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The firing squad problem of automata theory is 
described and a simple, nonoptimal solution is __ 
given. Examination of output traces shows th;'; the 
solution has at least one obvious symmetry. the 
transition matrix is reshaped and partitioned, I :he 
resulting nested array not only reveals and 
explicates more symmetries but suggests ways in 
which nested arrays can be used to save space. 

countability; a squad beyond that limit cannot so 
synchronize itself. 

A much simplified problem will be analyzed first 
to introduce the method of message transmission. 
The solution to this simple problem has no 
symmetries. A solution to the original problem is 
then presented and analyzed. When the shallow 
transition matrix, on which the solution is based, 
is transformed into a depth three array, the 
symmetries of the internal states of the automata 

INTRODUCTION 
and of the connections between automata are revealed 
as different forms of reflections. 

A finite state automaton is a device with a 
finite number each of states. inputs, and outputs. 
One of the inputs is the current stats; one of the 
outputs is the next state. 
outputs are external. 

The other inputs and 
As time advances in discrete 

steps. the state of the device at one time is 
determined entirely by the inputs at the last 
previous time. The firing squad problem requires 
the definition of such an automaton. called a 
soldier, with two external inputs which are the 
states of his left and right neighbors when arrayed 
in a firing squad line. The only output is the next 
state. 

From time to time a squad is formed whose size 
is determined by the prominence of the guest of 
honor: In view of the inevitable inflation of 
political values, the possible size of a squad nust 
be considered unlimited. The automata are set to a 
common initial state, and an officer at one end of 
the line then gives the command "Synch and Shoot". 
The soldiers. following the rules of finite state 
automata and each receiving input only from his two 
neighbors. exchange enough information to fire 
simultaneously as soon as possible. Firing is 
represented by a particular state of the automaton. 
The optimal solution, which takes -2+2xN steps, 
where N is the length of the squad, is quite 
complex. A simple solution with only twelve 
intexnal states will be shown. For squadsoo3ingth 
two or greater it requires no more than 
states. 

The problem is nontrivial because of the 
combination of synchronization and finiteness of the 
individual automata It is not hard to design 
soldiers who will fire in sequence down the line. 
It is not too much harder to synchronize if the 
automata can "count off", just like zeal soldiers. 
When the soldier at the far end finds out that he 
is number 576273054, the soldiers can easily count 
down in sequence and synchronize. But a finite 
state automaton has a maximum limit to his 

The shallow matrix, furthermore? is rather 
The distribution of Significant elements 

?~a~~~ms and subitems can be used to effect 
sianificant storage savings. 
A TRIVIAL CASE 

Let the requirement be that only the soldier at 
the opposite end of the line from the officer must 
fire his weapon. The command to synch and shoot cpn 
be thought of as a shoulder tap of the first soldier. 
The internal states must be defined so that the 
shoulder tap is transmitted to the next soldier 
during each time interval. For this case, three 
internal state suffice. Before the command is given 
all soldiers are in a common idlina state, which is 
selfperpetuating; if a soldier and his neighbors are 
in the idlina state, the soldier remains idle for 
the next time period. 

The next state is determined by three values, 
each of which has a range of three; 
transition matrix is necessarv. 

A 3 by 3 by 3 
The values in the 

matrix are the same three values with one addition, 
the firing state. The iterative solution halts as 
soon as one or more soldiers enter that state so that 
this state is never an input to another soldier. 

The states are represented by characters. which 
can be used to create a suggestive display. This 
representation was chosen long ago at a tine when 
the possibility of a few 20 by 20 by 20 four byte 
integer matrices was fraught with hints of WSFULL. 
The representation turned out to be serendipitous. 
The characters are in a variable called SFSCH. 
standing for Simple Firing Squad CHaracters. 

The logarithm symbol represents the firing state; 
the period. the idling state; the equals. the 
shoulder tap state. The quad remains in the same 
state regardless of what happens to his neighbors; 
for that season. he is sometimes called a blockhead. 
Before the iterative solution begins, a blockhead 
is affixed to each end of the line to provide 
neighbors for the end soldiers. Blockheads will be 
found to play a role at other than end points in the 
general solution. 
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The transition matrix is called SFSMr for 
Simple Firing Squad Matrix. It is conveniently 
displayed by lowering its last two axes 
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The three axes represents respectively~ a so+;;;rr 
his left neighbor, and his right neighbor. 
the left hand 3 by 3 matrix represents a soldier'ia 
state zero (.). Rows stand for values of the left 
neighbor; columns, the right. For example, the 
middle rows of the three displayed matrices 
represent a soldier whose left neighbor is in state 
one (=I; the left colurns. a soldier whose right 
neighbor is in state zero (.I. 

