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ABSTRACT 

This paper discusses a methodology for managing the assembly, 
control, and disassembly of large numbers of independent 
small-scale configurations within large-scale reconfigurable 
distributed systems. The approach is targeted at service 
primitives architectures for enhanced telecommunications 
networks, but can apply to more general settings such as multi- 
tasking supercomputers and network operations systems.* 
Study of the methods presented here was a key motivation in 
founding the Bell Communications Research Integrated Media 
Architecture Laboratory (IMAL) /I/. 

The Threaded/Flow approach uses data-flow constructs to 
assemble higher level functions from other distributed functions 
and resources with arbitrary degrees of decentralization. 
Equivalence between algorithms and hard and virtual reeources 
is accomplished via threaded-interpretive constructs. Function 
autonomy, concurrency, conditional branching, pipelining, and 
setup/execution interaction are implicitly supported. SOme 

elementary performance comparisons are argued. 

This work is motivated by telecommunications applications 
involving coordinated multiple-media in open architectures 
supporting large numbers of users and outside service vendors. 
In such networks it is desired that services may be flexibly 
constructed by the network, service vendors, or by users 
themselves from any meaningful combination of elementary 
primitives and previously defined services. Reliability, billing, 
call progress, real-time user control, and network management 
functions must be explicitly supported. These needs are 
handled with apparent high performance by the approach. 

1. INTRODUCTION 

This paper discusses a methodology for managing the assembly, 
control, and disassembly of large numbers of independent 
small-scale configurations within large-scale reconfigurable 
distributed systems. The methods are targeted at service 
primitives architectures for enhanced telecommunications 
networks discussed at the end of the paper. However, the 
approach also applies to more general settings such as multi- 

tasking supercomputers and network operations systems as we11 
as very general settings involving a functionally-distributed 
system which is reconfigurable. 

The approach employs a functional substrate which equates 
hard resources, virtual resources, and algorithms. This permits 
an existing service (typically an algorithm) to be freely 
combined with resources of different types in a unified way; in 
fact, services and resources are managed and allocated in the 
same basic manner. A system for fetching service descriptions 
from databases and constructing data-flows between named 
entities provides the basic foundation for the method. A named 
entity is either a resource (controlled by a resource manager) or 
another algorithm which may itself control other algorithms and 
resources. A given entity may exist and execute its tasks 
anywhere in the network and can itself be of a distributed 
nature. Branching, concurrency, pipelining, and arbitrary 
degrees of decentralization are naturally supported. It is 
straightforward to pipeline the setup and execution phases of 
the data-flow so that parts of the data-flow which are already 
set up may execute as remaining parts are themselves being set 
up; this permits conditional setup of a data-flow as a function 
of events encountered in earlier parts of its execution. Since an 
existing stand-alone service can be Iinked to (i.e., peer 
connections) or included in (i.e., hierarchical connections) 
another service, the system acts very much like a threaded 
interpretive language. It is also straightforward to replace 
service description fetches from databases with user downloads, 
permitting user definition of services from service primitives. 
Filters t o preserve integrity of the network will require 
straightforward design but are not explicitly considered here to 
limit the discussion. 

The approach presented here was developed for use in ISDN 
prior to the CCITT standards that established ISDN as it is 
recognized today. It differs somewhat in style from 
conventional trends in distributed processing since the key 
application concerns control in the context of extremely large- 
scale telecommunications (campus-wide, city-wide, or nation- 
wide) networks. The emphasis is on executions of well-defined 
control procedures rather than execution of arbitrary user 
programs. 

1.1 Need For Service Primitives In Advanced 
Telecommunications Networks 

The main reasons for resorting to a service primitives approach 
in a telecommunications network are the potential combinatoric 
complexity of service details, evolution of services in un foreseen 
directions, and a need for simple ways of linking existing 
services and and other functional elements to create new 
expanded services. 
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Figure 1 illustrates the potential service combinatorics. Each of 
the user, network, and service vendor domains is predicting and 
working toward support of a number of telecommunications 
features as shown. It is startling to notice how astronomical the 

potential combinations of “reasonable” user expectatrons for 
telecommunications might be. It is impossible to address these 
sophistications and combinations using the existing 
methodology of monolithic software generics and hardware 
upgrades oriented around one additional single-feature service 
at a time. In addition, it is natural to expect services to become 
linked or incorporated into others. For example, users may 
subscribe to automated calendar management services or have 
one in their own network-accessible systems. A service vendor 
could link these with a network-provided call forwarding service 
to form a meeting scheduling service; subscribers could name 
meeting participants and constraints and the automated service 
would forward potential dates and places to participants, 
optimize, and finally distribute word of the meeting time and 
place as well as supporting documentation using call and mail 
utilities. Later, another service vendor may link this meeting 
scheduling service with a travel booking service to 
automatically arrange transportation. From the user viewpoint, 
it is natural to expect that such capabilities should be made 
available from an advanced communications and applications 
environment. 

