
Use of Metaknowledge
m the

Verification of Knowledge-based Systems

Larry J. Morell

Department of Computer Science
College of William and Mary
Williamsburg, Virginia 23185

Abstract
A knowledge-based system is modeled as a

deductive system. The model indicates that the two
primary areas of concern in verification are
demonstrating consistency and completeness. A
system is inconsistent if it asserts something that is not
true of the modeled domain. A system is incomplete if
it lacks deductive capability. Two forms of consistency
are discussed along with appropriate verification
methods. Three forms of incompleteness are
discussed. The use of metaknowledge, knowledge
about knowledge, is explored in connection to each
form of incompleteness.

1. I n t r o d u c t i o n

Following Waterman [1] a knowledge-based
system (KB system) is a computer program in which
knowledge from a narrowly defined application domain
is separately encoded and processed by a distinct
general problem solving method. The separately
encoded knowledge is called a knowledge base and
consists of a collection of related knowledge items.
Each knowledge item represents a unit of knowledge
from the application domain. The interrelationships
among the knowledge items enable deductions to be
drawn from the knowledge base as a whole. The
deductions are solutions to problems from the
application domain. The implementation of this
deductive problem solving method is called an
inference mechanism of an inference engine. The
inference engine thus applies knowledge found in the
knowledge base to solve problems in the application
domain.

A simple computerized help system illustrates
this knowledge-based approach. The application
domain in this case involves providing information
about commands available on the computer system.
The knowledge base consists of a directory of help

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission o f the Association for Comput ing Machinery. To
copy otherwise, or to republish, requires a fee and /o r specfic
permission.

files, one for each command in the system. Each of
these files is a knowledge item. A user who needs
information about a particular command interacts with
the help processor, the inference engine in this case.
The help processor supplies the desired information
from the knowledge base. Thus the help system
contains all the elements to qualify it as a knowledge
base system. It has a separate encoded knowledge base
(the help file directory), for a narrowly defined
application area (command help), which is processed
by a distinct deductive mechanism (the help processor).

To describe a system as being knowledge-based
is to describe its manner of implementation, not the
class of problems it is trying to solve. Some problems
can be solved both by knowledge-based techniques and
conventional programming. For example the help
processor could be implemented as a CASE statement to
select the information to be displayed by PRINT
statements. Violation of any part of the definition
makes a system not knowledge-based. Data-driven
programming, for instance, produces programs with
distinct processing and data components, but the data
component might not represent a narrowly defined
application domain and the processing component may
not be a general problem solving method, independent
of the application domain. An interpreter for a
programming language along with a single program
from that language cannot be collectively considered as
as knowledge-based system. If this were the case,
every computer executing a program would be a
knowledge-based system.

Frequently cited advantages of knowledge-based
systems include

(1) more rapid development and early prototypes,

(2) more easily verified systems, and

(3) more easily modified systems.

The help system illustrates each of these. Construction
Of the inference mechanism can proceed in parallel
with the construction of the documentation file
knowledge base. A rapid prototype can be constructed
using non-uniform documentation files; uniformity can
be enforced at a late date. In fact, tools can be
developed for ensuring uniformity.

© ACM 1988 0-89791-271-3/88/0006/0847 $1.50
847

http://crossmark.crossref.org/dialog/?doi=10.1145%2F55674.55699&domain=pdf&date_stamp=1988-06-01

Verification of a knowledge-based system is
facilitated by the separation of the knowledge and the
processing components. The inference engine may be
"off the shelf", not requiring any verification. Use of a
uniform representation of knowledge in the knowledge
base enables the construction of tools that verify
desired properties of the knowledge base. For
example, tools can be constructed to ensure that all the
files in the help system satisfy a given format.

Separation of a uniformly encoded knowledge
base also improves modifiability. Utilities can be
written to find knowledge items (encoded knowledge)
which satisfy specified patterns. Replacing a
knowledge item is easily accomplished. Traces of
system execution can be used to explain system results.
Contrast this with a conventional system in which the
knowledge is intermingled with control and distributed
across many lines complicating the identification and
replacement of knowledge.

Ricks and Abbott [2] describe an experiment
where a control of flight information presented to a
pilot was achieved by a knowledge-based program and
a more conventional program which did not use
knowledge-based techniques. Their conclusions were

The results show that rule-based programming
techniques have the potential for improving the
productivity of the programmer or designer who
develops a system. In this study, modification of
the rule-based program was easier, more efficient,
and less error-prone than the traditional program's.
The rule-based program's separate, homogeneous
rule base and inference engine could aid in the
simplification and test-tool development needed
during the verification process. It was also easier
to implement an explanation capability in the
rule-based program.

