnguratlons may also oe LLIUVZ~ W$~UE< at higher
levels but such an arrangement will not be viewed as affecting
the configuration-state.

2.2 Configuration Servers

In general, the large-scale reconfigurable system will be able to
realize a large number of possible configurations. Also in

general, and in most cases by design, the large scale system will
be able to support multiple independent copies of the same
configuration. Thus, if the admissible configurations are

Cl, c,, ... C,, there can be n1 copies of configuration C,, n2
copies of C,, and nt copies of C, all active at a given instant,
subject to resource limitations:

(nl42, t . ,4 E L

where L is some set of admissible configuration states
(mathematically, L is a subset of the collection of non-negative
integer-valued k-tuples Z$).

The outside world presents the large-scale reconfigurable system
with requests for configurations. Assumed here is that these
requests are largely independent of one another and that each
configuration is limited to employing only a small fraction of
the resources available in the system. These assumptions
validate the need for configuration servers, i.e., entities
which accept or reject configuration requests based on the
current configuration state. An accepted request is passed to
resource servers in the form of resource requests (which are
translated into actual resource allocations by the resource
servers). This is illustrated in Figure 5. It is noted that the
configuration server may not have full information of the
configuration state; more than likely it will work from
simplified information provided by the resource servers.

(REQUESTS FOR CONFIGURATION
CONFIGURAMMS)

RESOURCE RESOURCE
SERVER

STATE
OBSERVER

d?Y

0 0 0 0 0 0 0 0 0 0 0 RESOURCES

Configuration Sewer Setting
Figure 5

2.3 Hierarchical Features

The purpose of configurations is to implement higher level
functions. That is, each configuration performs a function
itself, comparable to the functions provided by the functional
elements themselves, but with more sophistication. For
convenience call the functions provided by configurations
configuration functions. At this point two key observations
are relevant:

I. Since both configurations and functional elements

implement functions, configuration functions and
functional elements may be viewed as being equivalent
except for the level of sophistication;

2. Just as functional elements may be brought together to
form configurations, it is also possible to construct
configurations out of configurations themselves.

These two observations may be combined to yield third
and fourth observations:

3. The collection of configuration functions together with
functional elements can be used as an extended collection
of elements, from which higher level configurations may be
created.

4. This process can be iterated as follows:

. Define functional elements as “levei.0” configuration
functions

. For K = 1, 2, 3.. - define “leve1.K” configurations
as configurations created from the pool of resources
consisting of “level.K-1”, “level.K-l”, . . . “level.0”
configuration functions which include at least one
“level.K-1’ configuration function.

In this way, just as in structured programming, Lego-blocks,* or
an Erector-Set,* raw functions at any level of sophistication can
be drawn upon in a unified way to construct more sophisticated
configurations.

The nature of the fourth observation is not unlike that of a
threaded interpretive language. The resulting possible
constructions are illustrated in Figure 6. For the moment a
“1evel.K’ configuration can be thought of as being administered
by “1evel.K” configuration servers, an artificial concept to
be used temporarily.

It is explicitly noted that the layering discussed here results
from a general hierarchical construction and ha8 nothing to do
with the acvcn-layer OSI reference model.

l American children’s toys featuring elementa which can be asaembted in easily nested modules.

309

Hierarchy With Triangular Connectivity
Figure 6

2.4 Naming Complexities

For each value of K=0,1,2, . . . let there be N, different
“1evel.K” configuration functions. Then a fully capable
“1evel.K” configuration server must be internally aware of each
of the

K-l

C Ni
id3

different configuration functions available to it, yet deal with
requests for only Nx types of configuration functions. This
suggests an implementation strategy for controlling complexity
as illustrated in Figure 7. A simple database recognizes
function names and routes requests to configuration servers of
an appropriate level. These configuration servers need only
worry about a few (i.e., Nx at level K) configuration
descriptions. This conceptual structure may be used either
directly or indirectly in implementing user interfaces and/or
look-ahead pipelining during configuration set-up (to be
discussed later).