The highly succinct explanations above illustrate that the key 
to managing the immense possibilities within future 
telecommunications networks is a flexible, powerful, and 
simple-to-use service primitives system. A reasonable set of 
goals for such a service primitive system include: 

1. Span the possible service combinatorics made possible by 
technology, including the management and linking of 
simultaneous calls; 

2. Support simple ways of linking existing services and other 
functional elements; 

3. Provide monitoring, billing, and reliable failure recovery 
functions; 

4. Provide ways for the network, its users, or outside service 
vendors to create their own services in an open 
architecture. 

The service primitives solution suggested in this paper uses an 
architecture for the direct implementation of data-flow 
descriptions of services. An example of such a description is 
shown in Figure 2. Each named process can be an elementary 
resource function a service element (i.e., raw resource functions 
with controlling programs), or a full stand-alone service. 
Because of this, what is viewed as a fundamental “service 
primitive” can be quite arbitrary: they could be any subset of 
the possible collections of raw resource functions, explicitly 
constructed primitive service elements, or existing stand-alone 
services. This allows a network or service architect to 

l A data flow d88Crlptbn of transactions and interconnections 
between entities governed bv named servers 

l Each entity i8 either a “proC8%$” Or 8 “r8SoUrC8” 

l Each process may have subprocess (specified at 
lower levels) 

Service Descriptions 

Figure 2 
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experiment with custom designed collections of service 
primitives which may be freeIy modified. Because of this, the 
suggested approach is actually a generalized service primitives 
architecture; in fact, it is a programmable seruieea primitives 
engine on a network scale with explicit attention given to 
architectural, operations, maintenance, administrative, fault- 
tolerance, failure recovery, billing, and monitoring design issues 
that are relevant to large-scale network implementations. 

Rather than naming specific primitives explicitly se has been 
suggested in other service primitives methods, this approach 
only needs to explicitly define and implement the following 
elements: 

1. Service description database system; 

2. Service Execution Coordinators (SE&) and their servers; 

3. Resource managers; 

4. Control messages and their precise formats; 

5. Overall systems management utilities; 

6. Monitoring and reporting utilities 

With this substrate, creation of explicit service primitives and 
services themselves can be done with very short “program-like’ 
files which are easy to create and change. This approach 
naturally permits easy introduction and evolution of service 
primitives. It also lends itself well to laboratory 
experimentation. 

1.2 Strategy of the Paper 

Figure 3 illustrates the evolution of the ideas as developed in 
this paper. The development is structured as follows: 

1. Drawing from threaded-interpretive language ideas [2], a 
generic method for constructing functions from resources 
and previously created functions is developed. The 
method employs two parts: (1) descriptions of particular 
configurations within the reconfigurable system and (2) 
the passing of parameters, files, or software to specific 
functional elements in the configuration. This method 
permits functions to be associated in a well-defined manner 
with linguistic descriptions, but does not provide a meana 
of handling the actual assembly or disassembly oj the 
junctions it concerns. 

2. Threaded-interpretive language ideas are then used a 
second time; here they are coupled with data-flow 
concepts [3,4,5,6] to create a specific means of handling 
data-flow type subroutines. The result is used, subject to 
the structure of configuration description method just 
discussed, to create a means for the assembly and 
disassembly of the configurations. 

MREADED4NTERPRmVE DATA-FLOW LARGE-SCALE 

~~::~~~:wYaiTlNE.8*z~ 

TELECOMMUNICATIONS 
NETWORKS 

DESCRlPTlON* FOR DATA-FLOW’ 
I 4 I 

CDNFlGiRATlON 
ASSEYBLWISASSEMBLY* 

MANAGEMENT 

\ TiiREADEO/FLOW 
TELECOMMUNICATIONS 

SERVICE PRIMITIVES’ 

Development Of The Control Synthesis. The Author 
Views Items Denoted (*) As New Work In The Area 

Figure 3 

3. The two items listed above are united to create an overall 
method for managing the assembly, control, and 
disassembly of large numbers of independent small-scale 
configurations within large-scale reconfigurable 
distributed systems. The approach permits arbitrary 
degrees of decentralization. It also permits configurations 
to be partially assembled, used M such, and then continue 

assembly/disassembly steps as a function of the outcomes 
of this usage (i.e., assembly, usage, and disassembly may 
be freely pipelined). The development to this point is 
general, applying to settings such oe multi-tasking 
supercomputers, enhanced telecommunications networks, 
and network operations systems. The approach to this 
point is entitled a “Threaded/Flow” approach for lack of 
more creative thoughts. 

4. The abstract Threaded flow approach is combined with 
perspectives concerning large-scale telecommunications 
networks to form a service primitives method for 
enhanced telecommunications networks. Discussion of full 
detail is somewhat suppressed here in view of the audience 
and potential legal and proprietary issues currently under 
consideration. 

Most of the paper focuses on the abstract Threaded/Flow 
approach. The items listed above are supplemented with 
remarks on performance, server design, and analytical study. 
With the exception of the analytically-oriented Sections 6 and 
8, the level of this paper is comparable to that of technical 
introductions to the OS1 reference model. 

In this paper a number of special terms are defined and used in 
subsequent discussion. These terms are printed in bold type 
where they are first mentioned and defined. 

