
FLEXI-VIEW: A Multi-Dimensional Data Modeling System

Erik S. Friis Jay A. Goldberg
IBM Corporation IBM Corporation

IS&SG Sterling Forest NCMD Branch Office JC8
P.O. Box 700 150 State Street

Suffern, N.Y. 10901 Rochester, N.Y. 14614
(914)-578-3584 (716)726-8279

Abstract

This paper addresses the basic components of a system which facilitates the modeling of multi-di-
mensional data in terms of a relational database table. The name of the system is FLEXI-VIEW
(XVU). FLEXI-VIEW is implemented in APL2 and runs on the IBM Virtual Machine/System Product
(VM/SP) operating system.

FLEXI-VIEW interfaces, via the auxiliary processors AP126 and AP127, to the Graphical Data
Display Manager (GDDM) and the Structured Query Language Data System (SQL/DS).

SQL is the centerpiece of the FLEXI-VIEW architecture. It was chosen in February of 1985 by the
American National Standards Institute (ANSI) as the standard language for relational Data Base
Management Systems (DBMS). In addition, IBM has chosen SQL as its strategic relational DBMS
product.

The Interactive Chart Utility (ICU) is invoked by FLEXI-VIEW to deliver full-screen graphics and
business charts. ICU is a component of GDDM which is responsible for creating, managing, and
delivering the system’s full-screen panels. Each panel is programmed function (PF) key and window
driven.

VM/SP, APLB, SQL/DS, and GDDM/ICU are IBM Program Products.

Introduction

The Concept

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

The concept behind the FLEXI-VIEW system
is to enable an individual who works primarily
with numbers to define a natural and dynamic
working environment. The working
environment consists of a set of tools which
facilitate the entry, manipulation, and repre-
sentation of data.

0 1988 ACM 0-89791-253-5/88/0002/0131 $1.50 131 Friis and Go/&erg

http://crossmark.crossref.org/dialog/?doi=10.1145%2F55626.55645&domain=pdf&date_stamp=1987-12-01

The Working Environment

During the initial design sessions of FLEXI-VIEW, a great emphasis was placed on generality and
user-friendliness. APL2 was chosen as the language in which the system would be written. The
concept of “general arrays” and the interface to SQL/DS were the main criteria upon which the final
decision was based. The philosophy was to create a user-friendly system, designed for people who
do not know what APL is and do not care. Some of the more elegant features of APLB, namely “event
simulation and handling”, allow FLEXI-VIEW to maintain a full-screen user environment, even in
the occurrence of an actual system error.

The n-Dimensional Model

Any individual who works with numbers in some organized form has, in general, a set of categories
under which his data elements fall. The problem is that almost every individual’s needs mandate a
unique set of categories and data elements per category.

In order to achieve our first design goal of “generality”, we found it necessary to allow the user to
define any categories he wishes to work with. Each category is referred to as a FLEXI-VIEW
label. A FLEXI-VIEW file is defined by a set of “n” labels, with the constraint that “n” is greater
than or equal to two. A file which is defined by “n” labels is, in essence, an n-dimensional array.
This constitutes an extremely natural implementation for APL, being one of the only languages
which facilitates the use and manipulation of multi-dimensional data.

Even as early as the initial design sessions it became obvious that we would need a vehicle which
would be capable of storing and performing inquiries on potentially very large amounts of data.
Even though APL2 offers elegant primitives for the manipulation of data, the physical size of the
APL2 workspace simply cannot hold the amount of data that the system’s design called for.
Similarly, if the data were to be stored in CMS sequential files, these files would be too large and
clumsy to serve as the database for general queries.

With the availability of AP127, using SQL/DS as the data storage medium was the only logical
choice. SQL/DS not only offers the ability to store very large amounts of data, but also offers the
flexibility to handle an almost limitless number of data queries.

As the system design progressed, two problems surfaced:

1. A SQL table is a two-dimensional object, the data may be expressed in n-dimensions.

2. As user-defined structures grow at a linear rate, the number of data elements contained in the
structure grows exponentially.

The first problem is better stated by the following question:

“How does one take an n-dimensional array and reduce it to a two-dimensional structure
which may then be stored as a table in a relational database?”

In order to reduce an n-dimensional array into an object that can be represented in terms of two
dimensions, it is necessary to establish what type of data each dimension will represent. Given an
n-dimensional array, each dimension is represented by a user-defined label, such as “Year”,
“Color”, “Shape”, etc. If the same “n” dimensions are represented in two dimensions, one might
select a single label for one of the two dimensions and a grouping of the remaining labels for the
other.

In order to be consistent with the first design goal of generality, all of the labels are grouped, forming
the first dimension. And the second dimension simply becomes, “Data”.

Since each data element in the n-dimensional structure may be expressed in terms of “n” indices,
representing its position in the n-dimensional array, and its actual value, the structure may be
modeled in an “n-l- 1” column SQL table. There is a direct relationship between each element in the
n-dimensional array and a row in the SQL table. In other words, the SQL table must contain at least

FLEXI-VIEW

as many rows as there are data elements in the array. This leads us directly into the second problem
stated above.