. . In particular, the degree of decentralization is determined
.
. precisely by the configuration assembly description.

/A 3.1 The Data-flow Formalism

CONNG. SERVER The mechanism used for configuration assembly is more
precisely a type of “control flow” (see, for example, IS]) since it
is intended for control rather than computation. The structure
of the configuration assembly mechanism is almost identical to
the traditional data-flow formalism which is well documented
(see, for example [3,4,5,6]).

I
Y

“LEVEL .o”

CONFIG. SERVER
I

I

is naive to believe that large-scale reconfigurable systems could
be well centralized, especially if subject to any reasonable
amount of evolution or change. Although this paper targets
Iarge-scale reconfigurable systems that are decentralized, it is
natural to suspect that almost all practical large-scale
reconfigurable systems will have to be at least somewhat
decentralized. It is here that data-flow like constructs are very
useful. As it turns out, the resulting features made possible by
decentralized assembly control have some interesting potential
performance advantages in many situations which can be well
characterized. As a result, potential exists for well-defined
design principles concerning degrees of decentralization
appropriate for a given situation.

Consider a request for a ‘1evel.K” configuration function by a
user of the large-scale reconfigurable system. Depending on
implementation, the user may or may not specify the precise
level of the function. Further, the level may or may not be
useful in administering assembly of the requested configuration.

It is assumed that full information describing how each
configuration is to be assembled is represented as software files
to permit easy evolution and change. The full information
describing how each configuration is to be assembled is called a
configuration assembly description and is assumed to be
stored in databases that are made available to configuration
servers. Other arrangements are possible, including one where
users are free to provide this full description themselves.

The goal is to create a mechanism which simplifies
configuration description software as much as possible yet
operates with high performance in an environment where
configuration functions (at least a “level.0”) are distributed.
The suggested approach is to use a data-flow like substrate
between configuration servers at all levels. This data-flow
substrate provides a message-passing system that is:

1. Oriented towards the execution of tasks and processes;

2. Supports branching, conditionals, and concurrency;

3. Operates transparently and naturally in either centralized
or decentralized environments.

AU WSSIBLE
FUNCTION
REOUESTS q SORT
(2 Mb, TYPES)

The basic features of the data-flow formalism are illustrated in
Figure 8. In the Figure, processes are represented by labeled

Definition Management
Figure 7

3. CONFIGURATION ASSEMBLY

Configuration functions are an important advantage offered by
a reconfigurable system. However, these functions are only
available after a configuration has been assembled. Further,
unless configurations are disassembled after their use by the
requester, resources will be wasted and assembly of
configurations will soon be impossible. Thus, the control
required for the assembly and disassembly of configurations is
of key importance for realization of this concept. In addition, it

CONCURRING BRANCHING CONDITIONALS

The Data-Flow Formalism
Figure 6

310

ovals. These ovals are interconnected by message-passing paths
which are represented by arrows. These paths carry
completion tokens which are used to signify that the previous
process has been completed. These tokens also may carry
inlormation created by the previous processes if appropriate. A
given process collects these tokens until a logical condition
involving them (and related time-out events) is satisfied and
then begins its own execution. At the completion oT its
execution (or part-way through, as appropriate), tokens are
generated and sent to subsequent processes in the data-flow.
These tokens may be created and sent to locations as a function
of the outcome of the process. Each process executes
independently and may exist in any processor within a
distributed processing environment.