The character in each position gives the state 
of the soldier at the next point in time. One (=I 
will be the state of the soldier at the next time 
if the soldier and his right neighbor are in state 
zero (. 1, and his left neighbor is in state one (=). 
Thus an equals sign appears in plane zero, row one, 
and column zero. The minus sign is used at locations 
which will never be used; that is, for 
configurations of states which will never occur. 

The character representations can be converted 
to small integers by finding their indices in 
SFSCH. The numbers for a particular time can then 
be used as indices into the transition matrix to 
find the next internal state. For example. at time 
zero a squad of length three is displayed 

0=. .lJ 

Soldier zero is in state one (~1; his left neighbor 
is in state two (0); his right, in state zero (.I. 
For soldier one, ths integers are zero (.I, one (=>. 
and zero (.>. respectively. Using these values to 
select from the transition matrix 

(~"(1 2 O)<O 1 O)l=.'*cSFSN 
.= 

Soldiers zero and one are in idle and shoulder tap 
states, respectively, one time interval later. The 
firing squad at this time would be represented 

q .=.0 

The shoulder tap has been passed on from soldier 
zero to soldier one. 

A simple expression creates a few examples 

SFSGO"l+t6 

o=o q =.o lJ=..o u=...o II=....0 q =.....o 
q eo D.Kl ;.=i; ;.=..o 0 q 

. . 
q .o n. ;..; ~.=....o 

=. . . 
q ::.sn q :::=:n q ::.= : 

0 . . ..ea q . . ..~.n 
II . . . . . en 

-7 
co1 Z+SFSGO Y 
Cl1 i%SFSM SFSCH FSGO Y 
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SFSGO. standing for Simple FSGO uses the variables 
defined above as left ;;;;ment to the solut;;;Oto 
the general problem, The code for 
appears in the appendix. ihe right argument is the 
length of the squad. The reader may wish to confirm 
that the log symbol at SFSMC1;2;21 is only used 
for the one man squad. The starting position for a 
one man squad is the only instance of an equals sign 
between two quads. 

The iterated line, FSGOC61, is the core of-the 
solution. Before iteration starts, the tran;i",;o, 
matrix is converted to integer form using 
OF so that the look up is not required at each step, 
and the variable L is set to one less than the 
number of characters, that is, to the index of the 
firing state. L is used in line C61 to detect an 
occurrence of the firing state (@J,) so that iteration 
will stop. 

The indices for the state of each individual 
automaton are determined in FSGOC61 by using the 
squad together with its left and right shifts. The 
two block heads appear together in both shifted 
forms. Thus, the blockhead entries in the 
transition matrix, which correspond to a soldier and 
one of his neighbors in state two. preserve that 
state over each time interval. 
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THE GENERAL CASE 

If FSGO is called monadically it uses the 
global variables FSM and FSCH. It also uses the 
sign of its right argument to determine at which end 
of the line the officer stands. The conceit is 
simple. Two messages are sent. one traveling at one 
third the speed of the other. The delay in the slow 
message corn&s from having three waiting states 
before each soldier taDs the shoulder of an adjacent 
soldier. When the sl& message meets the refl&tion 
;E,;p fast, the midpoipt of the squad has been 

One or two soldiers. depending on parity, 
become blockheads. defining two squads of the same 
length, and fast and slow messages are dispatched 
from the midpoint in opposite directions. A 
blockhead in the general solution can leave his 
inert state only when one of a set of prefiring 
conditions is net; at the next moment he fires. 
Since a squad of any length can be called as a 
subdivision of at least one larger squad and will 
in that case be called from both left and right ends. 
the solution must be symmetric. 

The symmetry of the overall solution and the usa 
of blockheads to define subdivisions are illustrated 
in the following small example. 

The function REP-IN replaces the dots with blanks, 
which removes clutter from the figure. There is 
obvious symmetry in these two figures; one is just 
the reflection of the other 

0 
x E @Y 

Oops! It is also necessary to revcrsa the 
individual characters using 

:i: - 
Z+gEJ!CH Y R Where defined. @yCH" C--D f??lCH 
(,Zl+(' -'.FSCH)C(' -',FS CH)l,Z*Yl 

w 1987-08-24 15.08.57 (GMT-41 and 
ZJFSCH FS-CH 

The high minus sign in the name FS-CH suggests a 
reversal. The directed symbols are interchanged in 
the two variables; the symmetric symbols are 
unchanged. 