A knowledge-based system is not synonymous
with an expert system. Though there are several
defining characteristics of an expert system, a
prominent feature appears to be the possession of
expertise in a given domain. The essential point to
recognize is that the term "expert system" emphasizes
the behavior of a program while the term "knowledge-
based system" emphasizes the implementation
technique of a system, i.e., the isolation of its
knowledge into a knowledge base. What confuses the
issue is that many expert systems are implemented as
knowledge-based systems. This does not mean,
however, that every expert system is a knowledge-
based system or every knowledge-based system is an
expert system! For example, the help system
mentioned above would not be considered an expert
system by most, since its only expertise is that of
mapping and displaying. However a help system
which attempted to understand the contents of its files
and create useful links for readers approaches an expert

system. Also, of the two expert systems constructed by
Ricks and Abbott only one of which was knowledge-
based.

Two other terms must be distinguished:
verification and validation. Verification is the process
of demonstrating that software possesses features
specified by its documentation. Validation is the
process of demonstrating that software possesses
features desired by its end-user. Without
documentation verification cannot be done, but
validation can be. The standard "waterfall" model of
software development emphasizes verification as its
primary method for moving toward validation.
Requirements lead to specification, which in turn are
translated into designs that are refined until code is
produced. Verification can be performed at each of
these stages. Most effort in verification has
concentrated at showing that the code has desired
features. Many techniques have been developed for
verifying code as a whole [3] and at the unit level [4].

Validation is more comparable to a field test, i.e.,
placing the software in an operational environment and
observing its behavior. Frequently validation must be
conducted in a simulated operational environment
because the operation environment is not available.
Software for a lunar landing is an example of this; it is
clearly impossible to test it in its operational
environment before deploying it!

2. Problems faced in verifying a knowledge-
based system

Many have commented upon problems faced in
verifying and validating knowledge-based systems.
The arguments may be summarized by the following
questions[5]:

(1) What do you verify?

(2) Against what do you verify?

(3) With what do you verify?

Each of these questions are addressed briefly below.

What do you verify? The two principal
components in a knowledge-based system, the
knowledge base and the inference engine, are both
candidates for verification. Frequently an off-the-shelf
inference mechanism is used and thus requires no
verification. Custom built inference mechanisms do,
since any contained faults may have indeterminable
effects on all processing, even if the knowledge base is
perfect.

The knowledge base is the crucial component for
verification in a knowledge-based system. Aspects of
the knowledge to be verified appear later in this paper,

848

but a few are named here to illustrate the complexity of
the task. The correctness, accuracy, and timeliness of
each individual knowledge item must be verified. The
consistency of the knowledge must be shown, separate
knowledge items should not be mutually contradictory.
The knowledge base should be complete: obvious
"holes" should be filled in. Consistency and
completeness are discussed in depth later. What
further compounds the problem is that individual
knowledge items may be correct or incorrect according
to the relationships they bear to other items. These
relationships might not be explicitly stated in the
knowledge base; some may be induced by the inference
engine. It is also necessary that human factor
considerations be verified.

Against what do you verify a knowledge-base?
Verification presumes a specification. All too often in
knowledge-based systems no such specification exists.
The argument is made that it is more work to write a
specification than it is to write the knowledge base
directly. In some cases this arguments holds, but in
general there are many desirable properties that need to
be specified that can be used as incomplete or semi-
specifications. This knowledge about the knowledge
base is called meta-knowledge and is a vital necessity
for verification. An example would be a listing of
reliable sources of medical information. If each
knowledge item in a medical database indicates its
source, then the exclusive use of reliable sources can
be verified. An important aspect of this paper is to
argue for the judicious use of metaknowledge as an aid
to verification.

What tools and techniques can be used to
verify features of the knowledge base? Traditional
software verification techniques do not appear
immediately applicable to verification of knowledge-
based systems. For one reason, most verification
techniques require a full specification of a problem.
Furthermore, many verification techniques are aimed at
executable code as opposed to static data bases.
Certain techniques such as program coverage, data flow
analysis, and safety analysis appear to have their
counterpart in knowledge-based systems, but will
require adaptation. Many tools developed so far that
are applicable to knowledge bases come from the
expert system community and tend to be oriented
toward particular languages outside mainstream
Algol-like languages.

Many other questions arise related to the nature
of verifying knowledge bases. Additional information
can be found in [5] and[6].

3. A Model of Knowledge-based Systems
This section describes a model of knowledge-

based systems which facilitates discussion of features
which impact verification.