As a result of the features identified in the previous paragraph,
a data-flow naturally permits conditionals, branching,
distributed execution, and concurrency. In addition, data-flows
can be executed with arbitrary degrees of decentralization as
suggested by Figure 9. Figure 9a shows an abstract data-flow
involving five processes {A,B,C,D,E}, an outcome-dependent
branching at process A, multi-step completion token generation
at process B, concurrency of processes C and D, and a logical
relation governing the execution of process E. Figures Sb-d
show three different implementations with increasing degrees of
decentralization. Figure 9b shows no decentralization; all
processes are executed by a single multi-tasking processor. In
thie CDLM the data-flow scheduling and token-routing is totally
contained within the single multi-tasking processor. Figure 9c
shows an environment involving five processors; one processor is
used as a centralized controller/scheduler, a second processor
executes processes A and E, and the remaining three processors
each execute processes B, C, and D. In this case, single start
and completion tokens are exchanged between the centralized
controller/scheduler and the other process-executing processors
as illustrated. In this caee the data-flow scheduling is handled by
the centralized controller/aeheduler but the actual processes ore
ezecuted in a distributed environment. Figure 9d shows another
environment involving five processors; in this case each
processor uniquely executes one of the five processes
{A,B,C,D,E}. There is no centralized control or scheduling. In
thin cme, the entire data-flow is implemented in a fully

decentralized nature.

The above example is illustrative of the fact that the same
rather involved data-flow can be directly supported by a wide
variety of environments involving many different types and
degrees of decentralization. In addition to this and other
useful properties cited above, da&flows also enjoy considerable
endorsement outside of the computer literate community, in
particular data-flows are useful for specifying corporate,
administrative, and financial procedures [6]. As a result, data-
flow flavored schemes offer potentials for simplifying
configuration specification and user interfaces.

3.2 Performance-Based Design Considerations

Assuming some decentralization is required in the large-scale
reconfigurable systeins, interesting observations can be made
concerning the role of centralized coordination of a data-flow
execution in comparison to decentralized execution.

3.2.1 Ezceution Consider the simple data-flow shown in Figure
1Oa. This abstract data-flow contains N processes which
execute in sequence. Figure lob shows a centralized
coordination of the execution of this data-flow. Including
“start” and “finish’ tokens, a total of 2(N+l) messages are
required. Note that since the coordination is centralized, any
failures of a process execution can be identified and hence
recovered from during the execution; also, completion of each
process is observed and hence available for monitoring,

(b)

A Data-Ftow (a) And Three Implawns
With kmasing Degmae 01 Decenhbtlon

noun@

administration, and accounting (billing) purposes. In
particular, completion of the K’b process occurs after 2K
messages and is observed after the exchange of 2K+l messages.
Compare this to the decentralized execution shown in Figure
10~. Full execution requires only N+l messages, half as many
as before. Without outside observations (such as shown in the
dotted lines) failure recovery and monitoring in an equivalent
fashion is not possible, so these messages are now considered.
Again N+l messages are required, so the total number oT
messages needed is 2(N+l) aa in the centralized case. However,
the completion of the KLb process occurs after K messages and is
observed after K+l messages, half of that for the centralized
case. These and some other remarks to be discussed are
summarized in the Table below.

In a decentralized system, message count represents one
important degree of complexity. Each message must be created,
successfully transmitted/routed/received, analyzed and noted
upon. The diversity of the types of messages expands the
complexity of the system’s elements, and the number of
messages

311

CENTRALKED (1)

CONTROLLER AND MONITOR CONTROLLER MONITOR

START FINISH

. . .

Fit

II
- ’ ’ ‘. ’

1 2 *-* M

-&i&&

lb) W
$h&hfSGAGES FGfi COMPLETlGN IA + 1 MESSAGES FOR CGYPIEllGN OF SElUP

Y + 1 SEPARATE MESSAGES FGFl YONllDRlNO

Comparing Execution Complexities (After Allocations
Have Been Made): (a) Abstract Data-Flow,

(b) Centralized Control/Monitoring, (c) Decentralized
Execution With Centralized Monitoring