X = REVCH bY 
1 

_ --- 

That's better! The rich APL symbol set led to 
characters, originally chosen to save space in an 
APLSV workspace, which themselves express a 
svmnetrv. Fiaure 1. which follows the text. aives 
the complete gun of a seventeen aan squad and-the 
end of a seventy-five man squad. Parts of the 
smaller example occur in the larger. The 
seventy-five man squad divides five times. 
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DISCOVERING INTERNAL SYMMETRY SOME OBSERVATIONS ON STORAGE 

The transitiov-yatrix has 1728 leaves of which 
only 102 are not . Sparse array techniques could 
be used to store this matrix, although for one so 
small not much would be gained. The arrangement of 
nontrivial leaves in the matrix is, however, not 
random. The partitioned matrix FSMDJ has twelve 
items each of which has nine subitems. Only 
thirty-two of the one-hundred-eight subitems contain 
any useful information: those with sixteen minus 
signs could be replaced by just one. Furthermore, 
only eight of the thirty-two useful subitems contain 
instances of more than one character. The other 
twenty-four could be replaced by the respective 
character scalars. 

The resulting array, FSMRD, is shown in Figure 
6. The name stands for Firing Squad Matrix of Ragged 
Depth. The figure shows the matrix both naked and 
with each item DISPLAYed using the function 
provided with APLZ. The bare display is catenated 
to the form with boxes so that LOWS of items in the 
two forms are collinear. Since REP-IN has replaced 
minus signs with blanks, the minus signs which 
appear in the figure are only those produced by the 
DISPLAY function. The top and bottom rows of FSMRD 
each contain eight significant characters. Seven 
of these are boxed; in the case of the eighth an 
entire item has been replaced with a scalar. so it 
is DISPLAYed with only a single accompanying minus 
sign. The middle row contains the other sixteen 
subitems, with one, eight, four, and three in its 
respective items. 

The system function (IAT can be used to document 
the space saving of the nested array. With left 
argument 4 and a variable name as right argument 
the function returns a two item vector. The first 
item is the total number of bytes used to store the 
array; the second item is the number of bytes used 
to store actual data. The difference of the two 
numbers is the nesting overhead. 

Once the notion of the reflected messages and 
the key sixth line of FSGG were in hand, there 
remained only the entry of items in the transition 
matrix. This was done experimentally by ehan;;ig 
locations, lines, and planes in the matrix. 
first solution looked something like Figure 2. Not 
much symmetry there. 

The reader night have noticed that the array in 
Figure 2 has length fifteen in each axis rather than 
length twelve. The first step in improving the 
solution was to use a trace matrix to keep track of 
locations in the transition matrix whicFs;;re 
actually used during a set of runs of . The 
trace matrix was a bit array, originally all zeroes, 
with the same shape as the transition matrix. A line 
of code was added to the then current version of 
FSGO to enter ones in the trace 

i? 
atrix at each time 

step. It was quickly clear that ew of the locations 
were in fact used, for example, no opposing left and 
right arrows are ever adjacent. With this 
information states were combined, reducing the size 
to 12 by 12 by 12. From fifteen to twelve may not 
seem like much but 

12 15 +.* 3 
0.512 

so that for a rank three array. nearly half the space 
is saved. 

The twelve remaining states were of three 
distinct types, representing respectively, right 
moving. stationary, and left moving states. The set 
of characters was reordered to form the variable 
FSCH given above. Figure 3 shows the transition 
matrix after each of its axes had been 
correspondingly reordered. 

Little symmetry shows here. but symmetry 
requires the right point of view. In the form shown 
in Figure 3, the three axes represent left neighbor, 
soldier, right neighbor. This means that the 
rotation control vector in FSGOC61 was -1 0 1. 
That is a reasonable way to arrange a set of 
consecutive integers, but it is from the point of 
view of the guy in the middle that symmetry is most 
readily apparent. 

Figure 4 shows the matrix with the first two 
axes interchanged. This is the form of the matrix 
used by FSGO. There are some more patterns, but 
symmetry is still elusive. To appreciate the effect 
of the axis transposition, the reader is challenged 
to find in Figure 3 the sort of cut-off rectangle 
of mostly 0 in item Cl;21 of Figure 4. A good 
place to start is the bottom row of Figure 3. 

