
SYMMETRIES OF THE FIRING SQUAD SYNCHRONIZATION

PROBLEM REVEALED IN A NESTED ARRAY

ABSTRACT

J. Philip Benkard
Staff Programmer. Quality Assurance

International Business Machines Corporation
Dept 17W / Bldg 630

Route 52
Hopewell Junction, NY 12533-0999

The firing squad problem of automata theory is
described and a simple, nonoptimal solution is __
given. Examination of output traces shows th;'; the
solution has at least one obvious symmetry. the
transition matrix is reshaped and partitioned, I :he
resulting nested array not only reveals and
explicates more symmetries but suggests ways in
which nested arrays can be used to save space.

countability; a squad beyond that limit cannot so
synchronize itself.

A much simplified problem will be analyzed first
to introduce the method of message transmission.
The solution to this simple problem has no
symmetries. A solution to the original problem is
then presented and analyzed. When the shallow
transition matrix, on which the solution is based,
is transformed into a depth three array, the
symmetries of the internal states of the automata

INTRODUCTION
and of the connections between automata are revealed
as different forms of reflections.

A finite state automaton is a device with a
finite number each of states. inputs, and outputs.
One of the inputs is the current stats; one of the
outputs is the next state.
outputs are external.

The other inputs and
As time advances in discrete

steps. the state of the device at one time is
determined entirely by the inputs at the last
previous time. The firing squad problem requires
the definition of such an automaton. called a
soldier, with two external inputs which are the
states of his left and right neighbors when arrayed
in a firing squad line. The only output is the next
state.

From time to time a squad is formed whose size
is determined by the prominence of the guest of
honor: In view of the inevitable inflation of
political values, the possible size of a squad nust
be considered unlimited. The automata are set to a
common initial state, and an officer at one end of
the line then gives the command "Synch and Shoot".
The soldiers. following the rules of finite state
automata and each receiving input only from his two
neighbors. exchange enough information to fire
simultaneously as soon as possible. Firing is
represented by a particular state of the automaton.
The optimal solution, which takes -2+2xN steps,
where N is the length of the squad, is quite
complex. A simple solution with only twelve
intexnal states will be shown. For squadsoo3ingth
two or greater it requires no more than
states.

The problem is nontrivial because of the
combination of synchronization and finiteness of the
individual automata It is not hard to design
soldiers who will fire in sequence down the line.
It is not too much harder to synchronize if the
automata can "count off", just like zeal soldiers.
When the soldier at the far end finds out that he
is number 576273054, the soldiers can easily count
down in sequence and synchronize. But a finite
state automaton has a maximum limit to his

The shallow matrix, furthermore? is rather
The distribution of Significant elements

?~a~~~ms and subitems can be used to effect
sianificant storage savings.
A TRIVIAL CASE

Let the requirement be that only the soldier at
the opposite end of the line from the officer must
fire his weapon. The command to synch and shoot cpn
be thought of as a shoulder tap of the first soldier.
The internal states must be defined so that the
shoulder tap is transmitted to the next soldier
during each time interval. For this case, three
internal state suffice. Before the command is given
all soldiers are in a common idlina state, which is
selfperpetuating; if a soldier and his neighbors are
in the idlina state, the soldier remains idle for
the next time period.

The next state is determined by three values,
each of which has a range of three;
transition matrix is necessarv.

A 3 by 3 by 3
The values in the

matrix are the same three values with one addition,
the firing state. The iterative solution halts as
soon as one or more soldiers enter that state so that
this state is never an input to another soldier.

The states are represented by characters. which
can be used to create a suggestive display. This
representation was chosen long ago at a tine when
the possibility of a few 20 by 20 by 20 four byte
integer matrices was fraught with hints of WSFULL.
The representation turned out to be serendipitous.
The characters are in a variable called SFSCH.
standing for Simple Firing Squad CHaracters.