Figure 10

scales the loading requirements of the message exchange
systems (i.e., the data-communications network linking the
system elements.) In most systems each message exchange is
likely to introduce delay and potential points of failure,
comparing the columns of the table, it is observed that the
decentralized approach in many ways makes much more
intelligent use of the 2N+2 messages required. The key here is
that only half of the messages are required for execution of the
data-flow. As a result, the data-flow executes faster* and has
fewer points of failure. Since the other half of the messages are
used for monitoring, another property is also observed: there is
a well-defined distinction between execution-oriented messages
and monitoring-oriented messages. As a result, execution-
oriented messages can be handled in a separately engineered
environment emphasizing speed and reliability. The degree of
reliability attained in the execution-oriented environment
determines requirements on the monitoring-oriented
environment. Since the monitoring information is used for
billing, statistical records, and failure-recovery, it is reasonable
to design the monitoring-oriented environment for slower speed
and lesser reliability. It is also noted that since the monitoring
and execution messages are generated in parallel (rather than in
sequential interleave), the decentralized approach handles all
aspects of configuration assembly with half the message
exchange time (at the expense of an efficiently doubled message
rate). A find observation concerns the fact that the centralized
controller used in centralized coordination is required to take N
actions even if no failure occurs, while nothing comparable is
required is the decentralized case.

The preceding analysis may be extended to more complex (i.e.,
non-serial) data-flows. To do this requires focus on events local
to the execution of a single given process as shown in Figure 11.
Figure lla shows a given process receiving m tokens from and
transmitting n tokens to other processes in the data-flow. It is
assumed that the process shown executes monolithically, i.e.,
begins its execution when received tokens satisfy a logical
relation, executes without externally-visible steps, and all n
transmitted tokens are then sent. (It is noted that, for the sake
of analysis, any non-monolithically executing process may be
itself decomposed into a new data-flow consisting of only
monolithically executing process.) As shown in Figures lib and
llc, which respectively illustrate the message flow in the
centralized and decentralized approaches, only the received
tokens need be considered. (This is because a transmitted
token for one process also serves as a received token for exactly
one other process.) As shown in Figure llb, the centralized
controller requires as many as m messages to be received for
evaluating the logical relation permitting execution; when this
relation is satisfied a message is sent to the process signaling
that it is to now execute. Execution is confirmed with an
additional message. Assume that each of the mfl messages
leading up to the execution of the process encounters a non-zero
delay time between the completion of the action generating it
and the message’s reception; let “T,,” be the longest of these
times “Tsutmax” be the second longest, and “Tmt,” be the
shortest. Then the delay “t” between the time the process in
the Figure could execute ideally and in reality must satisfy
(assuming no race conditions):

Also, note that two messages are required between the actron
last required for process execution and actual execution.

Compare now the decentralized approach as illustrated in
Figure llc. Here, each of the m received tokens were CO-
transmitted with monitoring messages as illustrated. Upon
execution, the process sends a single monitoring message to the
centralized monitor along with the n transmitted tokens sent to
subsequent processes in the data-flow. As a result, (assuming
no race conditions):

and onIy one message is required between the action last
required for process execution and actual execution. If all
message delays are assumed approximately equal, i.e.,

Tmin m Tmsx

then one sees the decentralized approach emerging with an
execution encountering half ae much message delay, just as in
the serial case.

Total number of messages

l Another way to look 01 this is that /or II given user-perceived configuration orrcmblg time, the mcsstrgc network only need
operots LaIfar quickly.

312

cENTRM CONTROU
MDNITOR

n

T

*..
In

X

CENTFIAL MONITOR

m RECEIVED n TRANSMITTED
TOKENS TOKENS

WI (b) (C)

General Data-Flows
(a) Data-Flow Element, (b) Centralized Execution

(C) Decentralized Execution With Centralized Monitoring
Figure 11

3.2.2 Allocationa Figure 12 illustrates the differences between
the centralized and decentralized approach. As shown each case
requires the centralized entity to be presented with the full
algorithm script. In the decentralized case, each resource must
also be given information about its precise role in the script,
hence elongating the allocation messages in size but not
increasing the number of messages. Although this elongation is
not required in the centralized case, it is the only penalty paid
at allocation for decentralization with monitoring.