2. CONFIGURATIONS WITHIN A LARGE-SCALE 
DISTRIBUTED SYSTEM 

Figure 4 illustrates the basic setting, i.e., a large-scale 
reconfigurable system with distributed functional elementa. 
The functional elements are treated as shared resources which 
are allocated by one or more aarvara. Each server may 
administer multiple functional elements. The functional 
elements may be either hard or virtual resources. Servers 
allocate these resources, in accordance with currently active 
network management policies, to a specific task on the basis of 
rcaource requests. In particular, each specific task will 
require one or more resources which must be arranged and 
interconnected with information flows. A specific arrangement 
and interconnection is termed a configuration. The large- 
scale reconfigurable system exists so that configurations can be 
assembled on request from the pool of available functional 
elements, applied to serve a specific task, and then dismantled 
to free resources for subsequent tasks. In particular it is 
assumed the large scale system can support a large number of 
such configurations simultaneously and that most of these 
configurations will be created, operated, and dismantled 
independently from one another. Figure 4a shows the overall 
collection of resources and servers, while Figures 4b and 4c 
illustrate two possible sets of active configurations. The 
collection of active configurations present at a given instant 
may be viewed as the configuration state of the large-scale 
reconfigurable system. Hence, Figures 4b and 4c illustrate two 
possrble contrguratron-states. 

2.1 Uniqueness & Operations On Configuration-States 

TO clarify terminology, it is required that a given resource may 
only be employed in at most one configurations. TWO or more 
configurations can be merged to form a new configuration at 
which time the original configurations involved are no longer 
separately recognized as a feature of the configuration-state; 
i.e., a merger results in a change of configuration-state. TWO or 
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more eonnguratlons may also oe LLIUVZ~ W$~UE< at higher 
levels but such an arrangement will not be viewed as affecting 
the configuration-state. 

2.2 Configuration Servers 

In general, the large-scale reconfigurable system will be able to 
realize a large number of possible configurations. Also in 

general, and in most cases by design, the large scale system will 
be able to support multiple independent copies of the same 
configuration. Thus, if the admissible configurations are 

Cl, c,, ... C,, there can be n1 copies of configuration C,, n2 
copies of C,, . . . . and nt copies of C, all active at a given instant, 
subject to resource limitations: 

(nl42, t . ,4 E L 

where L is some set of admissible configuration states 
(mathematically, L is a subset of the collection of non-negative 
integer-valued k-tuples Z$). 

The outside world presents the large-scale reconfigurable system 
with requests for configurations. Assumed here is that these 
requests are largely independent of one another and that each 
configuration is limited to employing only a small fraction of 
the resources available in the system. These assumptions 
validate the need for configuration servers, i.e., entities 
which accept or reject configuration requests based on the 
current configuration state. An accepted request is passed to 
resource servers in the form of resource requests (which are 
translated into actual resource allocations by the resource 
servers). This is illustrated in Figure 5. It is noted that the 
configuration server may not have full information of the 
configuration state; more than likely it will work from 
simplified information provided by the resource servers. 

(REQUESTS FOR CONFIGURATION 
CONFIGURAMMS) 

RESOURCE RESOURCE 
SERVER 

STATE 
OBSERVER 

d?Y 

0 0 0 0 0 0 0 0 0 0 0 RESOURCES 

Configuration Sewer Setting 
Figure 5 

2.3 Hierarchical Features 

The purpose of configurations is to implement higher level 
functions. That is, each configuration performs a function 
itself, comparable to the functions provided by the functional 
elements themselves, but with more sophistication. For 
convenience call the functions provided by configurations 
configuration functions. At this point two key observations 
are relevant: 

I. Since both configurations and functional elements 

implement functions, configuration functions and 
functional elements may be viewed as being equivalent 
except for the level of sophistication; 

2. Just as functional elements may be brought together to 
form configurations, it is also possible to construct 
configurations out of configurations themselves. 

These two observations may be combined to yield third 
and fourth observations: 

3. The collection of configuration functions together with 
functional elements can be used as an extended collection 
of elements, from which higher level configurations may be 
created. 

4. This process can be iterated as follows: 

. Define functional elements as “levei.0” configuration 
functions 

. For K = 1, 2, 3.. - define “leve1.K” configurations 
as configurations created from the pool of resources 
consisting of “level.K-1”, “level.K-l”, . . . “level.0” 
configuration functions which include at least one 
“level.K-1’ configuration function. 

In this way, just as in structured programming, Lego-blocks,* or 
an Erector-Set,* raw functions at any level of sophistication can 
be drawn upon in a unified way to construct more sophisticated 
configurations. 

The nature of the fourth observation is not unlike that of a 
threaded interpretive language. The resulting possible 
constructions are illustrated in Figure 6. For the moment a 
“1evel.K’ configuration can be thought of as being administered 
by “1evel.K” configuration servers, an artificial concept to 
be used temporarily. 