The logarithm symbol represents the firing state;
the period. the idling state; the equals. the
shoulder tap state. The quad remains in the same
state regardless of what happens to his neighbors;
for that season. he is sometimes called a blockhead.
Before the iterative solution begins, a blockhead
is affixed to each end of the line to provide
neighbors for the end soldiers. Blockheads will be
found to play a role at other than end points in the
general solution.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Commuting Machinerv. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

The transition matrix is called SFSMr for
Simple Firing Squad Matrix. It is conveniently
displayed by lowering its last two axes

cE1 23 SFSH

. . . .-- --0
q -a e-v -qJ

. . . .-e, ml-

0 1988 ACM 0-89791-253-5/88/0002/0019 $1.50 19

http://crossmark.crossref.org/dialog/?doi=10.1145%2F55626.55630&domain=pdf&date_stamp=1987-12-01

The three axes represents respectively~ a so+;;;rr
his left neighbor, and his right neighbor.
the left hand 3 by 3 matrix represents a soldier'ia
state zero (.). Rows stand for values of the left
neighbor; columns, the right. For example, the
middle rows of the three displayed matrices
represent a soldier whose left neighbor is in state
one (=I; the left colurns. a soldier whose right
neighbor is in state zero (.I.

The character in each position gives the state
of the soldier at the next point in time. One (=I
will be the state of the soldier at the next time
if the soldier and his right neighbor are in state
zero (. 1, and his left neighbor is in state one (=).
Thus an equals sign appears in plane zero, row one,
and column zero. The minus sign is used at locations
which will never be used; that is, for
configurations of states which will never occur.

The character representations can be converted
to small integers by finding their indices in
SFSCH. The numbers for a particular time can then
be used as indices into the transition matrix to
find the next internal state. For example. at time
zero a squad of length three is displayed

0=. .lJ

Soldier zero is in state one (~1; his left neighbor
is in state two (0); his right, in state zero (.I.
For soldier one, ths integers are zero (.I, one (=>.
and zero (.>. respectively. Using these values to
select from the transition matrix

(~"(1 2 O)<O 1 O)l=.'*cSFSN
.=

Soldiers zero and one are in idle and shoulder tap
states, respectively, one time interval later. The
firing squad at this time would be represented

q .=.0

The shoulder tap has been passed on from soldier
zero to soldier one.

A simple expression creates a few examples

SFSGO"l+t6

o=o q =.o lJ=..o u=...o II=....0 q =.....o
q eo D.Kl ;.=i; ;.=..o 0 q

. .
q .o n. ;..; ~.=....o

=. . .
q ::.sn q :::=:n q ::.= :

0ea q~.n
II en

-7
co1 Z+SFSGO Y
Cl1 i%SFSM SFSCH FSGO Y

v 1987-08-26 13.39.07 (GMT-41

SFSGO. standing for Simple FSGO uses the variables
defined above as left ;;;;ment to the solut;;;Oto
the general problem, The code for
appears in the appendix. ihe right argument is the
length of the squad. The reader may wish to confirm
that the log symbol at SFSMC1;2;21 is only used
for the one man squad. The starting position for a
one man squad is the only instance of an equals sign
between two quads.

The iterated line, FSGOC61, is the core of-the
solution. Before iteration starts, the tran;i",;o,
matrix is converted to integer form using
OF so that the look up is not required at each step,
and the variable L is set to one less than the
number of characters, that is, to the index of the
firing state. L is used in line C61 to detect an
occurrence of the firing state (@J,) so that iteration
will stop.

The indices for the state of each individual
automaton are determined in FSGOC61 by using the
squad together with its left and right shifts. The
two block heads appear together in both shifted
forms. Thus, the blockhead entries in the
transition matrix, which correspond to a soldier and
one of his neighbors in state two. preserve that
state over each time interval.

Firing Squad Synchronization 20

THE GENERAL CASE

If FSGO is called monadically it uses the
global variables FSM and FSCH. It also uses the
sign of its right argument to determine at which end
of the line the officer stands. The conceit is
simple. Two messages are sent. one traveling at one
third the speed of the other. The delay in the slow
message corn&s from having three waiting states
before each soldier taDs the shoulder of an adjacent
soldier. When the sl& message meets the refl&tion
;E,;p fast, the midpoipt of the squad has been

One or two soldiers. depending on parity,
become blockheads. defining two squads of the same
length, and fast and slow messages are dispatched
from the midpoint in opposite directions. A
blockhead in the general solution can leave his
inert state only when one of a set of prefiring
conditions is net; at the next moment he fires.
Since a squad of any length can be called as a
subdivision of at least one larger squad and will
in that case be called from both left and right ends.
the solution must be symmetric.