S.e.3 Compariaona Summarized Decentralization with
monitoring elongates allocation messages and increases the
instantaneous rate of messages during execution. It does not
change the total number of messages involved in execution and
monitoring nor does it affect the average message generation
rate. However, decentralization does speed up execution, reduce
message-related points of failure, and increase the rate at which
execute-time failures are detected, typically if not almost always
by a factor of 2. In addition, it permits separate engineering of
monitoring and execution messages (allowing retribution for
increasing the instantaneous message generation rate mentioned
above) and prevents additional actions by a centralized entity
in non-failure modes.

Comparing Complexity Of Level K Allocations
(a) Centralized, (b) Decentralized

Number Msgs Same; Msgs Slightly Longer Under(b)
Figurs 12

4. RESOURCE AVAILABILITY AND CONFIGURATION
DISASSEMBLY

It is important to free resources and other types of server
allocations when a user has finished with a configuration
assembled in their behalf. This is somewhat obvious for
otherwise new configuration requests would eventually find no
resources available. As it turns out, there are a number of
detailed issues closely related to the freeing and general
availability of resources. Here some performance and
implementation considerations of resource availability and
configuration disassembly are discussed.

Note that a given resource, once allocated, cannot be used by
another user until somehow made free. A resource is allocated
during a configuration assembly and remains unavailable to
other users until some time after its use is completed. Thus for
a given configuration request, the time a resource is unavailable
to other users may be split into three components:

T unwsilsbls = T Msembb.idls + Tus, + Tdiaassembk.idle

The time spent in use (T,,,) 1s connected to revenue and cost;
it is for these intervals that the resource is provided in the first
place. The times spent idle during assembly (Twsembb.idre) and
disassembly (Tdimmmbly.idle) P bases, however, represent periods
when the resource is wasted. The efficiency of the resource
allocation system for the duration of a given configuration can
thus be characterized as:

Efficiency = T-b,ws + T,, + To~-~~sdls

The closer this expression is made to 1, the more Potential for
actual usage can be obtained. To obtain high efficiencies, one
requires:

T “#Sp >> Tusembb.idts + Tdissmmbb.idle

This is particularly important in systems where a great deal of
resource sharing is to be expected. Most instances of large-scale
reconfigurable systems would fall into this category for sheer
reasons of minimizing cost and component-count complexities.

ks discussed earlier, it is desirable to allocate resources quickly
during configuration assembly for user performance
requirements; users typically wish to have configurations made
available quickly after a request is made. This force already
motivates minimizing Tasaembly,idla. However, one can see now
that it is also desirable to minimize the time required to free up
resources at the end of their use (i.e., Td~saaembly.ldle).

The most straightforward method of freeing resources is to do
so on the receipt of a signal from the user that the configuration
is no longer needed. In this case each “1evel.K” configuration
function server is notified by some means to free the allocated
resource. This, however, can be done in at least two ways:

1. Notification from higher level servers that the
configuration is to be disassembled (this is the same way
assembly is done);

2. Broadcast notification to each server involved in the
configuration from some central point aware of the
completion (this requires “look-ahead’ operations to
provide the centralized point with all the server addresses
in advance).

Resources may also be freed using a number of typically
context-oriented techniques. In many cases, time-out conditions
can be used to supplement user completion messages. In other
cases, resources can be implicitly released because of the nature
of the allocation discipline requested (for example, a call-
forwarding address query, the dump of a file, video frame, or
audio segment, etc.). In other cases, resources may be explicitly
freed by the user; this may be done by sending a message

313

terminating specific subsets of an otherwise currently active
configuration (turning off the video of an audio/video call, (etc.).

All of the options for resource release may be used in the
Threaded/Flow approach. The degree of performance required
for resource release is a function of the designed server load,
cost of the resources, cost of the release mechanism options, etc.