A knowledge-based system can be modeled as a
symbolic manipulation system in which a problem
from a particular problem space is encoded and
manipulated according to a knowledge base in order to
produce a solution (see Figure 1). In this figure H
represents the encoding of the problem, R represents
the derived solution and the turnstyle represents the
deductive process applied by the inference engine
operating on the knowledge base. The solid arrow
indicates the method of solution that would be used if
the operation were performed manually. The dotted
line represents the interpretation mapping, I, and its
inverse relation, 1 "1 . This mapping (and its inverse)
assigns meaning to the represented problem, the
knowledge base and the solution. Verification presumes
this mapping because any assertion of inadequacy must
be grounded in the world in which the actual problem
is to be solved. Put another way, a computer solves a
problem only if it accurately encodes the problem and
produces an acceptable solution.

A knowledge-based system can be deficient in
two ways: it can be inconsistent, incomplete, or both.
Brief definitions of these terms are given here and
expanded upon later. Inconsistency is a characteristic
of the interpretation I. If in applying I at any point the
system is asserting something patently false about the
domain it models, the system is inconsistent. If, on the
other hand, the system lacks deductive capability it
should have, it is incomplete. Weakness in either area
can yield an incorrect program. Verification therefore
focuses on demonstrating that various forms of
inconsistency and incompleteness have not occurred.

Note that under these definitions of consistency
and completeness neither implies the other. In a
knowledge-based system the knowledge is separated
from the inference mechanism, and each can be
independently wrong. It is most likely, however, that
inconsistency or incompleteness will imply
incorrectness. It is therefore important to understand
ways in which a system can be inconsistent or
incomplete, and determine methods for demonstrating
that such is not the case for a given system.

One immediate observation is that no one
verification technique will demonstrate a system to be
both complete and consistent. Specific techniques are
applicable for some inconsistencies but not for others.
Data flow analysis [7, 8], for instance, may be useful
for demonstrating the absence of loops in the
knowledge base, but not for demonstrating the absence
of timing defects. A second observation is that
correctness cannot be deduced automatically for an

849

H

I
I

/
/

I
I t

I
I

J

C Instance y

Problem Space

KBS

R

%

,i-1
%

olution

Solution Space

Figure 1

arbitrary knowledge-based system. The emphasis in
this paper is to discuss techniques applicable to a broad
class of knowledge-based systems. This the motivation
for the highly abstract model of knowledge-based
systems given here.

4. Verification Techniques

4.1. Consistency

A knowledge-based system is inconsistent if and
only if applying the interpretation function I to a state
of the knowledge base produces a state that is
inconsistent with the modeled world. This definition
does not restrict when such a mapping occurs - it
merely asserts that when applied a consistent state must
be produced. Since consistency is thus a property of
the initial knowledge base as well as at intermediate
states during the execution of the knowledge-based
system, a natural classification of types of consistency
is thereby induced. A knowledge-based system is said
to statically consistent if its initial knowledge base state
is consistent with the modeled world (as determined by
mapping/). A knowledge-based system is dynamically
consistent if any intermediate state of its knowledge
base is consistent with the modeled world. Thus, static
consistency deals with what the knowledge base
directly asserts, dynamic consistency deals with what

the knowledge base potentially asserts. Each of these
forms of consistency are now discussed in depth.

4.1.1. Static Inconsistency

One approach to verifying static consistency is to

(1) collect a number of assertions about the modeled
world

(2) using I, map the knowledge base to a state
description about the modeled world, and

(3) verify the state produced in (2) satisfies the
assertions collected in (1).

Such a scheme succeeds if the set of assertions
completely characterize the modeled world, for then
the knowledge base contains no inconsistencies with
the modeled world. Provided the correctness of the
inference engine has been proved, the knowledge-
based system is dynamically consistent as well.

If such a complete characterization is available
and if a suitable inference engine can be found, the
characterization could be used as the knowledge base
itself, eliminating the need for building the
knowledge-based system in the first place! Of course a
separate system may be necessary for improved
efficiency. In such cases it might be possible to compile
the characterization. This applies when the system is

850

specified in an executable specification language.

In lieu of a complete characterization, a
specification of an incomplete set of properties is all
that is possible. Given such a set of properties, P, the
goal is then to ensure that the knowledge base satisfies
at these. The approach mentioned above involves
verifying that the knowledge base under I satisfies P.
There are several difficulties with this approach.

(1) It requires developing a second description of the
domain.

(2) It is difficult to automate since this would entail
implementing both I and a procedure for
checking to see if P(I(KB)) = True.

An alternate approach is to map P into P' by 1 -t,
so that I-t(P) = assertions about the knowledge base,
i.e., assertions the knowledge base must satisfy. This
method has served well in practice, but the application
o f / - t to P may not be straightforward. To map domain
assertions to knowledge base assertions requires the
ability to represent arbitrary assertions about the
application domain. The formalism for such meta-
knowledge may not be readily representable in the
knowledge-based system.