It is explicitly noted that the layering discussed here results 
from a general hierarchical construction and ha8 nothing to do 
with the acvcn-layer OSI reference model. 

l American children’s toys featuring elementa which can be asaembted in easily nested modules. 
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Hierarchy With Triangular Connectivity 
Figure 6 

2.4 Naming Complexities 

For each value of K=0,1,2, . . . let there be N, different 
“1evel.K” configuration functions. Then a fully capable 
“1evel.K” configuration server must be internally aware of each 
of the 

K-l 

C Ni 
id3 

different configuration functions available to it, yet deal with 
requests for only Nx types of configuration functions. This 
suggests an implementation strategy for controlling complexity 
as illustrated in Figure 7. A simple database recognizes 
function names and routes requests to configuration servers of 
an appropriate level. These configuration servers need only 
worry about a few (i.e., Nx at level K ) configuration 
descriptions. This conceptual structure may be used either 
directly or indirectly in implementing user interfaces and/or 
look-ahead pipelining during configuration set-up (to be 
discussed later). 

. . In particular, the degree of decentralization is determined 
. 
. precisely by the configuration assembly description. 

/A 3.1 The Data-flow Formalism 

CONNG. SERVER The mechanism used for configuration assembly is more 
precisely a type of “control flow” (see, for example, IS]) since it 
is intended for control rather than computation. The structure 
of the configuration assembly mechanism is almost identical to 
the traditional data-flow formalism which is well documented 
(see, for example [3,4,5,6]). 

I 
Y 

“LEVEL .o” 

CONFIG. SERVER 
I 

I 

is naive to believe that large-scale reconfigurable systems could 
be well centralized, especially if subject to any reasonable 
amount of evolution or change. Although this paper targets 
Iarge-scale reconfigurable systems that are decentralized, it is 
natural to suspect that almost all practical large-scale 
reconfigurable systems will have to be at least somewhat 
decentralized. It is here that data-flow like constructs are very 
useful. As it turns out, the resulting features made possible by 
decentralized assembly control have some interesting potential 
performance advantages in many situations which can be well 
characterized. As a result, potential exists for well-defined 
design principles concerning degrees of decentralization 
appropriate for a given situation. 

Consider a request for a ‘1evel.K” configuration function by a 
user of the large-scale reconfigurable system. Depending on 
implementation, the user may or may not specify the precise 
level of the function. Further, the level may or may not be 
useful in administering assembly of the requested configuration. 

It is assumed that full information describing how each 
configuration is to be assembled is represented as software files 
to permit easy evolution and change. The full information 
describing how each configuration is to be assembled is called a 
configuration assembly description and is assumed to be 
stored in databases that are made available to configuration 
servers. Other arrangements are possible, including one where 
users are free to provide this full description themselves. 

The goal is to create a mechanism which simplifies 
configuration description software as much as possible yet 
operates with high performance in an environment where 
configuration functions (at least a “level.0” ) are distributed. 
The suggested approach is to use a data-flow like substrate 
between configuration servers at all levels. This data-flow 
substrate provides a message-passing system that is: 

1. Oriented towards the execution of tasks and processes; 

2. Supports branching, conditionals, and concurrency; 

3. Operates transparently and naturally in either centralized 
or decentralized environments. 

AU WSSIBLE 
FUNCTION 
REOUESTS q SORT 
(2 Mb, TYPES) 

The basic features of the data-flow formalism are illustrated in 
Figure 8. In the Figure, processes are represented by labeled 

Definition Management 
Figure 7 

3. CONFIGURATION ASSEMBLY 

Configuration functions are an important advantage offered by 
a reconfigurable system. However, these functions are only 
available after a configuration has been assembled. Further, 
unless configurations are disassembled after their use by the 
requester, resources will be wasted and assembly of 
configurations will soon be impossible. Thus, the control 
required for the assembly and disassembly of configurations is 
of key importance for realization of this concept. In addition, it 

CONCURRING BRANCHING CONDITIONALS 

The Data-Flow Formalism 
Figure 6 
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ovals. These ovals are interconnected by message-passing paths 
which are represented by arrows. These paths carry 
completion tokens which are used to signify that the previous 
process has been completed. These tokens also may carry 
inlormation created by the previous processes if appropriate. A 
given process collects these tokens until a logical condition 
involving them (and related time-out events) is satisfied and 
then begins its own execution. At the completion oT its 
execution (or part-way through, as appropriate), tokens are 
generated and sent to subsequent processes in the data-flow. 
These tokens may be created and sent to locations as a function 
of the outcome of the process. Each process executes 
independently and may exist in any processor within a 
distributed processing environment. 

As a result of the features identified in the previous paragraph, 
a data-flow naturally permits conditionals, branching, 
distributed execution, and concurrency. In addition, data-flows 
can be executed with arbitrary degrees of decentralization as 
suggested by Figure 9. Figure 9a shows an abstract data-flow 
involving five processes {A,B,C,D,E}, an outcome-dependent 
branching at process A, multi-step completion token generation 
at process B, concurrency of processes C and D, and a logical 
relation governing the execution of process E. Figures Sb-d 
show three different implementations with increasing degrees of 
decentralization. Figure 9b shows no decentralization; all 
processes are executed by a single multi-tasking processor. In 
thie CDLM the data-flow scheduling and token-routing is totally 
contained within the single multi-tasking processor. Figure 9c 
shows an environment involving five processors; one processor is 
used as a centralized controller/scheduler, a second processor 
executes processes A and E, and the remaining three processors 
each execute processes B, C, and D. In this case, single start 
and completion tokens are exchanged between the centralized 
controller/scheduler and the other process-executing processors 
as illustrated. In this caee the data-flow scheduling is handled by 
the centralized controller/aeheduler but the actual processes ore 
ezecuted in a distributed environment. Figure 9d shows another 
environment involving five processors; in this case each 
processor uniquely executes one of the five processes 
{A,B,C,D,E}. There is no centralized control or scheduling. In 
thin cme, the entire data-flow is implemented in a fully 

decentralized nature. 