To circumvent the second problem, we simply discard each row in the SQL table value which has a
datum value of zero, otherwise known as sparse representation of an array.

The sparse representation of an n-dimensional array not only yields a large savings in storage
(assuming that most user-defined arrays will be somewhat sparse), but elegantly allows FLEXI-VIEW
to perform simple SQL queries to store and retrieve data from any perspective.

Once the user enters and/or selects the labels which define the frame-work of the structure, the
corresponding “n+ 1" column SQL table can be built:

Label 1 Label 2 . . . Label n Data

Cal. 1 Cal. 2 . . . Col. n Col. n+l

1 F’ leure 1. The Structure of the SQL Data Table

The name of the SQL table is identical to that which is selected by the user as a name for the
corresponding FLEXI-VIEW file. The generic name for this table when related to FLEXI-VIEW is
the “data table”.

The SQL table will always consist of “n+ 1” columns, where each column name is identical to its
corresponding label. Column “n+ 1” is simply named “Data”.

The following SQL command is used to create the data table:

CREATE <userid.tablename> (Label-l VARCHAR(10) NOT NULL,
Label-2 VARCHAR(10) NOT NULL,

. . .

Labil-n VAR&AR(lO) NOT NULL,
Data FLOAT NOT NULL)
IN XVU

Figure 2. SQL CREATE Command for the Data Table

There are two upper bounds on the number of rows that the table may potentially hold, the “primary
upper-bound” U, and the “secondary upper-bound” U,.

U, = (A, x A,wl x -.e x A,)

or

u, = 00

where,

Ai = # of items E Labeli 3 (1 _< i I n)

APL Quote Quad 133 Friis and Goldberg

The upper-bound U, is the limit set by SQL/DS as the absolute maximum number or rows that a SQL
table may hold. For all practical purposes this number is infinite. The primary upper-bound may
only be exceeded when the entire structure is filled with all non-zero data elements and “user-defined
formulas” are created. User-defined formulas will be covered in the following section.

The lower-bound is of course zero, since all the data elements of a structure are initially set to zero
when a FLEXI-VIEW file is created. According to the sparse array definition above, only the indices
of the non-zero elements are stored along with the value of the element.

The Structural Elements

The contents of the data table are dynamic, in that they are added, updated, and deleted as numerical
data is entered into the system and changed. As stated previously, each record in the data table has
a direct relationship with a non-zero data element in the array. Along the value of the element, each
record contains “n” indices.

The indices are referred to as FLEXI-VIEW “items”, where each item is a sub-element of a label.
Before any data elements may be entered, each label must be associated with at least one item.

Let’s look at an example:

A market research group wishes to determine which programming languages are most commonly
used within several corporations in the marketplace. At the same. time, a financial planning group,
in the same organization, has been given the mission to build an industry model to help project the
relative profitability of the various programming languages over time. The name of the model and
corresponding FLEXI-VIEW file is “EXPERT”.

Following are the minimum of four categories or “labels” which are necessary to build such a model:

1. Line Item
2. Language
3. Vendor
4. Year

Given this 4-dimensional structure, the corresponding FLEXI-VIEW file will contain 4 labels and the
corresponding SQL table will be composed of five columns:

Line Item Language Vendor Year Data

Figure 3. The Structure of the SQL Data Table

The ordering of the first four columns from left to right is determined by the order in which the labels
were selected in FLEXI-VIEW. The rightmost column is always the data column. Since SQL is a
relational database system, the particular ordering of the columns in the table is of little signif-
icance.

FLEXI-VIEW 134
APL88

Format Mode

The Format Panel

Once the file has been created and given a name, the labels take their default positions on the Format
panel:

FLEXI-VIEW 2.0 ----------3--------------------------------

01/01/1986 12:OO Unclassified FREDDY.EXPERT

Vendor 0
Year 0

Line Item 0

Language 0

. .

(FORMAT)
< None >

<l> l=Hel p 2=Files 3= 4=Create 5=Keys 6=Labels
7=Items 8= 9=A-to-B lO= ll= 12=Exit

Figure 4. The Format Panel

The real power of FLEXI-VIEW is in the w$y an n-dimensional data structure may be manipulated
by the user.

The icon in the center of the Format panel represents a series of parallel pages, and is intended to
represent the multi-dimensional aspect of the Format mode,

The simplest method of working with multi-dimensional data is to think of its structure in terms of
a series of planes or two-dimensional matrices. In FLEXI-VIEW, each matrix is called a “page”.

APL Quote Quad 135
Friis and Goldberg

While in the Format mode, the user may select a “page orientation” by positioning any .one of the
“n” labels on the X axis of the page, and and any one of the remaining “n-l” labels on the Y axis.
By swapping the label “Line Item” with “Language” and then “Vendor” with “Line Item”, the
following page orientation is selected:

FLEXI-VIEW 2.0 ----------------_-------------------------- (FORMAT)
01/01/1986 12:00 Unclassified FREDDY.EXPERT:< None >

Line Item 0
Year 0

Language 0

Vendor 0

<l> l=Help 2=Files 3= 4=Create 5=Keys 6=Labels
7=Items 8= 9=A-to-B lO= 11= 12=Exi t

Figure 5. The Format Panel

In total, there exist “n x (n-l)” possible page orientations for any n-dimensional structure.