This second means of checking static consistency
may be characterized as using type metaknowledge.
Information about the format of the knowledge base,
what constitutes incompatible information, ranges of
legal values, etc. can be used to detect whether
violations have occurred in the knowledge base. This
is called type metaknowledge since it closely
corresponds to the data type information used by
compilers to determine inconsistent use of variables.

Extensive use of type metaknowledge is used in
many expert system shells and support tools. Early
work in this area included the knowledge base
enhancement system TEm.ESlAS [9] and the knowledge
base debugging system used in ONCOC~ [10]. More
recent work includes CHECK [11] and EVA [12], both of
which are oriented toward verification of rule-based
systems. EVA is briefly described here since it
encompasses most of the functionality of CHECK.

EVA [12] checks three aspects of a rule base:

• structural consistency

• logical consistency

• semantic consistency

A rule base is structurally consistent if every rule is
usable. Redundant rules, rules involved in cycles, and
rules whose left-hand side cannot be satisfied are
examples of useless rules. A rule base is logically
consistent if no left-hand side implies both A and -A,
and no rule contains a redundant clause. Lastly, a rule
base is semantically consistent if no user-defined

qualifications are violated. These qualifications
function in the same role as a typing mechanism in a
strongly typed language, ensuring that variables and
constants are used correctly in a given context.
Examples include specifying the bounds and types of
variables and constants, and indicating their proper
usage in defined relations.

4.1.2. Dynamic Inconsistency
Dynamic inconsistency arises when a

knowledge-based system has the potential of producing
a state that is inconsistent under the interpretation
mapping I. Dynamic inconsistency therefore
encompasses the semantics of how the inference engine
maps one state into another state. Using this
information it is possible to determine the relationships
among various knowledge items. Expressing these
relationships enables two important analyses to be
performed on the knowledge-based system. Safety
analysis verifies that a system does not violate
prescribed safety conditions. It may be possible to
tolerate an occasional failure of a program, but not if
that failure is catastrophic. Sensitivity analysis
determines the system response to slight modifications
in the knowledge base or the input. Extreme sensitivity
does not necessarily imply incorrectness, but does
indicate areas where additional verification techniques
should be directed.

Several standard verification techniques appear
adaptable to safety and sensitivity analysis.
Possibilities include mutation analysis, symbolic
execution, proof-of-correctness, data flow analysis, and
symbolic testing. The adaptation of these techniques to
safety and sensitivity analysis of knowledge-based
systems is discussed below.

4.1.2.1. Safety Analysis
Safety analysis [13, 14] begins with assertions

describing safe behavior of a system. Deductions are
then made as to the degree to which this behavior is
attained.

We first introduce some notation, and then
proceed to discuss methods that are potentially
applicable to safety analysis of knowledge-based
systems. It is necessary to distinguish between a
program, its behavior and the function it computes.

Definition If P is a program, then [P] denotes the
program function computed by P defined as

[P] = {(x,y) I Program P on input x outputs y}

and <P> denotes the behavior function computed by P
defined as

851

<P> = {(x,y) I Program P on input x halts,
having behaved in a manner described by y }

The definition of <P> is imprecise in that it does not
specify the particular behavior of interest; the intent is
to capture those aspects of the program's execution not
inferable from its output. The definition of <P> does
not prevent <P>(x) from containing [P](x); in fact,
unless otherwise specified it will be assumed that [P]
can be deduced from <P>, i.e., <P>(x) will always
contain enough information from which to deduce
[P](x). Obvious additional candidates for inclusion in
<P>(x) are the program's execution time and space
consumption, since these two characteristics are
sometimes vitally important to safety. For example, a
program that computes the time at which the landing
gear should be lowered on an aircraft, but completes
the computation only after the plane is on the ground,
has unacceptable behavior. In contexts of national
security, something as obscure as the radio frequencies
emitted by the computer while the program executes
might be considered part of the program's behavior.
The amount of information included in the behavior
will vary according to the needs of the project.

Safety and correctness are related concepts and
can now be defined.

Definition
A program P is safe with respect to an assertion
pair <A, B > if and only if for all x that satisfies
A, <P>[x] satisfies B. Otherwise it is said to be
not safe (or unsafe) with respect to <A, B >.
<A, B > is called a safety specification.

Definition
A program P is correct with respect to an
assertion pair [A, B] if and only if for all x that
satisfies A, [P] Ix] satisfies B Otherwise it is said
to be not correct (or incorrect) with respect to
[A,B] . [A,B] is called a a correctness
specification.

Both of these specifications must also be unambiguous
and decidable.