Now notice that in corresponding items in the 
top and bottom rows the same characters appear 
reversed. That is reminiscent of the need to 
reverse characters to obtain an overall symmetry of 
the result. Figure 5 is the result of partitioning 
each item of Figure 4 corresponding to the groups 
of characters repsesenting left moving, stationary, 
and right moving states. This matrix. FSMDJ is 
of depth three and satisfies the following identity 

FSMDJ = 8 @yCH""" $"" BT" FSMDJ 
- where 

vBTCCiIw 
n 

co1 - ZcBT Y A t--q O-/ : Transpose on minor axis 
Cl1 Z+QOeY 

v 1987-08-06 14.03.03 (GMT-41 

In the identity and in line zero of the function the 
underscore is used between two characters to 
designate a single overstruck symbol which is not 
in the character set. This convention is adopted 
from an APL2 input convention. Using the symbols 
0 and 0-N for EEyCH and BT we can write 

This identity expresses the symmetry of the solution 
transition matrix which underlies the symmetry of 
results. We shall return to discuss this symmetry 
later on. 

Here is a short terminal session. 

Y + lE64xX c 1OOxFSMRDX c FSCH tQ(l 01 FSMRD 

NAMES 
FSM FSMDJ FSMRD 
FSMRDI X Y 

,L"l"cCOI~NAMES(," 
FSM FSMDJ 

-/"Z)~~~~DOAT"NAMESl 

24 1940 692 
1752 1728 3668 1728 904 212 

FSMRDI X Y 
692 692 692 

212 1540 a48 2388 1696 904 

-a>= 
422 

212 

FM e FSCH t '-' 

;F" Ye+/FMo.=X%FSMRD 0 I*cc~B - 
1 4 19 13 10 4 2 2 1 6 142 

PX 

212 70+1728 
0.123 0.041 

The 2 by 3 array in the middle shows the space 
requirements for all six arrays. The second line 
in each item, generated by the minus reductions, 
gives the structure overhead explicitly. 

The variable FSMRDI has the same structure as 
FSMRD, but for each character has been substituted 
its index in FSCH. INDEX OF is applied wbi.Reft 
argument FSCH to each of the scalars fi 
using an experimental depth operator, which is 
shown in the appendix. Since all these-indices are 
small positive integers. the array uses the same 
amount of space as FSMRD. X and Y are defined 
to show the effect of changing data element size. 
Uniform nesting of the data results in use of about 
twice as much space as the shallow form uses. The 
ragged depth form of the array uses about half as 
much as the original flat array. When larger 
integers are used data storage space increases. but 
overhead is unchanged. 
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Again referring to the terminal session above, 
note that of the 212 leaves of the array only 70 
are in fact useful, since the remaining 142 are 
all minus signs, representing locations that are 
never referred to. Still. only one-eighth of the 
original 1728 leaves remain. The inutile items 
are displayed as blanks. which are underscored by 
the minus signs generated by the DISPLAY function. 
They are distributed 32, 78, 32, respectively, in 
':he three rows of the ragged array. Perhaps 
structural techniques are competitive with sparse 
array techniques for some larger problems. 

The symmetry identity 

FSMRD =- 0 REk'CH""" Q"" BT" FSMRD 

still holds for the ragged array because the 
ENCLOSE of a shallow scalar is the scalar itself. 

ANALYZING SYMMETRY 

The twelve items in the partitioned array of 
Figure 5 each correspond to a state of the center 
soldier according to the pattern 

q . 0 I 

c < c * 

This fact is suggested by the upper diagram to the 
right in Figure 5 . The leaves of the array 
correspond to the next state of the automaton. Thus 
the two left most operations, a and REyCH"""r 
interchange respectively the input and output states 
of the center automaton. 
automaton is in '>' 

For exampfe, if an 
between two .' states his 

next state will be '3'. This is represented by the 
in the 

ici three item nested vector could be used as left 
(0 ll(1 l)Cl 1) position of the matrix. 

argument to the PICK function. Each item in the 
vector selects an item in a level of the transition 
matrix. beginning at the top. Thus 0 1 selects 
item one in row zero. 1 1 selects subitem one in 
row one of that item, and the second 1 1 selects 
the 'at. The other '3' in item 0 1, 
corresponding to a '>' between a '0' and a 1-31 
is selected by (0 11(1 0)(2 0). It occurs in the 
illustrations of FSGO 8 shown earlier. The two 
operations thus assure that the symmetric cases are 
handled correctly as far as the center automaton of 
a triple is concerned. 