Since the file, “EXPERT”, contains the 4 labels “Line Item”, “Language”, “Vendor”, and “Year”,
there are (4 x 3) or 12 possible page orientations:

1. Line Item by Language 7. Vendor by Line Item
2. Line Item by Vendor 8. Vendor by Language
3. Line Item by Year 9. Vendor by Year
4. Language by Line Item 10. Year by Line Item
5. Language by Vendor 11. Year by Language
6. Language by Year 12. Year by Vendor

FLEXI-VIEW 136 APL88

By removing the inversions, we are left with 6 unique page orientations:

1. Line Item by Language or Language by Line Item
2. Line Item by Vendor or Vendor by Line Item
3. Line Item by Year or Year by Line Item
4. Language by Vendor or Vendor by Language
5. Language by Year or Year by Language
6. Vendor by Year or Year by Vendor

where the number of unique page orientations is defined by the equation:

(n x (n-1)) / 2

The Page Size

The maximum size of a page, given a particular page orientation, is governed by the number of items
associated with the labels that are part of the page orientation (the labels on the X and Y axes).
Given that the number of items associated with the X and Y axis labels are A, and A,, respectively.
The size of the page is A, by A, and the number of data elements on each page is equal to the product,
Al x A, .

For example:

Let the label “Language” contain the following items:

a PAL2
a LIPS
l SNOLOG
l PROTRAN
l RASCAL
a z
Let the label “Vendor” contain the following items:

l ABC
l BMI
a U.S. dones
l GOLD

If the page orientation is defined by the labels “Vendor” and “Language”, the number of elements
on the page is equal to (4 x 6) or 24, since there are four items associated with the label “Vendor”
and six items associated with the label “Language”.

Figure 6. The Page Layout

APL Quote Quad 137 Friis and Goldberg

The Page Index

As previously stated, a page orientation is defined by two of the “n” labels in a file. One is placed
on the X axis (on top of the Format panel icon) and the other is placed on the Y axis (to the left of
the Format panel icon).

The remaining “n-2” labels are placed in the index area (upper left-hand corner) of the Format panel.

In the example, the labels “Year” and “Type” are positioned as the X and Y axes, respectively. The
remaining labels “Line Item” and “Year” are positioned in the “index area” and constitute the
“index” of the file “EXPERT”.

“Line Item” is the first and most significant label in the index. Following is the set of items which
are associated with it:

l Price
0 Quantity
0 Fix Cost
l Var Cost

The label “Year” is the second, last, and least significant label in the index. The file contains data
that spans six contiguous years:

0 1983
l 1984
0 1985
0 1986
l 1987
l 1988

Note: The significance of a label is proportional to the frequency at which page breaks occur,
regarding the items associated with that label, in the report and graph functions. In the above
example, page breaks will occur for the items associated with the label “Year” before those with the
label “Line Item”.

The number of pages which are defined by any particular page orientation is equal to the product
of the number of items associated with each label in the index area.

If the lo,bels which are uositionsd on the X and Y axes are associated with A, and A, items, resoec-
tively, then the number-of pages which have the identical page orientation is ldefined-as follows-

Pages = (A, x Anbl x - x AZ), Vn > 2

or

Pages = fi Ai, Vn > 2
i=3

Pages = 1, rz = 2

where,

Ai = # of items E Labeli 3 (3 < i 5 n)

In the simple c.ase when a file is defined by only two labels, there exists only a single page for each
of the two page orientations.

FLEXI-VIEW 138 APL88

For any file which contains four or more labels, each parallel page is defined by a unique selection
of a single item from each label in the index.

In this example, the labels “Line Item” and “Year” comprise the index for the page orientation,
“Vendor by Language”. The labels “Line Item” and “Year” are associated with 4 and 6 items,
respectively. Thus, there are 24 pages which have the page orientation, “Vendor by Language”.

Since multiplication is commutative, the number of pages with a common orientation is unaffected
by the ordering of the labels in the index area. Similarly, the number of pages which have a specific
orientation is equivalent to the number of pages which have its inversion.

For example, the number of pages which have the orientation, “Vendor by Language” is equivalent
to the number of pages which have’an orientation of “Language by Vendor”. In FLEXI-VIEW these
pages also represent the same data, but in a different format.

The View

In order to work with numeric data in FLEXI-VIEW, the user must define a view. In fact, any
FLEXI-VIEW file may contain a multitude of user-defined views.

A view is determined by three factors:

1. A page orientation defined by two labels.
2. An ordering of the remaining “n-2” labels in the index area.
3. A selection of items associated with each label.

Just as every FLEXI-VIEW file has a corresponding SQL table, every view in FLEXI-VIEW has a
corresponding SQL view.