Safety and correctness differ in their intent and
scope. Safety has a broader scope since it considers the
entire behavior of the program, while correctness
considers only input-output pairs. The intent of safety
specifications is more narrow than correctness
specifications, though. Safety focuses on the impact a
program may have on its environment; correctness
provides no such focus.

Several safety specifications can apply to a
program simultaneously. Safety analysis then is the
process of determining which safety specifications are
satisfied and to what extent. The most straightforward
method of doing this is to capture the behavior of the

system for all inputs which satisfy the input assertion,
and to compare this behavior to that specified by the
output assertion. This "black box" analysis is
frequently impossible, because the input space defined
by the input assertion is too large. It is thus necessary
to analyze classes of computations at one time. In
traditional programming a data flow graph is
constructed to aid in this processing [7]. For
knowledge-based programs a complementary graph is
necessary. The construction of such a graph, is
described below.

Recall that a knowledge base is a collection of
knowledge items from which the inference engine
performs its deductions. The deduction process
proceeds as follows: one state of the knowledge base
yields the next which yields the next, and so on until
the inference mechanism halts. During any of these
transitions the inference engine determines the next
state from a subset of the current knowledge items.
The next state is a modification or enhancement of the
previous set of knowledge items. For the purposes of
discussion here it will be assumed that all existing or
potential knowledge items are known. Each transition
connects a set of knowledge items referenced in the
current state with the set of knowledge items modified
or produced in the succeeding state. This may be
represented by a graph, in which the nodes denote
knowledge items and the arcs represent connections
induced by potential transitions. Such a graph is called
here a computation flow graph, an analogue of data
flow graphs associated with conventional programs
(see [7]). Knowledge items which may be present
when the inference engine begins execution are
specially marked as initial nodes. Knowledge items
which may be present when the inference engine halts
are specially marked as terminal nodes.

An example of a computation flow graph is
shown in figure 2. Here the inference engine uses xx,
x2, and x3 during some transition to produce or modify
knowledge item y. It may also be the case that x2 is
related to some other knowledge item z, and hence
there would be an arc connecting x2 to z in the
complete graph.

Safety analysis can be performed on a
computation flow graph. This analysis may proceed in
two directions: forward or backward. In the backwards
mode, sets of terminal knowledge items which do not
satisfy the safety assertion are successively traced to
initial knowledge items that generate them. Each
subset of initial items so identified which satisfies the
input assertion yields a violation of a safety
assumption. The simplest instance of this process
occurs when the output assertion involves only single
terminal nodes. In this case no back tracing is
necessary since the presence of a terminal node that

852

Figure 2

does not satisfy the output assertion is indicative of a
violation. An example would be a control system in
which a particular output, x, would be considered
dangerous. This safety specification might be
represented by (TRUE, SETTING :# X), i.e., for all inputs
the output setting is never x. Inspecting the
computation flow for the presence of x as a terminal
item requires no backward tracing.

In some cases, to determine if a violation could
happen it is necessary to propagate the output safety
assertion backwards through the system, deducing the
set of states which are safe. A state in this sense is a
collection of knowledge items which could
simultaneously exist during execution of the system.
Hence each state S that satisfies the output assertion
determines a set of predecessor states, namely that set
of states from which S is a logical successor. Each of
these predecessor states determines a set of predecessor
states and so on until the set of initial states are
determined which will ultimately lead to satisfaction of
the output assertion. If this set includes all states which
satisfy the input assertion then the safety specification
is satisfied.

Safety analysis can use forward propagation as
well. Given states that satisfy the input assertion,
forward propagation successively generates states in
the same manner as the original graph is defined. If all
terminal states satisfy the output safety assertion, then
the safety specification is satisfied.

A knowledge-based system of sufficient
complexity could induce a computation flow graph that
is unmanageably large. One way of handling such
situations is produce an abstract graph. Several
abstlactions of computation flow graphs can be
imagined. One abstraction which has already been

used is that of treating the graph as a collection of
states, rather than of individual knowledge items.
Another abstraction results from overlaying nodes
which share characteristics considered important. The
resulting nodes represent collections of knowledge
items that may be processed uniformly by the inference
engine.

An alternative to abstracting the graph is to
explore multiple paths through the graph simultaneous.
A symbolic execution system [15, 16] does precisely
this. In symbolic execution of a conventional program,
a path is selected through the program and the
computation along that path is determined by executing
the path with a symbolic input. The output produced is
then expressed in terms of this symbolic input. The
parallel in knowledge-based systems is to use symbolic
input to represent a collection of inputs satisfying an
input assertion. The system is then executed,
traversing all paths in the computation flow graph
determined by inputs represented by the symbolic
input.