The above example is illustrative of the fact that the same 
rather involved data-flow can be directly supported by a wide 
variety of environments involving many different types and 
degrees of decentralization. In addition to this and other 
useful properties cited above, da&flows also enjoy considerable 
endorsement outside of the computer literate community, in 
particular data-flows are useful for specifying corporate, 
administrative, and financial procedures [6]. As a result, data- 
flow flavored schemes offer potentials for simplifying 
configuration specification and user interfaces. 

3.2 Performance-Based Design Considerations 

Assuming some decentralization is required in the large-scale 
reconfigurable systeins, interesting observations can be made 
concerning the role of centralized coordination of a data-flow 
execution in comparison to decentralized execution. 

3.2.1 Ezceution Consider the simple data-flow shown in Figure 
1Oa. This abstract data-flow contains N processes which 
execute in sequence. Figure lob shows a centralized 
coordination of the execution of this data-flow. Including 
“start” and “finish’ tokens, a total of 2(N+l) messages are 
required. Note that since the coordination is centralized, any 
failures of a process execution can be identified and hence 
recovered from during the execution; also, completion of each 
process is observed and hence available for monitoring, 

(b) 

A Data-Ftow (a) And Three Implawns 
With kmasing Degmae 01 Decenhbtlon 

noun@ 

administration, and accounting (billing) purposes. In 
particular, completion of the K’b process occurs after 2K 
messages and is observed after the exchange of 2K+l messages. 
Compare this to the decentralized execution shown in Figure 
10~. Full execution requires only N+l messages, half as many 
as before. Without outside observations (such as shown in the 
dotted lines) failure recovery and monitoring in an equivalent 
fashion is not possible, so these messages are now considered. 
Again N+l messages are required, so the total number oT 
messages needed is 2(N+l) aa in the centralized case. However, 
the completion of the KLb process occurs after K messages and is 
observed after K+l messages, half of that for the centralized 
case. These and some other remarks to be discussed are 
summarized in the Table below. 

In a decentralized system, message count represents one 
important degree of complexity. Each message must be created, 
successfully transmitted/routed/received, analyzed and noted 
upon. The diversity of the types of messages expands the 
complexity of the system’s elements, and the number of 
messages 
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scales the loading requirements of the message exchange 
systems (i.e., the data-communications network linking the 
system elements.) In most systems each message exchange is 
likely to introduce delay and potential points of failure, 
comparing the columns of the table, it is observed that the 
decentralized approach in many ways makes much more 
intelligent use of the 2N+2 messages required. The key here is 
that only half of the messages are required for execution of the 
data-flow. As a result, the data-flow executes faster* and has 
fewer points of failure. Since the other half of the messages are 
used for monitoring, another property is also observed: there is 
a well-defined distinction between execution-oriented messages 
and monitoring-oriented messages. As a result, execution- 
oriented messages can be handled in a separately engineered 
environment emphasizing speed and reliability. The degree of 
reliability attained in the execution-oriented environment 
determines requirements on the monitoring-oriented 
environment. Since the monitoring information is used for 
billing, statistical records, and failure-recovery, it is reasonable 
to design the monitoring-oriented environment for slower speed 
and lesser reliability. It is also noted that since the monitoring 
and execution messages are generated in parallel (rather than in 
sequential interleave), the decentralized approach handles all 
aspects of configuration assembly with half the message 
exchange time (at the expense of an efficiently doubled message 
rate). A find observation concerns the fact that the centralized 
controller used in centralized coordination is required to take N 
actions even if no failure occurs, while nothing comparable is 
required is the decentralized case. 

The preceding analysis may be extended to more complex (i.e., 
non-serial) data-flows. To do this requires focus on events local 
to the execution of a single given process as shown in Figure 11. 
Figure lla shows a given process receiving m tokens from and 
transmitting n tokens to other processes in the data-flow. It is 
assumed that the process shown executes monolithically, i.e., 
begins its execution when received tokens satisfy a logical 
relation, executes without externally-visible steps, and all n 
transmitted tokens are then sent. (It is noted that, for the sake 
of analysis, any non-monolithically executing process may be 
itself decomposed into a new data-flow consisting of only 
monolithically executing process.) As shown in Figures lib and 
llc, which respectively illustrate the message flow in the 
centralized and decentralized approaches, only the received 
tokens need be considered. (This is because a transmitted 
token for one process also serves as a received token for exactly 
one other process.) As shown in Figure llb, the centralized 
controller requires as many as m messages to be received for 
evaluating the logical relation permitting execution; when this 
relation is satisfied a message is sent to the process signaling 
that it is to now execute. Execution is confirmed with an 
additional message. Assume that each of the mfl messages 
leading up to the execution of the process encounters a non-zero 
delay time between the completion of the action generating it 
and the message’s reception; let “T,,” be the longest of these 
times “Tsutmax” be the second longest, and “Tmt,” be the 
shortest. Then the delay “t” between the time the process in 
the Figure could execute ideally and in reality must satisfy 
(assuming no race conditions): 

Also, note that two messages are required between the actron 
last required for process execution and actual execution. 