APL Quote Quad 139 Friis and Goldberg

Let’s assume that an individual who is working with the file “EXPERT” wishes to analyze historical
accounting data for sales of languages by several vendors. In order to work with the specified data
he may perform the following steps:

1. Recall the file “EXPERT” and position the labels “Vendor” and “Language” on the X and Y
axes, respectively.

FLEXI-VIEW 2.0 -,,, ---------------- I ---------- Ii., ----- (FORMAT)
01/01/1986 12:00 Unclassified FREDDY.EXPERT:< None >

Line Item 0
Year 0

Language 0

Vendor 0

<1> l=Hel p 2=Files 3= 4=Create 5=Keys 6=Labels
7=Items 8= 9=A-to-B lO= 11= 12=Exit

Figure 7. Selecting the Page Orientation

FLEXI-VIEW 140 APL88

2. Select each item under the labels “Vendor” and “Language”.

FLEXI-VIEW 2.0 --------------------____I______c_c______--- (FORMAT)
01/01/1986 12:00 Unclassified FREDDY.EXPERT:< None >

Line Item 0
Year 0

Vendor 4

Language 6

<l> l=Help
7=Items

2=Files 3= 4=Create 5=Keys 6=Labels
8= 9=A-to-B lO= ll= 12=Exi t

Figure 8. Selecting the Contents of the Page

APL Quote Quad 141 Friis and Goldberg

3. Select the historical years, “1983”, “1984”, and “1985”.

4. Select the line items “Quantity” and “Price”.

FLEXI-VIEW 2.0 -------1--------c---33__________________--- (FORMAT)
01/01/1986 12:00 Unclassified FREDDY:EXPERT.< None >

Line Item 2
Year 3

Language 6

Vendor 4

<l> l=Help 2=Files 3= 4=Create 5=Keys 6=Label s
7=1 terns 8= 9=A-to-B lO= ll= 12=Exi t

Figure 9. Selecting the Pages

The definition of the view is complete. If the user decides to save the view permanently, the
following SQL command is executed:

CREATE VIEW <viewname> AS
SELECT * FROM <userid.tablename> WHERE

"LANGUAGE" IN ('PAL2','LIPS','SNOLOG','RASCAL','PROTRAN','Z') ANi
"VENDOR" IN ('ABC','BMI','GOLD','U.S. Jones') AND
"LINE ITEM" IN ('Quantity','Price') AND
"YEAR" IN (‘1983’,‘1984’,‘1985’)

Figure 10. Creating the SQL View

FIXXI-VIEW 142 APL88

The view has the page orientation, “Vendor by Language”, where each page consists of “4 x 6” or
24 element matrix:

Figure 11. A Page of the View

And a total of six pages:

Line Item: Quantity
Year: 1983

Line Item: Quantity
Year: 1984

Line Item: Quantity
Year: 1985

Line Item: Price
Year: 1983

Line Item: Price
Year: 1984

Line Item: Price
Year: 1985

The Sharing of Data and Security

A powerful feature using SQL/DS is the ability to share data among users. In FLEXI-VIEW full
advantage is taken of this feature, in that any FLEXI-VIEW user may grant other users, access to
all or part of any of his files. In order to specify exactly which data elements are to be shared, a
FLEXI-VIEW view is created and granted to other individuals. The grantor may specify whether the
grantee will receive “read/only” or “read/write” access to the data delineated by the view.

When the grantee presses the PF key to display the names of all of his files, any granted views will
show up as files, but with the grantor’s user id prefixing the file name instead of his own. The
grantee may work with the granted file just as if it were his own, including creating views on it. If
the grantee has been granted “read/only” access, he may perform any operation on the file, except
permanently saving the data.

All data security administration is controlled by the sophisticated mechanisms which are built into
SQL/DS, thus freeing the kernel APL2 workspace from these duties. When a new user is added to
FLEXI-VIEW by a designated administrator, a private SQL DBSPACE named “XVU” is acquired for
him. The privilege of connect authority to SQL/DS is also granted to the user. All FLEXI-VIEW
“data tables” which are owned by the user reside there.

A master FLEXI-VIEW DBSPACE is used to keep track of all information in the database which is
attributed to FLEXI-VIEW, including files, views, labels, items, and grantees.

APL Quote Quad 143 Friis and Goldberg

Update Mode

The Update Panel

The update portion of FLEXI-VIEW allows the user to enter, change, and analyze data as organized
in Format mode.