The symmetry of the overall solution and the usa
of blockheads to define subdivisions are illustrated
in the following small example.

The function REP-IN replaces the dots with blanks,
which removes clutter from the figure. There is
obvious symmetry in these two figures; one is just
the reflection of the other

0
x E @Y

Oops! It is also necessary to revcrsa the
individual characters using

:i: -
Z+gEJ!CH Y R Where defined. @yCH" C--D f??lCH
(,Zl+(' -'.FSCH)C(' -',FS CH)l,Z*Yl

w 1987-08-24 15.08.57 (GMT-41 and
ZJFSCH FS-CH

The high minus sign in the name FS-CH suggests a
reversal. The directed symbols are interchanged in
the two variables; the symmetric symbols are
unchanged.

X = REVCH bY
1

_ ---

That's better! The rich APL symbol set led to
characters, originally chosen to save space in an
APLSV workspace, which themselves express a
svmnetrv. Fiaure 1. which follows the text. aives
the complete gun of a seventeen aan squad and-the
end of a seventy-five man squad. Parts of the
smaller example occur in the larger. The
seventy-five man squad divides five times.

APL88

DISCOVERING INTERNAL SYMMETRY SOME OBSERVATIONS ON STORAGE

The transitiov-yatrix has 1728 leaves of which
only 102 are not . Sparse array techniques could
be used to store this matrix, although for one so
small not much would be gained. The arrangement of
nontrivial leaves in the matrix is, however, not
random. The partitioned matrix FSMDJ has twelve
items each of which has nine subitems. Only
thirty-two of the one-hundred-eight subitems contain
any useful information: those with sixteen minus
signs could be replaced by just one. Furthermore,
only eight of the thirty-two useful subitems contain
instances of more than one character. The other
twenty-four could be replaced by the respective
character scalars.

The resulting array, FSMRD, is shown in Figure
6. The name stands for Firing Squad Matrix of Ragged
Depth. The figure shows the matrix both naked and
with each item DISPLAYed using the function
provided with APLZ. The bare display is catenated
to the form with boxes so that LOWS of items in the
two forms are collinear. Since REP-IN has replaced
minus signs with blanks, the minus signs which
appear in the figure are only those produced by the
DISPLAY function. The top and bottom rows of FSMRD
each contain eight significant characters. Seven
of these are boxed; in the case of the eighth an
entire item has been replaced with a scalar. so it
is DISPLAYed with only a single accompanying minus
sign. The middle row contains the other sixteen
subitems, with one, eight, four, and three in its
respective items.

The system function (IAT can be used to document
the space saving of the nested array. With left
argument 4 and a variable name as right argument
the function returns a two item vector. The first
item is the total number of bytes used to store the
array; the second item is the number of bytes used
to store actual data. The difference of the two
numbers is the nesting overhead.

Once the notion of the reflected messages and
the key sixth line of FSGG were in hand, there
remained only the entry of items in the transition
matrix. This was done experimentally by ehan;;ig
locations, lines, and planes in the matrix.
first solution looked something like Figure 2. Not
much symmetry there.

The reader night have noticed that the array in
Figure 2 has length fifteen in each axis rather than
length twelve. The first step in improving the
solution was to use a trace matrix to keep track of
locations in the transition matrix whicFs;;re
actually used during a set of runs of . The
trace matrix was a bit array, originally all zeroes,
with the same shape as the transition matrix. A line
of code was added to the then current version of
FSGO to enter ones in the trace

i?
atrix at each time

step. It was quickly clear that ew of the locations
were in fact used, for example, no opposing left and
right arrows are ever adjacent. With this
information states were combined, reducing the size
to 12 by 12 by 12. From fifteen to twelve may not
seem like much but

12 15 +.* 3
0.512

so that for a rank three array. nearly half the space
is saved.

The twelve remaining states were of three
distinct types, representing respectively, right
moving. stationary, and left moving states. The set
of characters was reordered to form the variable
FSCH given above. Figure 3 shows the transition
matrix after each of its axes had been
correspondingly reordered.