If the backward or forward propagation must
stop at an earlier point (perhaps due to insufficient
information or combinatoric explosion) at least a set of
safe intermediate states has been identified. Such
information can then be supplied to the inference
engine as metaknowledge to help it decide whether it is
in a safe state. Deductions from potentially unsafe
states may be viewed more suspiciously than those
derived from safe states.

4.1.2.2. Sensitivity Analysis
Sensitivity analysis determines the system

response to slight modifications in the knowledge base
or the input. Sensitivity analysis is particularly
appropriate to knowledge-based system because the
knowledge base sometimes contains artificially precise
rules or values. It is not uncommon, for instance, for
an expert system to include estimates of the reliability
of certain facts as metaknowledge to the inference
engine. The impact of such estimates on the operation
of the system is an important phenomenon to
investigate. If changing an estimate by 1% radically
affects the functioning of the program, and the estimate
is only considered accurate to 10%, further
investigation is warranted. Similarly, demonstrating
that an estimate can be changed considerably without
impacting the program may imply that as long as the
estimate is within the ball park, it can be trusted.

Mutation testing [17, 18, 19], symbolic execution
[15,16], a n d symbolic testing [20,21,22] appear
applicable to sensitivity analysis.

Mutation testing is a technique of judging the
quality of test data. Test data distinguishes one version
of a knowledge base from another version by

853

demonstrating that the output of the two systems differ
on the test data. A mutation operator applied to the
knowledge base produces a slightly different
knowledge base, called a mutant. Test data is
considered adequate if it distinguishes all non-
equivalent simple mutants from the original program.
A simple mutant is a slight variant on the original
program, e.g. changing 1.890 to 1.892. Mutation
testing thus explores sensitivity boundaries by requiring
test data to distinguish slight changes. The knowledge
base is mutated slightly and test data is developed that
distinguishes this mutant from the original knowledge
base, if possible. This process is repeated for every
possible application of a mutation operation. The
resulting test data then reflects the sensitivity
boundaries of the knowledge base.

Symbolic execution can be used in a way to
perform sensitivity analysis in a manner called
symbolic testing [21,22]. In symbolic testing, a
knowledge item in the knowledge base is replaced by a
symbolic term. The system is then symbolicly
executed, as described earlier. In this case, however,
the symbolic output is expressed in terms of both the
symbolic input and the symbolic tenn. This process
therefore captures the impact of the original knowledge
item. Sensitivity can therefore be deduced directly
from this expression.

4.2. Completeness
The preceding section discusses ways of

analyzing a knowledge-based system for inconsistency.
The model discussed in section 3 indicates an
additional way in which a knowledge-based system can
be insufficient: it can be incomplete. Whereas
consistency deals with the degree to which the
knowledge base faithfully represents the application
domain, completeness addresses the expressibility of
the system and the limits of its deductive mechanism.
Consistency assesses what is; completeness addresses
what should be. To see the difference, consider the
following example. A knowledge base with one
knowledge item may be fully consistent, in that the
information encoded in that item accurately portrays a
true assertion in the modeled domain. It may even be
that all deductions from this single item are consistent.
But it is likely that the system is woefully incomplete,
since there could be much relevant knowledge from the
application domain which is not represented and
therefore unavailable to enter into the deductive
process.

Definition
A deductive system D is complete for a problem
space P and an interpretation function I if and
only if for every P ~ P

P is expressible in D as some H under 1-1,

H ---> R, and

R maps under I to S, a solution of P.

where a problem domain is the set of problems to
be solved.

Incompleteness can arise then from several sources:

• inadequate expressiveness of the model

• inadequate knowledge base

• inadequate deductive power

Each of these are discussed below.

4.2.1. Inadequate expressiveness of the model
A knowledge-based system provides one or more

ways of encoding or expressing knowledge. The
encoded knowledge is, of course, a knowledge item or
a collection of knowledge items. Popular encoding
methods include rules, frames, and semantic nets. The
expressibility of a knowledge-based system is the
degree to which arbitrary units of knowledge from the
application domain can be expressed via the facilities
provided by the system. The greater the expressibility,
the greater the flexibility of the system. Clearly, if a
problem cannot be presented to the system, it cannot be
solved by the system. Equally clear is that the system
must be able to express the solution. Deficiency in
either regard is an example of an incomplete system.

What is addressed here is the ability to represent
the problem to be solved using the mechanisms
supplied by the model. Adequate expressiveness in this
regard is sometimes assumed a priori, but this is not
necessarily appropriate. To verify adequate
expressibility would require a formal description of the
problem domain. This can be very complex in some
cases, e.g., how does one characterize all the potential
faults in an aircraft engine for use in a diagnostic
system?