Using the example described in the previous section, pressing PFlO from Format will display the
following screen:

FLEXI-VIEW 2.0 __--- (UPDATE)

01/01/1986 12:OO Unclassified FREDDY:EXPERT.< None >
Line Item 4 Price
Year 6 1983

Vendor Language 6:1-6
4:1-4 PAL2 LIPS SNOLOG RASCAL PROTRAN Z Total

ABC 22 13 9 57 102 133 336

BMI 100 11 7 66 122 102 408

U.S. Jones 125 14 10 64 115 149 477

GOLD 27 17 12 72 127 167 422

Total 274 55 38 259 466 551 1643

<l> l=Hel p 2=Mode 3=Protect 4=Undo 5=Keys 6=Set Point
7= 8= 9= lO= ll= 12=Exi t

Figure 12. The Undate Panel

The salient features of Update mode are as follows:

Balancing

Percent Mode

Row Percent

Co1 Percent

Protect

Undo

Set Point

FLEXI-VIEW

Simple matrix balancing may be performed on the current matrix. If the user
changes any row, column, or grand total, the entire matrix will be balanced
accordingly, with each individual cell adjusted based on its proportional weight
in the original matrix. See the next section for the details on balancing.

Display each element of the matrix as a percentage of the grand total. Balancing
is available in this mode.

Display each element of the matrix as a percentage of the row total. Balancing
is available in this mode.

Display each elemeht of the matrix as a percentage of the column total.
Balancing is available in this mode.

Hold any cell or block of cells in the matrix constant during matrix balancing.

Return the values of the matrix before the last change.

Delineate a block of cells in the current matrix such that a function may operate
on each element within the block. Functions that work in conjunction with Set
Point are Protect, Copy, Interpolate, Preview, Graph, and Report.

144 APL88

Convert Convert a percentage matrix to an absolute matrix by specifying the absolute
value of one percentage cell.

Utilities Various utilities are available:

Interpolate

0 Profile - Various display and output options
0 Preview - Decision support graphics
0 Notepad - Notes and information on files
0 Import - Import a CMS file of numbers into the current page
0 Calculate - Simple calculator function

Linear or exponential interpolation may be performed on an entire row or column
of data by specifying a start point and end point, or by specifying a start point
and a slope or growth constant.

COPY Copy a block of cells to any part of the current matrix or to any part of another
page of data.

Graphics The Interactive Chart Utility (ICU) is used to deliver elaborate graphics which
may be tailored to the user’s specifications. Pre-defined business charts including
bar, pie, and line charts are available. User defined graph formats may also be
used. In addition, an APGS plotfile may be created.

A new page of data may be selected by directly entering a new item name next to a label in the index
area. If the item is spelled incorrectly, a window of possible values will be displayed. Alternatively,
a select key is available to list all the items which are associated with any label.

The reporting capability in FLEXI-VIEW has been kept simple. Since FLEXI-VIEW stores data in
a readable format in SQL/DS, any application that interfaces with SQL/DS may use FLEXI-VIEW
data.

For example, a user may apply FLEXI-VIEW’s multi-dimensional capability to enter and analyze
data, but use QMF, ISQL, VMAS, or IC/l to generate reports on the data.

APL Quote Quad 145 Friis and Goldberg

Balancing

Introduction

A simple non-iterative balancing scheme has been implemented in FLEXI-VIEW. It is based on a
modified version of a method described in an article by D. Frielander in the Journal of Royal
Statistical Society (volume 124, pages 412-420).

In the FLEXI-VIEW update module, we have a two dimensional contingency table, i.e, a two dimen-
sional distribution of numbers with row and column totals (see figure below).

1981 1982 1983 1984 1985 Total

Jan-Apr 5 4 10 12 32 63

May-Aug 13 11 12 22 33 91

Sep-Dee 11 12 13 14 15 65

Total 29 27 35 48 80 219

Figure 13. A Two-Dimensional Contingency Table

The simplest case exists when the internal distribution of the matrix is altered, i.e., a value is altered
which is not a row or column total. In this case, the row and column totals are recalculated and the
resultant matrix displayed.

The more complex case involves altering a total. If any row or column totals are changed, the matrix
will be balanced accordingly. Each cell is adjusted based on its proportional weight in the original
matrix.

The user may hold cells constant by applying the protect function. This causes a cell or any group
of cells to remain fixed after a balancing operation has taken place. In addition, any zero cells, any
altered cells, and any cells in the intersection of adjusted row and column totals are implicitly fixed.

An other important mechanism which is a component of the balancing implementation is a
“trimming” method. Cells are first balanced, then the results are rounded. After rounding, it is very
probable that the cells no longer add up to the corresponding row or column total. For example:

Cell 1 Cell 2 Cell 3 Cell 4 Total

Suppose we change the total to be 5 so that we get:

Cell 1 Cell 2 Cell 3 Cell 4 Total

1.25 1.25 1.25 1.25 5

Now if the user has only one decimal place of precision set,
we would see:

Cell 1 Cell 2 Cell 3 Cell 4 Total

I.3

which is incorrect!

1.3 1.3 1.3 5

FLEXI-VIEW 146 APL88

We therefore apply a trim operation to get:

Cell 1 Cell 2 Cell 3 Cell 4 Total

1.2 1.2 1.3 1.3 5

This is now a true equality. Basically, we have reduced the first two cells by 0.1. In general, the
trimming mechanism will adjust cells uniformly that carry the most weight. Since the entire row
distribution was uniform in the above example, the trimming process simply works from left to right
until the cells add up correctly.