Compare now the decentralized approach as illustrated in 
Figure llc. Here, each of the m received tokens were CO- 
transmitted with monitoring messages as illustrated. Upon 
execution, the process sends a single monitoring message to the 
centralized monitor along with the n transmitted tokens sent to 
subsequent processes in the data-flow. As a result, (assuming 
no race conditions): 

and onIy one message is required between the action last 
required for process execution and actual execution. If all 
message delays are assumed approximately equal, i.e., 

Tmin m Tmsx 

then one sees the decentralized approach emerging with an 
execution encountering half ae much message delay, just as in 
the serial case. 

Total number of messages 

l Another way to look 01 this is that /or II given user-perceived configuration orrcmblg time, the mcsstrgc network only need 
operots LaIfar quickly. 
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3.2.2 Allocationa Figure 12 illustrates the differences between 
the centralized and decentralized approach. As shown each case 
requires the centralized entity to be presented with the full 
algorithm script. In the decentralized case, each resource must 
also be given information about its precise role in the script, 
hence elongating the allocation messages in size but not 
increasing the number of messages. Although this elongation is 
not required in the centralized case, it is the only penalty paid 
at allocation for decentralization with monitoring. 

S.e.3 Compariaona Summarized Decentralization with 
monitoring elongates allocation messages and increases the 
instantaneous rate of messages during execution. It does not 
change the total number of messages involved in execution and 
monitoring nor does it affect the average message generation 
rate. However, decentralization does speed up execution, reduce 
message-related points of failure, and increase the rate at which 
execute-time failures are detected, typically if not almost always 
by a factor of 2. In addition, it permits separate engineering of 
monitoring and execution messages (allowing retribution for 
increasing the instantaneous message generation rate mentioned 
above) and prevents additional actions by a centralized entity 
in non-failure modes. 

Comparing Complexity Of Level K Allocations 
(a) Centralized, (b) Decentralized 

Number Msgs Same; Msgs Slightly Longer Under(b) 
Figurs 12 

4. RESOURCE AVAILABILITY AND CONFIGURATION 
DISASSEMBLY 

It is important to free resources and other types of server 
allocations when a user has finished with a configuration 
assembled in their behalf. This is somewhat obvious for 
otherwise new configuration requests would eventually find no 
resources available. As it turns out, there are a number of 
detailed issues closely related to the freeing and general 
availability of resources. Here some performance and 
implementation considerations of resource availability and 
configuration disassembly are discussed. 

Note that a given resource, once allocated, cannot be used by 
another user until somehow made free. A resource is allocated 
during a configuration assembly and remains unavailable to 
other users until some time after its use is completed. Thus for 
a given configuration request, the time a resource is unavailable 
to other users may be split into three components: 

T unwsilsbls = T Msembb.idls + Tus, + Tdiaassembk.idle 

The time spent in use (T,,,) 1s connected to revenue and cost; 
it is for these intervals that the resource is provided in the first 
place. The times spent idle during assembly (Twsembb.idre) and 
disassembly (Tdimmmbly.idle ) P bases, however, represent periods 
when the resource is wasted. The efficiency of the resource 
allocation system for the duration of a given configuration can 
thus be characterized as: 

Efficiency = T-b,ws + T,, + To~-~~sdls 

The closer this expression is made to 1, the more Potential for 
actual usage can be obtained. To obtain high efficiencies, one 
requires: 

T “#Sp >> Tusembb.idts + Tdissmmbb.idle 

This is particularly important in systems where a great deal of 
resource sharing is to be expected. Most instances of large-scale 
reconfigurable systems would fall into this category for sheer 
reasons of minimizing cost and component-count complexities. 

ks discussed earlier, it is desirable to allocate resources quickly 
during configuration assembly for user performance 
requirements; users typically wish to have configurations made 
available quickly after a request is made. This force already 
motivates minimizing Tasaembly,idla. However, one can see now 
that it is also desirable to minimize the time required to free up 
resources at the end of their use (i.e., Td~saaembly.ldle). 

The most straightforward method of freeing resources is to do 
so on the receipt of a signal from the user that the configuration 
is no longer needed. In this case each “1evel.K” configuration 
function server is notified by some means to free the allocated 
resource. This, however, can be done in at least two ways: 

1. Notification from higher level servers that the 
configuration is to be disassembled (this is the same way 
assembly is done); 

2. Broadcast notification to each server involved in the 
configuration from some central point aware of the 
completion (this requires “look-ahead’ operations to 
provide the centralized point with all the server addresses 
in advance). 