5. PIPELINING CONFIGURATION USAGE, ASSEMBLY,
AND DISASSEMBLY

In many cases it is useful to interleave the assembly, usage, and
disassembly phases of a configuration. In some cases this would
be done strictly for performance reasons, offering the u.ser a
speedier setup and freeing resources as quickly as possible.
Another reason would be to provide partial grants of a
configuration request while waiting for other resources to
become available; the user could be offered key subsets of the
configuration (say, audio and graphics features) while waiting to
obtain the next available resources for the rest of the
configuration (say, video features). Another case would be to
provide conditional feature implementation (for example, a user
may or may not wish to tie in a graphics editor depending upon
the type of image found during a database query whose output
is directed to a desktop publishing feature). The latter case is
especially useful in functions with very extensive user options
and interactive qualities.

Figure 13 shows a way of graphically characterizing such
pipelining as multi-dimensional curves. The Figure shows
diagrams whose axes are

“x”: the number of resource allocations made,
.Y.: the number of resource-level data-flow steps executed at -level,~-,
‘2”: the number of resource relesses made.

(a) (W

Non-pipelined (a) and highly
pipelined (b) executions

Figure 13

Assume also that there is only one resource-level data-flow step
made for each allocated resource. If each axis is normalized so
that the curve is confined to values between 0 and 1, a number
of properties, listed below, can be expected. (Variations on the
assumptions result in other similar properties.)

The curve is non-decreasing in each coordinate (t(rue
without normalization);

If there are no recursions, the curves must lie within the
wedge described by:

OSYSX
o<z<x

The shape of the curve determines the degree and style of
pipelining. A condition of “no pipelining’ is represented
by the curve

{O~x~l,y=O, z=O} u {x=l,O<y<l, s=O} u {x=1, y=l, o<z<

(see Figure Ma) while ‘full pipelining’ is asymptotically
represented by the curve x=y=s (see Figure 13b).
Geometric proximity to these limiting curves gives a
graphic intuition for the degree and style of pipelining.

The topic of pipelining also includes two other concepts:

‘Throw-away” parts of a configuration that are unlikely
to be used may be preconfigured anyway in case they are
needed quickly. This could be done after the principal
part of the configuration is assembled but at some time
prior to when the user could first possibly require the
rarely used feature.

Commonly requested configurations may be pre-assembled
to some degree. This is useful when used in an adaptive
way, basing the number and types of preassembled
configurations (as well as perhaps the degree of pre-
assembly) on automated statistical observations. (This is
comparable to a fast-food restaurant, upon noticing a rush
on particular types of hamburgers, precooking a few in
anticipation of impending requests.) This type of
pipelining is an interesting case since in a way this is
pipelining the assembly process with the actual request
process.

6. SERVER DESIGN AND HIERARCHICAL QUEUEING
MODELS

The design of servers and network management systems in the
Threaded/Flow approach can at first cut be handled with
simple design intuition. This is as done in the design of most
computer systems since sophisticated analytic and even
simulation techniques often contribute little in practice.
However, there is in this case excellent opportunity for the
development of some new analytical tools capturing features of
the Threaded/Flow approach. In this Section, some design
considerations and one promising analytical technique currently
under development will be discussed.

In general servers may have to manage resources across a
variety of demands. Some requests will be for only brief one-
time usage, others for bursty long-term usage, others for long
intervals at full utilization. In some cases delay in the
allocation will be tolerable, and in other cases it will not. Also,
servers will have to administer resources subject to network
management conditions. For example, under heavy loading
priority may be paid to requests associated with configurations
that are almost complete rather than new requests in order to
maximize revenue. Expensive resources may be allocated only
after guarantees that enough other resources are available to
complete the configuration assembly. As a result of these
observations, it is seen that the design of servers in the
Threaded/Flow system is very interesting and worthy of some
theoretical study and dependable design techniques.