Another feature that is included in the balancing scheme is the ability to enter a value in a row or
column total which is initially all zero, This will create a uniform distribution in the matrix. For
example, if we start out with the following row:

Cell 1 Cell 2 Cell 3 Cell 4 Total

0 0 0 0 0 1

and we change the total:

Cell 1. Cell 2 Cell 3 Cell 4 Total

0 0 0 0 100

the result will be:

Cell 1 Cell 2 Cell 3 Cell 4 Total

25 25 25 25 100

Here are a few examples which illustrate some of the balancing techniques:

Original Matrix Changed Matrix Balanced Matrix

12 3 4 I 10 12 3 4 2 4 6 8
2 3 4 5 114 2 3 4 5 2 3 4 5

--------------____ ------------------ ------------------ ------------------ ----------------__ ------------------
3 6 7 9 1 24 3 6 7 9 124 4 7 10 13 1 34

Figure 14. Example of Simple Row Balancing.

1 <2> 3 4 2 2 7 9
2 3 4 5 2 3 4 5 -----------_______ ----------------__ ------------------ ---------------___ ------------------ ------------------
3 6 7 9 i 24 3 6 7 9 I24 4 5 11 14 I 34

Figure 15. Example of Simple Row Balancing with One Element Fixed.

Note: < * > indicates a fixed element.

APLQuote Quad 147 Friis and Goldberg

1 2 3 4 I 10 1 2 3 <4> 1 20
2 3 4 5 114 2 3 4 5 I 14 ------------____-- ----__--------____ ------------------ -4-----------___-- -----_----------__ ----__--_l_-------
3 6 7 9 124 3 6 7 12 1 24 5 8 12 12 I 37

Figure 16. Example of Balancing Both Row and Column Totals.

Note: (4) lies in the intersection of the altered row and column and is therefore
implicitly fixed.

I

1 2 3 4 1 2 3 4 I 35
2 3 4 5 2 3 4 5 ; l; ;4’ ;; I 50 -------------___-- ------------------ --------_-_------- ------------------ --__-_~----------- -1----------------
3 6 7 9 I 24 3 6 7 9 I 85 11 18 25 31) 85

Figure 17. Example of Top/Down Balancing.

Mathematical Background

The general matrix we wish to consider is as follows:

a(l,l) 4123 a(1,3) . . . a(l,n) r(l)

aC41) a(2,2) a(2,3) . . . a(2,n) r(2)

a(3,l) a(3,2) a(3,3) . . . a(3,n) r(3)

ahl) ‘a(m,2)’ a(m,3) . . . a(m,n) r(m)

41) 42) c(3) c(4) T

where:

n

c a(i,j) = r(i) for i = 1,2,3 ,..., m
j=l

m

c a(i,j) = c(j) for j = 1,2,3 ,..., n
i=l

yr(i) = 2 cG) = T
j=l ;=1

FLEXI-VIEW 148 APL88

Now define a set F to be the set of all (i,j) such that a(i,j) is fixed. Let 1F be the complement of F,
F(j) be the projection onto the first component of (i,j) and F(i) be the projection onto the second
component of (i,j). Recall that an element a(i,j) in the matrix is fixed if:

1. It is zero
2. It has changed
3. It lies in the intersection of a row and column total that has been changed
4. It is protected

Calculations of the new row elements are then given by the formula:

a(i,j) = a($ x [r(i) -Ca(ij)]lCu(ij)j,F(i)j~ 1 F(i)i = 1,2,3,...,m

Similarly, the row elements are given by the formula:

u(Q) = u(ij) x [c(j) - ~u(ij)]/~u(ij)iEHj)ic~Ffj)j = 1,2,3,...,n

Note: Since we have fixed the intersection of altered row and column totals, it is irrelevant which
direction is balanced first, i.e., first balancing with respect to the rows and then with respect to the
columns will yield the same result if done in the opposite order. Furthermore, there is no need to
iterate since, as long as there is sufficient degrees of freedom, a solution is guaranteed.

This scheme is elegantly implemented in APLB. Two stochastic matrices are assembled containing
the weights of the multipliers for the original matrix.

The following APL2 variables are defined:

ROW-TOTALS - Row total elements r(l), r(2), . . . , r(m).
COL-TOTALS - Column total elements c(l), c(2), . . . , c(n).
MATRIX - The current matrix elements a(i,j), 1 < i I m, 1 I j < n.

FIX - m by n Boolean matrix containing f(i,j) where
f(i,j) = 0 if a(i,j) is not fixed
f(i,j) = 1 if a(i,j) is fixed.

The row and column stochastic matrices are built as follows:

S-ROW+FIXx(-FIX)xCll(ROW_TOTALS-+/[2]FIXxMATRIX) DIV +/[2](-FIX)xMATRIX
S-COL+FIXx(-FIX)xC21(COL_TOTALS-+/C1IFIXxMATRIX) DIV +/[l](-FIX)xMATRIX

where "DIV" is regular division, “i”, with division by zero defined to be zero, i.e.,
A DIV 0 e 0, where A is anything.