Little symmetry shows here. but symmetry
requires the right point of view. In the form shown
in Figure 3, the three axes represent left neighbor,
soldier, right neighbor. This means that the
rotation control vector in FSGOC61 was -1 0 1.
That is a reasonable way to arrange a set of
consecutive integers, but it is from the point of
view of the guy in the middle that symmetry is most
readily apparent.

Figure 4 shows the matrix with the first two
axes interchanged. This is the form of the matrix
used by FSGO. There are some more patterns, but
symmetry is still elusive. To appreciate the effect
of the axis transposition, the reader is challenged
to find in Figure 3 the sort of cut-off rectangle
of mostly 0 in item Cl;21 of Figure 4. A good
place to start is the bottom row of Figure 3.

Now notice that in corresponding items in the
top and bottom rows the same characters appear
reversed. That is reminiscent of the need to
reverse characters to obtain an overall symmetry of
the result. Figure 5 is the result of partitioning
each item of Figure 4 corresponding to the groups
of characters repsesenting left moving, stationary,
and right moving states. This matrix. FSMDJ is
of depth three and satisfies the following identity

FSMDJ = 8 @yCH""" $"" BT" FSMDJ
- where

vBTCCiIw
n

co1 - ZcBT Y A t--q O-/ : Transpose on minor axis
Cl1 Z+QOeY

v 1987-08-06 14.03.03 (GMT-41

In the identity and in line zero of the function the
underscore is used between two characters to
designate a single overstruck symbol which is not
in the character set. This convention is adopted
from an APL2 input convention. Using the symbols
0 and 0-N for EEyCH and BT we can write

This identity expresses the symmetry of the solution
transition matrix which underlies the symmetry of
results. We shall return to discuss this symmetry
later on.

Here is a short terminal session.

Y + lE64xX c 1OOxFSMRDX c FSCH tQ(l 01 FSMRD

NAMES
FSM FSMDJ FSMRD
FSMRDI X Y

,L"l"cCOI~NAMES(,"
FSM FSMDJ

-/"Z)~~~~DOAT"NAMESl

24 1940 692
1752 1728 3668 1728 904 212

FSMRDI X Y
692 692 692

212 1540 a48 2388 1696 904

-a>=
422

212

FM e FSCH t '-'

;F" Ye+/FMo.=X%FSMRD 0 I*cc~B -
1 4 19 13 10 4 2 2 1 6 142

PX

212 70+1728
0.123 0.041

The 2 by 3 array in the middle shows the space
requirements for all six arrays. The second line
in each item, generated by the minus reductions,
gives the structure overhead explicitly.

The variable FSMRDI has the same structure as
FSMRD, but for each character has been substituted
its index in FSCH. INDEX OF is applied wbi.Reft
argument FSCH to each of the scalars fi
using an experimental depth operator, which is
shown in the appendix. Since all these-indices are
small positive integers. the array uses the same
amount of space as FSMRD. X and Y are defined
to show the effect of changing data element size.
Uniform nesting of the data results in use of about
twice as much space as the shallow form uses. The
ragged depth form of the array uses about half as
much as the original flat array. When larger
integers are used data storage space increases. but
overhead is unchanged.

APL Quote Quad J. Philip Benkurd 111

Again referring to the terminal session above,
note that of the 212 leaves of the array only 70
are in fact useful, since the remaining 142 are
all minus signs, representing locations that are
never referred to. Still. only one-eighth of the
original 1728 leaves remain. The inutile items
are displayed as blanks. which are underscored by
the minus signs generated by the DISPLAY function.
They are distributed 32, 78, 32, respectively, in
':he three rows of the ragged array. Perhaps
structural techniques are competitive with sparse
array techniques for some larger problems.

The symmetry identity

FSMRD =- 0 REk'CH""" Q"" BT" FSMRD

still holds for the ragged array because the
ENCLOSE of a shallow scalar is the scalar itself.