The modeling of servers and network management systems in
the Threaded/Flow system is nicely handed by hierarchical
queucing modela. The first model of this type was a two-level
model proposed by Schoute to study the creation of tasks
resulting from the acceptance of a call-request in a telephone
switch controller [7]. Figure 14 shows a more general
hierarchical queueing model involving more layers developed by
the author [8]. In this model there are separate queues
associated with each server within each level. “Customers” may
arrive at any level, but customers at a given level can, while
being served by their server, generate customera for queues at
lower levels. This nicely models many circumstances, such as
the scheduling of processes in a batch computer system,
allocation of resources within a corporation, or the
Threaded/Flow approach presented in this paper. In less
obvious ways, the hierarchical queueing model also is useful in
modeling resource allocation systems where allocations involve
hard or virtual allocations over a range of time-constants. For
example, in [S] the allocation of transmission or switch fabric

314

channels to circuit-switched, burst-switched, virtual-circuit, and
datagram oriented clients is represented as a two-layer model (a
“fast” burst-duration/packet-duration layer plus a “slow” call-
duration/connection-duration layer). This is also of great
potential use to modeling and designing more general resource
servers involved in Threaded/Flow implementations. In [g] the
topic is considered in more detail from modeling, analysis, and
control design viewpoints. Analytical results appear prominmrg
since under standard types of independence assumptions both
decomposability [9] and geometric matrix [lo] techniques can be
applied.

7. APPLICATIONS TO TELECOMMUNICATIONS
SERVICE PRIMITIVE SYSTEMS

This discussion is limited in detail due to legal and proprietary
issues yet to be resolved. The ideas are fairly straightforward.
however. From the service definition viewpoint, this . . .
apphcation IS based on the following identifications:

) kg:; *
LEVEL n .

---a I

-gq-
.

+ L-s=.
. LEvELn-1

f
--.I

General Hierarchical Queuing Model
(A Specific Example Is Shown)

Identifleatlon of Thrcsded/Flow Entitles with Service Prlmltlve Entitles Figure 14

Entity

simplicst re~ourees

Service Primitive Concept

RSOUICW

Threaded/Flow Concept

*level.O’ configuration lunction
(i.e., functional elements)

] explicit building blocks]] service elements 1 ‘1evel.K’ configuration function I
functiona or services 1evel.K service ‘level.K+l’ configuration function

(K>l)

What has been done here is that the very first level of
configuration functions are reserved to create explicit service
building blocks called service elements. This is done because
for most purposes raw resource functions will be too limited to
use directly in simple service specifications. In particular, a
large-scale network may require finer granularity for its own
internal management, operations, and failure-recovery needs
than is reasonable to present to users at a user interface. (For
example, a resource might be a circuit-switched channel or
video laserdisk which, respectively, require routing and linking
with specific editors or display controllers before they are of any
real use. However, what is viewed as a resource or service
element is completdy arbitrary; these examples could just as
easily incorporate routing and editors or display control and be
viewed as simple resources.)

Other aspects and augmentations include service description
languages, service definitions, service description database
management, assembly/usage/disassembly languages and
interfaces, open architecture issues, call progress, real-time
control, billing, failure-recovery, operations, provisioning,
service subscription administration, and network management.
A few of these are briefly discussed.

Threaded/Flow construct, an entity named in a description can
be a resource, an elementary service element, or a full stand-
alone service. A given server, however, does not distinguish
between these since it only is concerned with affairs within its
level and message exchanges with levels immediately below and
above. Note each server is responsible for failure detection and
recovery for all the servers and resources it explicitly deals with.

A network defined service is one whose description is provided
by a network administered database. A service vendor defined
service is one whose description is provided by a service vendor
database. A user defined service is one whose description is
provided in some manner by the user. User-defined services
may be limited to single-layer descriptions of robust services
and service elements with significant filtering and security
functions; otherwise the integrity of the entire network can be
easily compromised.

7.3 Roles for Service Vendors

Service vendors can provide resources, service descriptions, or
combinations of both. The interface to a service vendor is
expected to be identical to that of a user with the probable
exception of support for higher channel capacities.

7.1 Administration 8. SUGGESTIONS FOR RELATED ANALYTICAL WORK

The operations, billing, call progress, and real-time control
functions are implemented by adding specific functions and
messages to the various servers. In particular, the highest-level
server is used as the centralized point of contact between these
functions, users, and the processing of user requests.
Communications between servers follows the same hierarchy
used in configuration definition. This permits each server to be
only locally responsible for affairs it directly delegates.