The remaining two operations take care of the 
center automaton's view of his neighbors. Let R, 
S, and L stand for right moving, stationary, and 
left moving states. Then each subitem corresponds 
to a combination of two of these types of states 

where the rows correspond to the left neighbor; the 
columns. to the right. In the lower diagram to the 
right in Figure 5 the breakdown of neighbor states 
into the three categories is indicated by spaces in 
the row and column of symbols. If an automaton is 

;i;t 
say, the LS configuration, that is, he has a 

moving state on his left and a stationary state 
on his right, then in the symmetric state he must 
have a stationary state on his left and a right 
moving state on his right. To the automaton the 
important thing is whether the neighbor is bearing 
an incoming message or an outgoing message. As the 
diagram,just abovc_shows, the operation which makes 
;2z;sswitch is BT + the backwards transpose on 

. Finally, the Q*'*', transpose on subi-ttis, 
interchanges the left and right automatons. 
symmetries of the transition matrix support the 
symmetry of results mentioned earlier. 

USING THE NESTED TRANSITION MATRIX 

The function FSGON, for Firing Squad GO 
Nested, uses the nested transition matrix. It is 
similar to FSGO but requires two functions to 
handle the indexing paths which PICK USES to aCCOSS 
array items below the first level. 
functions are shown in the appendix. 

Al,,',:;; 

translates the indices into FSM, which are derived 
directly from the firing squad line. ,into,paths of 
;;;gfh three which would work to retrieve Items from 

Since all the paths are of length three, an 
index-error would occur with FSMRD for leaves which 
are not three levels into the array, that is exactly 
those scalars whose substitution for larger 
subarrays led to space savings. The function SCPIC 
is a variant of PICK which ignores all items in 
the left argument after a shallow scalar is reached. 

CONCLUSIONS 

In the above simple analysis of a classic 
problem. use of a nested array to describe the 
solution provided two quite different kinds of 
insight: 

- The symmetries of the transition array. which 
underlie the symmetry of the solution, are 
easily expressed as reflections at different 
levels of the array. The group of reflections 
includes one across each of the axes and 
diagonals. The symmetry expression holds for 
the ragged depth version of the matrix without 
change. 

- The transition matrix is a small array, yet use 
of a nested structure results in saving about 
one half the storage space. This is achieved 
with no basic change in the program which uses 
it. 

\wl R s L 
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APPENDIX 

DISP-FS 
Miscellaneous functions and data 

Z+IM FSGO FSI;CHR;L A Simulate the firing squad 
A INPUTS: LEFT - Transition matrix / Character list 
R RIGHT - Squad length; start at right if < 0 
m(O=ClNC 'IM')/'IM+FSM FSCH' 
(L IMl*(-l+pCHR)t(CHR. 

A Globals for standard problem. 
'-'lr+(IM CHR)*IM) R Set local variables. 

FSI+CHRt,Z*.C-. lll$'~'.(FSI<O)~'='.(-l+IFSI)p' ' 
~(FSI~.~Ll/'~COLC Z~Z,[O1CHRCFSI~~c~~eCOl~O 

Starting line. 
-1 1i"cF!.Il="cIPll' R Iterate. 

Z+g~~CH Y R Where definodt @yCH" C--B EElJZH 
(,Z)H -',FSCH)C(' -'.FS CH)rrZ*Yl 

ZcBT Y R *---, o-1 : Transpose on minor axis 
z*4er 

FSCH: +>zJ>=.olc<c(QI -:t:- FS-CH: e<c~=.~Ie>D>el 
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Assorted identities. 

FSM =- = , +" ,COl/" ,/- FSMDJ 
1 

FSMD~=_~[OI"~"""CEMICUT""~[~ ]""z.[O]"" CMhl2pl+4~1lCUT"cCO1"3 4,xCl 21FSM 
1 

FSRRD =- 0 &YCH""" Q**" BT" FSMRD 
1 

1 
FSMDJI FSMRDI =- CcFSCH) \DCl 0)" FSMDJ FSMRD 

R FSMDJ +---, CCcM) cC11" M cCOlo1" 3 4pcCl 21 FSM (someday ?) 
A FSMDS c--a <(Cdl cl &owl" 3 4pcCl 21 FSM (some later day ?) 

FSM=-1 0 ~QFSMO[H;M;M~-~+FSCH~~IFSCH~ 
1 

=.FSCH FSCHO R As originally conceived 
-3>~~=.olc<cg3 
. -s>z.;?c<cj= 108 

v 0. 
1 A 

2*X SF% :oy R Solution for small squad. 
Z+SFSM SFSCH FSGO Y 

v 0. 
R 1. 

d 5: 

+ 3: 

2 f: 
A 8. 