ANALYZING SYMMETRY

The twelve items in the partitioned array of
Figure 5 each correspond to a state of the center
soldier according to the pattern

q . 0 I

c < c *

This fact is suggested by the upper diagram to the
right in Figure 5 . The leaves of the array
correspond to the next state of the automaton. Thus
the two left most operations, a and REyCH"""r
interchange respectively the input and output states
of the center automaton.
automaton is in '>'

For exampfe, if an
between two .' states his

next state will be '3'. This is represented by the
in the

ici three item nested vector could be used as left
(0 ll(1 l)Cl 1) position of the matrix.

argument to the PICK function. Each item in the
vector selects an item in a level of the transition
matrix. beginning at the top. Thus 0 1 selects
item one in row zero. 1 1 selects subitem one in
row one of that item, and the second 1 1 selects
the 'at. The other '3' in item 0 1,
corresponding to a '>' between a '0' and a 1-31
is selected by (0 11(1 0)(2 0). It occurs in the
illustrations of FSGO 8 shown earlier. The two
operations thus assure that the symmetric cases are
handled correctly as far as the center automaton of
a triple is concerned.

The remaining two operations take care of the
center automaton's view of his neighbors. Let R,
S, and L stand for right moving, stationary, and
left moving states. Then each subitem corresponds
to a combination of two of these types of states

where the rows correspond to the left neighbor; the
columns. to the right. In the lower diagram to the
right in Figure 5 the breakdown of neighbor states
into the three categories is indicated by spaces in
the row and column of symbols. If an automaton is

;i;t
say, the LS configuration, that is, he has a

moving state on his left and a stationary state
on his right, then in the symmetric state he must
have a stationary state on his left and a right
moving state on his right. To the automaton the
important thing is whether the neighbor is bearing
an incoming message or an outgoing message. As the
diagram,just abovc_shows, the operation which makes
;2z;sswitch is BT + the backwards transpose on

. Finally, the Q*'*', transpose on subi-ttis,
interchanges the left and right automatons.
symmetries of the transition matrix support the
symmetry of results mentioned earlier.

USING THE NESTED TRANSITION MATRIX

The function FSGON, for Firing Squad GO
Nested, uses the nested transition matrix. It is
similar to FSGO but requires two functions to
handle the indexing paths which PICK USES to aCCOSS
array items below the first level.
functions are shown in the appendix.

Al,,',:;;

translates the indices into FSM, which are derived
directly from the firing squad line. ,into,paths of
;;;gfh three which would work to retrieve Items from

Since all the paths are of length three, an
index-error would occur with FSMRD for leaves which
are not three levels into the array, that is exactly
those scalars whose substitution for larger
subarrays led to space savings. The function SCPIC
is a variant of PICK which ignores all items in
the left argument after a shallow scalar is reached.

CONCLUSIONS

In the above simple analysis of a classic
problem. use of a nested array to describe the
solution provided two quite different kinds of
insight:

- The symmetries of the transition array. which
underlie the symmetry of the solution, are
easily expressed as reflections at different
levels of the array. The group of reflections
includes one across each of the axes and
diagonals. The symmetry expression holds for
the ragged depth version of the matrix without
change.

- The transition matrix is a small array, yet use
of a nested structure results in saving about
one half the storage space. This is achieved
with no basic change in the program which uses
it.

\wl R s L

?I RR us RL
S I SR
L I LR E ti

APPENDIX

DISP-FS
Miscellaneous functions and data

Z+IM FSGO FSI;CHR;L A Simulate the firing squad
A INPUTS: LEFT - Transition matrix / Character list
R RIGHT - Squad length; start at right if < 0
m(O=ClNC 'IM')/'IM+FSM FSCH'
(L IMl*(-l+pCHR)t(CHR.

A Globals for standard problem.
'-'lr+(IM CHR)*IM) R Set local variables.

FSI+CHRt,Z*.C-. lll$'~'.(FSI<O)~'='.(-l+IFSI)p' '
~(FSI~.~Ll/'~COLC Z~Z,[O1CHRCFSI~~c~~eCOl~O

Starting line.
-1 1i"cF!.Il="cIPll' R Iterate.