The knowledge base verification system EVA
incorporates a primitive form of specification that
enables the description of constraints on legal
combinations of values. Much work remains to be
done in this area. A potential source of applicable
methods may come from the area of formal
semantics[23], since it has expressibility as a primary
concern.

Another related issue is how "user-friendly" is
the manner of expression for stating the problem.
Though a full expressibility may be present, the syntax
or order may be so convoluted that it is very difficult to
use. It has been suggested that this issue be checked as
a separate phase in verification [6] so as not to entangle

854

the assessment of the capability of the system with its
usability.

4.2.2. Inadequate knowledge base

What kinds of metaknowledge enables the
detection of an inadequate knowledge base? The
answer to this question reveals the strengths of a
knowledge-based approach to programming. Since the
knowledge items must be represented with some
degree of uniformity, tools can be developed to search,
manipulate, and generalize the information found
therein. Furthermore, the metaknowledge must equally
be represented by some uniform mechanism, and the
metaknowledge about the metaknowledge, ad
infinitum.

The following list contains categories of
metaknowledge that could prove useful in verifying
knowledge-based systems. The list is not intended to
be exhaustive; rather it is representative of the kind of
information that needs to be collected in order to
maintain intellectual control over the development of a
knowledge-based system.

Accuracy
How precise is the knowledge?

Applicability
What are the limits of its applicability? What are
the conditions under which this knowledge item
could prove useful? What aspect of the problem
or system does it address?

Assessment
How do you assess the value of this knowledge?
Can run-time statistics aid in certifying its
usefulness? For example, how frequently has the
knowledge item been employed in producing a
correct solution?

Consistency
What knowledge would prove inconsistent with
this knowledge?

Completeness
What addition knowledge is necessary to
complement this knowledge?

Disambiguation
When two pieces of knowledge are both
applicable, how should one choose between
them?

Justification
Why is this knowledge believed important
enough to include in the knowledge base?

Life Span
How long should this knowledge remain in the
system? Truth maintenance in a dynamic
environment can be very complicated.

Purpose
What circumstances (goals) motivated the
inclusion of this knowledge?

Reliability
What is the probability that this knowledge will
be correct for a given situation?

Source
What is the source of the knowledge (expert,
book, experiment, etc.)?

It should be emphasized that these metaknowledge
categories may be applicable to more than one type of
knowledge. It is possible to have metaknowledge
about all aspects of the system, including, but not
limited to, the representation method, the system tools,
the application domain, and the system execution
history. For example it is perfectly meaningful to
discuss the reliability of a fact, a rule, a heuristic, and
even a reliability metafact. Likewise completeness
may refer to the logical completeness of a rule
(according the format of legal rules) or the
completeness of having covered all the values from the
application domain for some particular assertion.
Clearly if metaknowledge is used in the system to
improve the performance of the system, it is then
possible to have meta-metaknowledge, and so on.
Thus, these categories of metaknowledge span the
spectrum from the minutia of the knowledge items to
the overall goals of the system.

Metaknowledge has been used to some degree in
MYCN and ONCOCIN, but not to the degree suggested
above. Completeness of the knowledge base will be
much improved if the metaknowledge categories
suggested above are incorporated routinely into every
knowledge-based system.

4.2.3. Inadequate inference mechanism

Another way the system could be incomplete is
through limited inference mechanism. Though this is
unlikely in a standard system, it could easily occur in a
custom-made inference engine. An example would be
a too-rigid disambiguation method of conflict
resolution in a rule-based system. The following kinds
of metaknowledge might prove useful in these
circumstances:

Knowledge about when a given rule or
knowledge item is enabled; i.e. context
dependencies that make certain knowledge
items applicable. An example would be a
control program which must behave dif-
ferently in different phases of operation.
Certain knowledge items nfight become ac-
tive, while others become subdued.

855

Knowledge about goal ordering and schedul-
ing.

Knowledge about the representation used, for
debugging and explanation.

Knowledge about how long certain computa-
tions should take.

Causal knowledge about the system which
can be used to judge the adequacy of the
deductions made in the system. CASNET [24]
had such a "first principles" model available
to it to judge its own behavior.

5. Summary and conclusions
A knowledge-based system has been modeled as

a deductive system. The model indicates that the two
primary areas of concern in verification are
demonstrating consistency and completeness. A
system is inconsistent if it asserts something that is not
true of the modeled domain. A system is incomplete if
it lacks deductive capability. Two forms of consistency
were discussed, static and dynamic. Particular
emphasis was placed on safety and sensitivity analysis.
Three forms of incompleteness were discussed. The
use of metaknowledge, knowledge about knowledge,
was explored in connection to each form of
incompleteness.