Resources may also be freed using a number of typically 
context-oriented techniques. In many cases, time-out conditions 
can be used to supplement user completion messages. In other 
cases, resources can be implicitly released because of the nature 
of the allocation discipline requested (for example, a call- 
forwarding address query, the dump of a file, video frame, or 
audio segment, etc.). In other cases, resources may be explicitly 
freed by the user; this may be done by sending a message 
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terminating specific subsets of an otherwise currently active 
configuration (turning off the video of an audio/video call, (etc.). 

All of the options for resource release may be used in the 
Threaded/Flow approach. The degree of performance required 
for resource release is a function of the designed server load, 
cost of the resources, cost of the release mechanism options, etc. 

5. PIPELINING CONFIGURATION USAGE, ASSEMBLY, 
AND DISASSEMBLY 

In many cases it is useful to interleave the assembly, usage, and 
disassembly phases of a configuration. In some cases this would 
be done strictly for performance reasons, offering the u.ser a 
speedier setup and freeing resources as quickly as possible. 
Another reason would be to provide partial grants of a 
configuration request while waiting for other resources to 
become available; the user could be offered key subsets of the 
configuration (say, audio and graphics features) while waiting to 
obtain the next available resources for the rest of the 
configuration (say, video features). Another case would be to 
provide conditional feature implementation (for example, a user 
may or may not wish to tie in a graphics editor depending upon 
the type of image found during a database query whose output 
is directed to a desktop publishing feature). The latter case is 
especially useful in functions with very extensive user options 
and interactive qualities. 

Figure 13 shows a way of graphically characterizing such 
pipelining as multi-dimensional curves. The Figure shows 
diagrams whose axes are 

“x”: the number of resource allocations made, 
.Y.: the number of resource-level data-flow steps executed at -level,~-, 
‘2”: the number of resource relesses made. 

(a) (W 

Non-pipelined (a) and highly 
pipelined (b) executions 

Figure 13 

Assume also that there is only one resource-level data-flow step 
made for each allocated resource. If each axis is normalized so 
that the curve is confined to values between 0 and 1, a number 
of properties, listed below, can be expected. (Variations on the 
assumptions result in other similar properties.) 

The curve is non-decreasing in each coordinate (t(rue 
without normalization); 

If there are no recursions, the curves must lie within the 
wedge described by: 

OSYSX 
o<z<x 

The shape of the curve determines the degree and style of 
pipelining. A condition of “no pipelining’ is represented 
by the curve 

{O~x~l,y=O, z=O} u {x=l,O<y<l, s=O} u {x=1, y=l, o<z< 

(see Figure Ma) while ‘full pipelining’ is asymptotically 
represented by the curve x=y=s (see Figure 13b). 
Geometric proximity to these limiting curves gives a 
graphic intuition for the degree and style of pipelining. 

The topic of pipelining also includes two other concepts: 

‘Throw-away” parts of a configuration that are unlikely 
to be used may be preconfigured anyway in case they are 
needed quickly. This could be done after the principal 
part of the configuration is assembled but at some time 
prior to when the user could first possibly require the 
rarely used feature. 

Commonly requested configurations may be pre-assembled 
to some degree. This is useful when used in an adaptive 
way, basing the number and types of preassembled 
configurations (as well as perhaps the degree of pre- 
assembly) on automated statistical observations. (This is 
comparable to a fast-food restaurant, upon noticing a rush 
on particular types of hamburgers, precooking a few in 
anticipation of impending requests.) This type of 
pipelining is an interesting case since in a way this is 
pipelining the assembly process with the actual request 
process. 

6. SERVER DESIGN AND HIERARCHICAL QUEUEING 
MODELS 

The design of servers and network management systems in the 
Threaded/Flow approach can at first cut be handled with 
simple design intuition. This is as done in the design of most 
computer systems since sophisticated analytic and even 
simulation techniques often contribute little in practice. 
However, there is in this case excellent opportunity for the 
development of some new analytical tools capturing features of 
the Threaded/Flow approach. In this Section, some design 
considerations and one promising analytical technique currently 
under development will be discussed. 

In general servers may have to manage resources across a 
variety of demands. Some requests will be for only brief one- 
time usage, others for bursty long-term usage, others for long 
intervals at full utilization. In some cases delay in the 
allocation will be tolerable, and in other cases it will not. Also, 
servers will have to administer resources subject to network 
management conditions. For example, under heavy loading 
priority may be paid to requests associated with configurations 
that are almost complete rather than new requests in order to 
maximize revenue. Expensive resources may be allocated only 
after guarantees that enough other resources are available to 
complete the configuration assembly. As a result of these 
observations, it is seen that the design of servers in the 
Threaded/Flow system is very interesting and worthy of some 
theoretical study and dependable design techniques. 