7.2 Definitions of Services

Services are defined by specifying configurations and passing
specific parameters, files, or software to resources.
Configurations are specified by software descriptions. These
descriptions consists of specific resource request messages and
the specific servers to which the requests are to be directed, All
information needed to construct a fully decentralized data-flow
can be organized in this manner. Because of the

There is the potential for some interesting formal language work
characterizing the intrinsic structure of the Threaded/Flow
approach. In addition, category representations [ll] using
functors are particularly attractive for specifying the synthesis,
decomposition, and equivalence of configurations. (It is noted
that category theory has seen value of a completely different
manner in other work with languages and algorithms; see, for
example, [12].) Besides these algebraic studies, there is
considerable work that could be done with the notion of
hierarchical queueing systems and their control, both from the
pure layering and mixed time-constant viewpoints. In addition,
there are probably other types of resource allocation and
network management models that could be used to study and
design the servers used in the Threaded/Flow approach.

315

THREADED/FLOW
CONCEPT

HIERARCHICAL
[9] Courtis, Decomposability, Academic Press, New York,

QUEUING COHCEPT 1977.

IO] M. F. Neuts, Geometric Matrix Solutions in Stochasfie

MIXED TlME.CONSTANT Models, John Hopkins, Baltimore, 1981.

RESOURCE ALLOCATION MODELS ,111 S. MaeLane, Categories for the Working Mathematician,
Springer, New York, 1971.

[12] P-L Curien, Categorical Combinalors, Sequential
Algorithms, and Functional Programming, Wiley, New
York, 1986.

CONFIGURATION SERVERS

MODELS DF FULL LARGE-
SCALE RECONFIGURABLE SYSTEM

UNDER THREAOEO FLOW

Role Of Hierarchical Queuing Models
Figure 15

0. ACKNOWLEDGEMENTS

The author would like to thank Warren Gifford (Bell
Communications Research) and Professor Pravin Varaiya (U. C.
Berkeley EECS Department) for their support and
encouragement of these ideas over the years. The author is also
grateful to Bell Communications Research for supporting the

development of the Integrated Media Arehitecfure Laboratory
(IMAL) [I] where the need for these ideas has provided a

wonderful theater for study. In particular, the author wishes to
acknowledge the programming design and coding efforts of
Chris Bidaut (AGS) and earlier exploratory efforts by Doug
Riecken (Bell Communications Research) involved in creating
the first working prototype of the Threaded/Flow approach
within IMAL. This work has also been nicely complemented by
the efforts of summer student Damon Altos (Rutgers University)
in creating an extremely sophisticated graphics-oriented
monitoring display system for the Threaded/Flow prototype.
Finally, but with great thanks, the author acknowledges the
valuable editorial review of Laura Pate and Robert Klessig
(both of Bell Communications Research).

10. REFERENCES

[l] L. F. Ludwig, D. F. Dunn, “Laboratory for the Emulation
and Study of Integrated and Coordinated Media
Communication,’ this SIGCOM conference.

[2] R. G. Loeliger Threaded-Znterprctiuc Languages Byte
Books, Peterborough, NH, 1981.

[3] M. Broy, ed., Control Flow and Data Flour, Springer, New
York, 1984.

[4] J. A. Sharp, Data Flow Computing, H&ted Press, New
York, 1985.

[5] C. R. Vick, C. V. Ramamoorthy, eds., Handbook of
Sojtwarc Engineering, Van Nostrand, New York, 1984.

PI T. Demarco, Structured Analysis and System
Specification, Prentice Hall, Englewood Cliffs, NJ, 1979.

[7] Schoute, “The Hierarchical Queue: A Model for
Definition and Estimation of Processor Loading,” Phillips
Technical Report, SR220-82-3743, October 22, 1982.

[S] L. F. Ludwig, “Hierarchical Queues and the Control of
Layered and Mixed Time-Constant Resource
Allocations’, to appear.

316