The resultant balanced matrix is then given by

NEW-MATRIX f S-COL x S-ROW x MATRIX

The above calculation represents the core of the balancing algorithm implemented in FLEXI-VIEW.

Note: The above scheme may be easily modified for iteration. Remove the third definition of a
“fixed” cell (mentioned above) and iterate until convergence to a solution matrix.

Some other features are:

0 A uniform distribution of numbers may be generated when the matrix is initially zero
0 Top/Down and Bottoms/Up allocation
0 Degree of freedom check and error messages
0 Blank cells mapped to zero values
0 Protect ability to fix cells
0 Zero to .nine decimal places of precision
0 Totals may be shut off to disable the balancing mechanism

APL Quote Quad 149 Friis and Goldberg

Formulas

Introduction

As previously stated, each label is associated with a set of items. There are two types of items that
may fall under a label, namely simple and non-simple items. Simple items are self-contained and do
not depend on other items. Non-simple items are associated with an algebraic expression. The
algebraic expression may be composed of simple items, other non-simple items, and constants.

For example, a user may have a label called “MONTHS" which is associated with the items “JAN",
“FEB", “MAR", “APR", “MAY", 6s JUN”, “ JU,y,, “A,&‘“, “SEP”, u(-)CTw, uNOV”, “DEC”, “Ql”, “Q2”,

The items JAN, DEC are simple items and Ql, Q4 are non-simple, i.e., they are formulas:

Ql = JAN + FEB + MAR
Q2 = APR + MAY + JUN

I I I I I I
43 = JUL + AUG + SEP
Q4 = OCT + NOV + DEC

Once a non-simple item is defined (done in FORMAT mode) it may be used by other non-simple items.
For example, once Ql, Q2, Q3, and Q4 are defined, a user may define HALFl, HALF2 where:

Any combination of simple and non-simple items constitute an algebraically valid statement:

Formula1 = 100 * ((JAN) + (FEB))/Ql
Formula2 = ((((JAN) + (FEB) - (MAR)) * (QZ)) * 0.45) * (Formulal)

Formulas are defined in Format mode. After a formula is defined, it is treated just as if it were a
simple item (from a user’s perspective).

Implementation of Formulas

In the FLEXI-VIEW workspace, a variable named “CURRENT-SELECT” contains the item names
which are chosen for the current page. This variable is used to issue SQL/DS queries via AP127 to
retrieve the data for the current page.

From the example in the Format section, suppose we have the following view defined for user
“FREDDY", file “EXPERT", and view “VI EWOOl":

FLEXI-VIEW 150 APL88

FLEXI-VIEW 2.0 __--- (FORMAT)
11/18/1986 08:45 Unclassified FREDDY:EXPERT.VIEWOOl

Vendor 5
Language 8

Line Item 7

Year 6

<l> l=Help
7=Items

Z=Files 3= 4=Create 5=Keys 6=Labels
8= 9=A-to-6 lO= ll= lZ=Exit

Figure 18. The Format Panel

APL Quote Quad 1.51 Friis and Goldberg

Suppose we have the following simple items under each label:

Language

PAL2
LIPS
SNOLOG
RASCAL
PROTRAN
Z

Line Item

Quantity
Price
Var Cost

Vendor

ABC
BMI
US JONES
GOLD

Year

1983
1984
1985
1986
1987
1988

Figure 19. Simple Items

And the following formula definitions:

Language
Interpret = (PAL21 + (LIPS) + (SNOLOG)
Compile = (RASCAL) + (PROTRAN) + (z)

Line Item
Tot Cost = (Var Cost) * (Quantity) + (Fix Cost)
Revenue = (Quantity) * (Price)
Profit = (Revenue) - (Tot Cost)

Vendor
All = (ABC) + (BMI) + (us JONES) + (GOLD)

Figure 20. Formulas Defined Under Each Item

FLEXI-VIEW 152 APL88

When Update mode is re-entered, the following panel is displayed:

FLEXI-VIEW 2.0 ___________________________________ _ _______ (UPDATE)
01/01/1986 12:00 Unclassified FREDDY:EXPERT.< None

Vendor 4 BMI
Language 3 PAL2

Line Item Year 6:1-6
1983 1984 1985 1986 1987 1988 Total

>

8:1-8

Quantity

Price

Var Cost

Fix Cost

Tot Cost

Revenue

Profit

Total

I
240 300 309 452 646 906 2853

181 201 210 217 239 277 1325

<1> l=He lP 2=Mode 3=Protect 4=Undo 5=Keys 6=Set Point
7= 8= 9= lO= ll= lZ=Exit

Figure 21. The Update screen

In the above example, the variable CURRENT-SELECT would be constructed as follows:

1 .~--. .+------------------

I I . -+---- . . +---- . . +----- . . +----- . .+-------, ,+, 1 1 , +---- , ,+--------*
I 1 (PAL2 1 lLIPS (lSNOLOGl lRASCALl IPROTRAIVI IZI (I ll’ricel IQuantity
((I----- 1 I_____ I I ------I I-- ____ 1 I ------- 1 1-l ((I----- 1 1 --------I
(‘f--l ‘g------------------