The modeling of servers and network management systems in 
the Threaded/Flow system is nicely handed by hierarchical 
queucing modela. The first model of this type was a two-level 
model proposed by Schoute to study the creation of tasks 
resulting from the acceptance of a call-request in a telephone 
switch controller [7]. Figure 14 shows a more general 
hierarchical queueing model involving more layers developed by 
the author [8]. In this model there are separate queues 
associated with each server within each level. “Customers” may 
arrive at any level, but customers at a given level can, while 
being served by their server, generate customera for queues at 
lower levels. This nicely models many circumstances, such as 
the scheduling of processes in a batch computer system, 
allocation of resources within a corporation, or the 
Threaded/Flow approach presented in this paper. In less 
obvious ways, the hierarchical queueing model also is useful in 
modeling resource allocation systems where allocations involve 
hard or virtual allocations over a range of time-constants. For 
example, in [S] the allocation of transmission or switch fabric 
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channels to circuit-switched, burst-switched, virtual-circuit, and 
datagram oriented clients is represented as a two-layer model (a 
“fast” burst-duration/packet-duration layer plus a “slow” call- 
duration/connection-duration layer). This is also of great 
potential use to modeling and designing more general resource 
servers involved in Threaded/Flow implementations. In [g] the 
topic is considered in more detail from modeling, analysis, and 
control design viewpoints. Analytical results appear prominmrg 
since under standard types of independence assumptions both 
decomposability [9] and geometric matrix [lo] techniques can be 
applied. 

7. APPLICATIONS TO TELECOMMUNICATIONS 
SERVICE PRIMITIVE SYSTEMS 

This discussion is limited in detail due to legal and proprietary 
issues yet to be resolved. The ideas are fairly straightforward. 
however. From the service definition viewpoint, this . . . 
apphcation IS based on the following identifications: 

) kg:; * 
LEVEL n . 

---a I 

-gq- 
. 

+ L-s=. 
. LEvELn-1 

f 
--.I 

General Hierarchical Queuing Model 
( A Specific Example Is Shown) 

Identifleatlon of Thrcsded/Flow Entitles with Service Prlmltlve Entitles Figure 14 

Entity 

simplicst re~ourees 

Service Primitive Concept 

RSOUICW 

Threaded/Flow Concept 

*level.O’ configuration lunction 
(i.e., functional elements) 

] explicit building blocks ] ] service elements 1 ‘1evel.K’ configuration function I 
functiona or services 1evel.K service ‘level.K+l’ configuration function 

(K>l) 

What has been done here is that the very first level of 
configuration functions are reserved to create explicit service 
building blocks called service elements. This is done because 
for most purposes raw resource functions will be too limited to 
use directly in simple service specifications. In particular, a 
large-scale network may require finer granularity for its own 
internal management, operations, and failure-recovery needs 
than is reasonable to present to users at a user interface. (For 
example, a resource might be a circuit-switched channel or 
video laserdisk which, respectively, require routing and linking 
with specific editors or display controllers before they are of any 
real use. However, what is viewed as a resource or service 
element is completdy arbitrary; these examples could just as 
easily incorporate routing and editors or display control and be 
viewed as simple resources.) 

Other aspects and augmentations include service description 
languages, service definitions, service description database 
management, assembly/usage/disassembly languages and 
interfaces, open architecture issues, call progress, real-time 
control, billing, failure-recovery, operations, provisioning, 
service subscription administration, and network management. 
A few of these are briefly discussed. 

Threaded/Flow construct, an entity named in a description can 
be a resource, an elementary service element, or a full stand- 
alone service. A given server, however, does not distinguish 
between these since it only is concerned with affairs within its 
level and message exchanges with levels immediately below and 
above. Note each server is responsible for failure detection and 
recovery for all the servers and resources it explicitly deals with. 

A network defined service is one whose description is provided 
by a network administered database. A service vendor defined 
service is one whose description is provided by a service vendor 
database. A user defined service is one whose description is 
provided in some manner by the user. User-defined services 
may be limited to single-layer descriptions of robust services 
and service elements with significant filtering and security 
functions; otherwise the integrity of the entire network can be 
easily compromised. 

7.3 Roles for Service Vendors 

Service vendors can provide resources, service descriptions, or 
combinations of both. The interface to a service vendor is 
expected to be identical to that of a user with the probable 
exception of support for higher channel capacities. 

7.1 Administration 8. SUGGESTIONS FOR RELATED ANALYTICAL WORK 

The operations, billing, call progress, and real-time control 
functions are implemented by adding specific functions and 
messages to the various servers. In particular, the highest-level 
server is used as the centralized point of contact between these 
functions, users, and the processing of user requests. 
Communications between servers follows the same hierarchy 
used in configuration definition. This permits each server to be 
only locally responsible for affairs it directly delegates. 

7.2 Definitions of Services 

Services are defined by specifying configurations and passing 
specific parameters, files, or software to resources. 
Configurations are specified by software descriptions. These 
descriptions consists of specific resource request messages and 
the specific servers to which the requests are to be directed, All 
information needed to construct a fully decentralized data-flow 
can be organized in this manner. Because of the 

There is the potential for some interesting formal language work 
characterizing the intrinsic structure of the Threaded/Flow 
approach. In addition, category representations [ll] using 
functors are particularly attractive for specifying the synthesis, 
decomposition, and equivalence of configurations. (It is noted 
that category theory has seen value of a completely different 
manner in other work with languages and algorithms; see, for 
example, [12].) Besides these algebraic studies, there is 
considerable work that could be done with the notion of 
hierarchical queueing systems and their control, both from the 
pure layering and mixed time-constant viewpoints. In addition, 
there are probably other types of resource allocation and 
network management models that could be used to study and 
design the servers used in the Threaded/Flow approach. 
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