Z+g~~CH Y R Where definodt @yCH" C--B EElJZH
(,Z)H -',FSCH)C(' -'.FS CH)rrZ*Yl

ZcBT Y R *---, o-1 : Transpose on minor axis
z*4er

FSCH: +>zJ>=.olc<c(QI -:t:- FS-CH: e<c~=.~Ie>D>el

FiringSqUaclSynchronization 22 -4PL88

Assorted identities.

FSM =- = , +" ,COl/" ,/- FSMDJ
1

FSMD~=_~[OI"~"""CEMICUT""~[~]""z.[O]"" CMhl2pl+4~1lCUT"cCO1"3 4,xCl 21FSM
1

FSRRD =- 0 &YCH""" Q**" BT" FSMRD
1

1
FSMDJI FSMRDI =- CcFSCH) \DCl 0)" FSMDJ FSMRD

R FSMDJ +---, CCcM) cC11" M cCOlo1" 3 4pcCl 21 FSM (someday ?)
A FSMDS c--a <(Cdl cl &owl" 3 4pcCl 21 FSM (some later day ?)

FSM=-1 0 ~QFSMO[H;M;M~-~+FSCH~~IFSCH~
1

=.FSCH FSCHO R As originally conceived
-3>~~=.olc<cg3
. -s>z.;?c<cj= 108

v 0.
1 A

2*X SF% :oy R Solution for small squad.
Z+SFSM SFSCH FSGO Y

v 0.
R 1.

d 5:

+ 3:

2 f:
A 8.

+ 9.
R 10.
+ 11.
R 12.
Fl 13.

+14.
+15.
+16.

-9 17.
18.

4 19.
R 20.
+ 21.
R 22.
R 23.
++24.
+ 25.

Z*L(F D G)R;MON;T R "*-.
R NEEDS? IF e J

(DEPTH)

s?"OI%IEX"F"IF F=J' IF 2=ONC 'F'
m'-'OpUEX"G"IF G=-J' IF 2;4";'" 'G'
Z~,tC4~MON~O=ONC 'L')+'C= =-RI' R
*LD LJ RD RJ IFcCc2 O)=ON??n'FGr

2 + vector of arg. depth(s)

R The f-f invocation is as suggested in CIverson '83. p 441
-0 Z+eMON+<'L F ' '@ G"' 'R' IF 1 0 lvCO<T/Z)>~MON+'L G R'

n+O Z+ecCl 0 l'.'CO<r/Z)~~T,'G R'>/CT,'F 'I'Q G"' 'R',OpT+MONd'L '
LD:F+l+4+O,F a In case empty F is indicated by I'.
R e is the power operator, which cannot take

+O Z+4eMON+'Cc~CO>F)L)' 'G'CCloF)p'"')'cC:(2~F)R'
as operand.

Alternative using the promoting transform of CBankard APL841
! LC~O~MON+)'C~~CO=F)L) GCpCl=F))r" ceC2=F)R'
LJ:

K":' 5 4 R
Both operands must be present.

Someday. figure out what an over G means if Oz=-G!
+SYMM IF O=ppG R Asymn is the LEVEL operator of [Thomson APL841
q ES 5 3 IF MONhZ=pG R
m'*NNEG Z+Zx-T' IFvlT*Oe"p"G

Length error.
R Empty operand item means no control.

R +O Z**MONJ'L'rC' F ' UNLESS 'CC-lOlrlQZ)e(F O_ G>>' IFWZ‘=Zs2pG),?R'
+O Zc~MON*'L',CC*/ZcZ<2pG)~' F ' 'CC l+l,@Zl~CF D G))'),'R'

Alternative using the MESH-invocation of
%O ZcmMON*'L',CC~/Z~Z~;OpG)~'

B Cl).
F ' 'CClCl 0 l\)Z)QCF D G))'),'R'

SYMM:+NNEG IF 05G Neg does CIG+l)"S, but stops at
+O ZWMON+'L F ',C'D G"' IFcr/Z)OA.>O GcC+l) ,'R' A shallow scalars.

+26 A NNEG:Z*QMON+'L F ',CTD G"' IFrGcr/Z),'R' R applies to depth SG objects.