_________--- . +------ . *+-------~ 1
.+--------, ,+-------~ .+--------, . +------ . .+.----- . i 1 .i-- , 1 1 .+---. I I
llrar Cost1 IF-L-c Cost1 ITot Cost1 IRevenue IProfit I I IBMII I I 119831 I I
l--------l t--------t l--------l I------- I 1------! 1 1 l---l 1 1 t----1 1 1
--f 1 E------ I t~-----.-t 1

Figure 22. The CURRENT-SELECT Variable

The simple data is retrieved from the SQL/DS table named “FREDDY.EXPERT”. Next, all
non-simple items are decomposed into the simple items that they are composed of.

APL Quote Quad Friis and Goldberg

Three matrices are constructed from the data which is retrieved from the SQL/DS table:

1. F-X-DATA - Values of the items composing any x-axis formulas
2. F-Y-DATA - Values of the items composing any y-axis formulas
3. F-O-DATA - Values of the items lying in the intersection of any x-axis and y-axis formulas.

The user-defined formulas are then converted into executable APL2 expressions, e.g., “X/5-2+3" is
converted to “ (X+5) + (-2) + 3". The formulas are stored in nested variables F-X and F-Y.

In the above example, only the label on the y-axis contains a formula. Therefore, F-X and the
corresponding variable F-X-DATA are null. If either of F-X and F-Y are null, then so is F-O-DATA.

We have the following for F-Y:

I .-+--
I I *-f------------------~~~-------------~~~---~ .-t------------------------.

I I I~F~Y~DATAC3;l*F~Y~DA~AC2;1)+F~Y~DATAC4;1 I IF_Y_DATACl;l*F_Y_DATAc2;1 I
1--------------__-------------------------, I-------------____________1

I ---~

I 1----------------__--l

I __-----------_______--- ,
1 Figure 23. The F Y Variable

The variable F-Y-DATA contains a matrix corresponding to the language “PAL?', and the vendor
“BMI". The rows represent the line items "Quanti ty", "Price", "Var Cost”, "Fi x Cost” and
the columns represent the years “1983”, “1984”, “1985”, “1986”, “1987”, “1988".

Quantity
Price

Var Cost
Fix Cost

1983 1984 1985 1986 1987 1988

Figure 24. The F-Y-DATA Matrix

The length of F-Y would equal the number of formulas on the y-axis. Likewise, F-X would have the
same length as the number of formulas defined in the x-axis.

The overlap cells are calculated via the equations:

F-X-DATA+F-O-DATA
F-X-DATA+Qx"F-X
F 0 DATA-+-F Y -- -

Note: For non-commutative expressions, different results will occur when interchanging the x and
y axes. Usually, the overlapping cells are meaningless in this situation.

FTEXI-VIEW 154 APL88

The final step is to insert the formula calculations into the matrix. This is easily accomplished by
performing an “+“” on F-X and F-Y. t-hen indexing properly into the displayed matrix. This step is
performed each time the matrix changes so that the formula cells are updated when the items they
depend on change.

The user may also select a formula for any of the index area labels. To facilitate this, all matrices
that the formula depends on is retrieved from SQL/DS. The appropriate formula is applied to the
planes. The resultant matrix is stored as the current matrix and the above scheme remains the same.

Summary

Only through the powerful aspects of APL2, namely:

l general arrays
l the each operator
l selective specification
l recursion
0 event simulation

were we able to devise and implement an elegant and non-traditional approach to solving some
traditional real world problems.

The multi-faceted functionality of ICU/GDDM provides the user of FLEXI-VIEW with a commandless
and “user-friendly” environment. Through the use of windows, we were able to take a relatively
complex application concept, which conceivably would have consisted of dozens of full-screen panels,
and implement it with just four dynamic full-screen panels.

The ICU provides both the interactive decision-support and presentation business graphics, which
are fast, effective, and attractive.

SQL/DS gives FLEXI-VIEW the ability to store vast amounts of data and the capability to organize
the data in an almost limitless number of perspectives. SQL/DS has also contributed greatly to the
organization and simplicity of the FLEXI-VIEW workspace by undertaking the complex tasks of
security administration and concurrent data access. In addition, using SQL/US for data storage
gives the user the ability to use any system that interfaces with SQL/DS (QMF, VM/AS, IC/l, etc.)
to access FLEXI-VIEW data. QMF, VM/AS, and IC/l are IBM Program Products.

Acknowledgments
We would like to offer special thanks to Jonah Atlas, Wei-Tih Cheng, and Thomas K. Lee for their
invaluable contributions to the FLEXI-VIEW project as part of the original design team.

We also greatly appreciate the contributions made by Daniel Berndt, Thomas Byrne, Edward Eusebi,
Kenneth Fordyce, Kenneth Halbrecht, Gilbert Laganne, and Ron Wilks.

APL Quote Quad 155 Friis and Goldberg