+ 9. 
R 10. 
+ 11. 
R 12. 
Fl 13. 

+14. 
+15. 
+16. 

-9 17. 
18. 

4 19. 
R 20. 
+ 21. 
R 22. 
R 23. 
++24. 
+ 25. 

Z*L(F D G)R;MON;T R "*-. 
R NEEDS? IF e J 

(DEPTH) 

s?"OI%IEX"F"IF F=J' IF 2=ONC 'F' 
m'-'OpUEX"G"IF G=-J' IF 2;4";'" 'G' 
Z~,tC4~MON~O=ONC 'L')+'C= =-RI' R 
*LD LJ RD RJ IFcCc2 O)=ON??n'FGr 

2 + vector of arg. depth(s) 

R The f-f invocation is as suggested in CIverson '83. p 441 
-0 Z+eMON+<'L F ' '@ G"' 'R' IF 1 0 lvCO<T/Z)>~MON+'L G R' 

n+O Z+ecCl 0 l'.'CO<r/Z)~~T,'G R'>/CT,'F 'I'Q G"' 'R',OpT+MONd'L ' 
LD:F+l+4+O,F a In case empty F is indicated by I'. 
R e is the power operator, which cannot take 

+O Z+4eMON+'Cc~CO>F)L)' 'G'CCloF)p'"')'cC:(2~F)R' 
as operand. 

Alternative using the promoting transform of CBankard APL841 
! LC~O~MON+)'C~~CO=F)L) GCpCl=F))r" ceC2=F)R' 
LJ: 

K":' 5 4 R 
Both operands must be present. 

Someday. figure out what an over G means if Oz=-G! 
+SYMM IF O=ppG R Asymn is the LEVEL operator of [Thomson APL841 
q ES 5 3 IF MONhZ=pG R 
m'*NNEG Z+Zx-T' IFvlT*Oe"p"G 

Length error. 
R Empty operand item means no control. 

R +O Z**MONJ'L'rC' F ' UNLESS 'CC-lOlrlQZ)e(F O_ G>>' IFWZ‘=Zs2pG),?R' 
+O Zc~MON*'L',CC*/ZcZ<2pG)~' F ' 'CC l+l,@Zl~CF D G))'),'R' 

Alternative using the MESH-invocation of 
%O ZcmMON*'L',CC~/Z~Z~;OpG)~' 

B Cl). 
F ' 'CClCl 0 l\)Z)QCF D G))'),'R' 

SYMM:+NNEG IF 05G Neg does CIG+l)"S, but stops at 
+O ZWMON+'L F ',C'D G"' IFcr/Z)OA.>O GcC+l) ,'R' A shallow scalars. 

+26 A NNEG:Z*QMON+'L F ',CTD G"' IFrGcr/Z),'R' R applies to depth SG objects. 

0 SHLST FSFNLST 

v 0. Z*IH FSGON FSI;CHR;L R Simulate the firing squad with nesting. 
R 1. R INPUTS: LEFT - Nested transition matrix / Character list 
A 2. R RIGHT - Squad length; start at right if < 0 
d 3. &CO=oNC 'IM')/'IM+FSMRDI FSCH' A Globals for standard problem. 

ii: 
L*-l+p+@CIM CHRl+IM R Set local variables. 
FSI*CHR~,Z*.C-. 

a 
1l1~'00',CFSI~O~~'='.C-ltlFSI~p',l R 

6CFSI~.*L)/'+KlLC Z~Z,~OICHRCFSI~CFSMITR~*c~Ol~O 
Starting line. 

1 l~"sFSI)SCPIC"cIMl' 

v 0. ZcFSMITR Y R Shallow indices CFSM) q => depth three paths CFSMDJI 
~ zccc3 4TYtOll.cC113 4-r1+y 1 

v 0. 2-x SCPIC Y 
R 1. A Allows use of length three paths with FSMRD 
R 2. R Z+C'Cl+X)=.Y' q EA "'C2eX)~Y"ClEA"X~Y"') R slightly slower 
+ 3. '2o==~z~xcol=Y 
-, 4. +,I)== ~z+xclI~z 
~ z+xt21az 5 
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eighteen lines of the laraer swad comorise eiaht replications 
of each half of she sdaller squad. - . 

FIGURE 1. 
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