0 SHLST FSFNLST

v 0. Z*IH FSGON FSI;CHR;L R Simulate the firing squad with nesting.
R 1. R INPUTS: LEFT - Nested transition matrix / Character list
A 2. R RIGHT - Squad length; start at right if < 0
d 3. &CO=oNC 'IM')/'IM+FSMRDI FSCH' A Globals for standard problem.

ii:
L*-l+p+@CIM CHRl+IM R Set local variables.
FSI*CHR~,Z*.C-.

a
1l1~'00',CFSI~O~~'='.C-ltlFSI~p',l R

6CFSI~.*L)/'+KlLC Z~Z,~OICHRCFSI~CFSMITR~*c~Ol~O
Starting line.

1 l~"sFSI)SCPIC"cIMl'

v 0. ZcFSMITR Y R Shallow indices CFSM) q => depth three paths CFSMDJI
~ zccc3 4TYtOll.cC113 4-r1+y 1

v 0. 2-x SCPIC Y
R 1. A Allows use of length three paths with FSMRD
R 2. R Z+C'Cl+X)=.Y' q EA "'C2eX)~Y"ClEA"X~Y"') R slightly slower
+ 3. '2o==~z~xcol=Y
-, 4. +,I)== ~z+xclI~z
~ z+xt21az 5

APL Quote Quad 23 J. Philip Benkard Ill

CFSGO 17) C-QWCOIFSGO 75)

jz..........+ .o >
ik::::=::.2-E

2........+
it::::. >......+

.....
7 3.. ... +. ... i

17 automata

The last

.~.=0=.-...............................u
~:::...........c..lot..~..............o-.............~..*or..~..............n

.+.. <.[7.>..+.............n.............~..~.n.>..~.............n
+ . ..c II a...+............6 0 =

~:::::::::::;....s:o:~....~...........o....*...:::~~:..~:~:~:: :
+o
.+

;:::::::::c::::c ..I
<..O..>....~..........o..,......c.,.,<.

......
=+.....+

..F......wJ..f;-:..+
....... ..+.....=

~.......+......<...o::
........ :........+. ...

.. =+.....a
..s..o:: r

......... !
... ...++o.......+......<...o...>......+ I!!

F!i~.......=...o...~.......~......~......~.......=...~...~.......~o*........s ...
:-*

.‘.......-‘.....~...*.~........~.-.~...~........~
~:::;f:::::::::::::0::::3::::::::~~:::o:::;

+ < >
..+

........ .= +. ..
*

&.......:::2:::: 2 +. ..*
.. ..I..-:;

k!

FL::::::::::;:::::
8::::.;..........~~..........<f....~.....j:::::::::f;: O
E:::::

===+a
~..........~.O.~..........~.......L..........~ .u *........<

ii::.
...... >* ..a * <

:::::::=.......+...Ll::.%.....:c
...... .>. +

*.......= ~:::::.=.......+.:- .::
$:::k:::;

5 2......+
:::::::.>....+

.... +. *.
:::::A::~

s 2......* :::::::.>
....

.. ..+ ii+...= Cl = . ..+.o......+...=.......O........=...*o
I:‘..5‘..5*< ::::::::r;;::::::: :i+c ;:::::::tg::::::: i
ii *.~*~~*&------- ~.-....~~~=.....:: :=& :......:$lk:::::: ii
;
........... ~cm~~......~......~~m~~......o......~~m~~......o......~~m~~n c.~m~.~.....o.....c.=m~.~.....o.....~.~m=.~.....o.....~.~m~.~o

75 automata

eighteen lines of the laraer swad comorise eiaht replications
of each half of she sdaller squad. - .

FIGURE 1.

Firing Squad Synchronization 24 AF’L88

i i i
I I I
I I I

i i
f I

APL Quote Quad J. Philip Benkard [l] 25

ii
ii / /

*AnAl II *o- +v UVI

Firing Squad Synchronization 26 APL88

II -

. .

N

7 -uu

v-
h

. .

I I I f

*-----------e

I I I I I

i .----_

I

-I

i

I I : I

i

b * ” I I I
.+-----

I

i ’

, I I

.+---------?

.----_

I
,I- I i

I

II
. *

i
I

I I
.+--a-

1
I , I ,

w +,-----------

APL Quote Quad 27 J. Philip Be&m-d [I]