The following is suggested by earlier
discussions:

(1) It is imperative that metaknowledge be explicitly
incorporated into knowledge-based systems.
Research needs to be done to determine what
categories of metaknowledge is most useful, and
how those categories are best represented.

(2) Conventional verification techniques appear
adaptable to knowledge-based systems. To
establish this it will be necessary to apply some
of the ideas presented here to a "real world"
knowledge-based system. Safety and sensitivity
analysis techniques described here appear to be
appropriate candidates for such an experiment.

References

[1]

[2]

D. A. Waterman, A Guide to Expert
Systems, Addison-Wesley Publishing
Company(1986).

W. R. Ricks and K. H. Abbott, Traditional
Versus Rule-Based Programming
Techniques: Applications to the Control of
Optional Flight Information, NASA
Technical Memorandum 89161, NASA

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[121

[13]

[14]

856

Langle Research Center, Hampton,
VA.(July 1987).

J. S. Collofello, Inlroduction to Software
Verification and Validation, Curriculum
Module SEI-CM-13-1.0, Software
Engineering Institute, Carnegie Mellon
University(October 1987).

L. J. Morell, Unit Testing and Analysis,
Curriculum Module SEI-CM-9-1.0,
Software Engineering Institute, Carnegie
Mellon University (October 1987).

R. M. OKeefe, O. Balci, and E. P. Smith,
Validating Expert System Performance,
IEEE Expert, (Fall 1987).

F. Hayes_Roth, D. A. Waterman, and D.
B. Lenat, eds., Building Expert Systems,
Addison-Wesley (1983).

L. D. Fosdick and L. J. Osterweil, Data
Flow Analysis in Software Reliability,
ACM Computing Surveys 8, 3, pp. 305-330
(Sept. 1976).

J. W. Laski and B. Korel, A Data Flow
Oriented Program Testing Strategy, IEEE
TSE SE-9, 3, pp. 347-354 (May 1983).

R. Davis, Interactive Transfer of Expertise,
in Rule-Based Expert Systems, ed. E. H.
Shorfliffe, eds.,Addison-Wesley(1984).

M. Suwa, A. C. Scott, and E. H. Shortliffe,
Completeness and Consistency in a Rule-
Based System, in Rule-Based Expert
Systems, ed. E. H. Shortliffe,
eds.,Addison-Wesley(1984).

T. A. Nguyen, W, A. Perkins, T. J. Laffey,
and D. Pecora, Knowledge Base
Verification, IEEE Expert 2, 4, pp. 65-79
(Summer 1987).

R. A. Stachowitz and J. B. Combs,
Validation of Expert Systems,
Proceedings, H a w a i i International
Conference on System Sciences, (January
1987).

N. G. Leveson and P. R. Harvey,
Analyzing Software Safety, IEEE TSE
SE-9, 5, pp. 569-579 (September 1983).

N. G. Leveson and J. L. Stolzy, Safety

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[221

[23]

[24]

Analysis Using Pelri Nets, IEEE TSE SE-
13, 3, (March 1987).

L. Clarke, A System to Generate Test Data
and Symbolically Execute Programs, IEEE
TSE SE-2, p. 215 222 (Sept. 1977).

W.. E. Howden, Symbolic Testing and the
DISSECT Symbolic Evaluation System ,
IEEE TSE SE-3, pp. 266-278 (1977).

T. A. Budd, R. A. DeMillo, R. J. Lipton,
and F. G. Sayward, Theoretical and
Empirical Studies on Using Program
Mutation to test the Function Correctness
of Programs, POPL, pp. 220-233 (1980).

R.. DeMillo, R. J. Lipton, and F. G.
Sawyer, Hints on Test Data Selection:
Help for the Practicing Programmer,
Computer 11, p. 34 41 (April 1978).

W. E. Howden, Weak Mutation Testing
and Completeness of Test Sets, IEEE TSE
SE-8, pp. 371-379 (July 1982).

L. J. Morell and R. G. Hamlet, Error
Propagation and Elimination in Computer
Programs, University of Maryland TR-
1065, Department of Computer
Science(July, 1981).

L. J. Morell, A Theory of Error-Based
Testing, University of Maryland TR-1395,
Department of Computer Science(August,
1984). PhD Thesis

L. J. Morell, A Model for Code-based
Testing Schemes, Fifth Annual Pacific
Northwest Software Quality Conference,
pp. 309-326 (October 1987).

F. G. Pagan, Program Flow Analysis,
Theory and Applications, Prentice-Hall,
Inc., Englewood Cliffs, N.J.(1981).

S. M. Weiss and C. A. Kulikowski, A
Practical Guide to Designing Expert
Systems, Rowman & Allanheld Publishers,
Totawa, New Jersey(1984).

857

