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Abstract 
A knowledge-based system is modeled as a 

deductive system. The model indicates that the two 
primary areas of concern in verification are 
demonstrating consistency and completeness. A 
system is inconsistent if it asserts something that is not 
true of the modeled domain. A system is incomplete if 
it lacks deductive capability. Two forms of consistency 
are discussed along with appropriate verification 
methods. Three forms of incompleteness are 
discussed. The use of metaknowledge, knowledge 
about knowledge, is explored in connection to each 
form of incompleteness. 

1. I n t r o d u c t i o n  

Following Waterman [1] a knowledge-based 
system (KB system) is a computer program in which 
knowledge from a narrowly defined application domain 
is separately encoded and processed by a distinct 
general problem solving method. The separately 
encoded knowledge is called a knowledge base and 
consists of a collection of related knowledge items. 
Each knowledge item represents a unit of knowledge 
from the application domain. The interrelationships 
among the knowledge items enable deductions to be 
drawn from the knowledge base as a whole. The 
deductions are solutions to problems from the 
application domain. The implementation of this 
deductive problem solving method is called an 
inference mechanism of an inference engine. The 
inference engine thus applies knowledge found in the 
knowledge base to solve problems in the application 
domain. 

A simple computerized help system illustrates 
this knowledge-based approach. The application 
domain in this case involves providing information 
about commands available on the computer system. 
The knowledge base consists of a directory of help 
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files, one for each command in the system. Each of 
these files is a knowledge item. A user who needs 
information about a particular command interacts with 
the help processor, the inference engine in this case. 
The help processor supplies the desired information 
from the knowledge base. Thus the help system 
contains all the elements to qualify it as a knowledge 
base system. It has a separate encoded knowledge base 
(the help file directory), for a narrowly defined 
application area (command help), which is processed 
by a distinct deductive mechanism (the help processor). 

To describe a system as being knowledge-based 
is to describe its manner of implementation, not the 
class of problems it is trying to solve. Some problems 
can be solved both by knowledge-based techniques and 
conventional programming. For example the help 
processor could be implemented as a CASE statement to 
select the information to be displayed by PRINT 
statements. Violation of any part of the definition 
makes a system not knowledge-based. Data-driven 
programming, for instance, produces programs with 
distinct processing and data components, but the data 
component might not represent a narrowly defined 
application domain and the processing component may 
not be a general problem solving method, independent 
of the application domain. An interpreter for a 
programming language along with a single program 
from that language cannot be collectively considered as 
as knowledge-based system. If this were the case, 
every computer executing a program would be a 
knowledge-based system. 

Frequently cited advantages of knowledge-based 
systems include 

(1) more rapid development and early prototypes, 

(2) more easily verified systems, and 

(3) more easily modified systems. 

The help system illustrates each of these. Construction 
Of the inference mechanism can proceed in parallel 
with the construction of the documentation file 
knowledge base. A rapid prototype can be constructed 
using non-uniform documentation files; uniformity can 
be enforced at a late date. In fact, tools can be 
developed for ensuring uniformity. 
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Verification of a knowledge-based system is 
facilitated by the separation of the knowledge and the 
processing components. The inference engine may be 
"off the shelf", not requiring any verification. Use of a 
uniform representation of knowledge in the knowledge 
base enables the construction of tools that verify 
desired properties of the knowledge base. For 
example, tools can be constructed to ensure that all the 
files in the help system satisfy a given format. 

Separation of a uniformly encoded knowledge 
base also improves modifiability. Utilities can be 
written to find knowledge items (encoded knowledge) 
which satisfy specified patterns. Replacing a 
knowledge item is easily accomplished. Traces of 
system execution can be used to explain system results. 
Contrast this with a conventional system in which the 
knowledge is intermingled with control and distributed 
across many lines complicating the identification and 
replacement of knowledge. 

Ricks and Abbott [2] describe an experiment 
where a control of flight information presented to a 
pilot was achieved by a knowledge-based program and 
a more conventional program which did not use 
knowledge-based techniques. Their conclusions were 

The results show that rule-based programming 
techniques have the potential for improving the 
productivity of the programmer or designer who 
develops a system. In this study, modification of 
the rule-based program was easier, more efficient, 
and less error-prone than the traditional program's. 
The rule-based program's separate, homogeneous 
rule base and inference engine could aid in the 
simplification and test-tool development needed 
during the verification process. It was also easier 
to implement an explanation capability in the 
rule-based program. 

A knowledge-based system is not synonymous 
with an expert system. Though there are several 
defining characteristics of an expert system, a 
prominent feature appears to be the possession of 
expertise in a given domain. The essential point to 
recognize is that the term "expert system" emphasizes 
the behavior of a program while the term "knowledge- 
based system" emphasizes the implementation 
technique of a system, i.e., the isolation of its 
knowledge into a knowledge base. What confuses the 
issue is that many expert systems are implemented as 
knowledge-based systems. This does not mean, 
however, that every expert system is a knowledge- 
based system or every knowledge-based system is an 
expert system! For example, the help system 
mentioned above would not be considered an expert 
system by most, since its only expertise is that of 
mapping and displaying. However a help system 
which attempted to understand the contents of its files 
and create useful links for readers approaches an expert 

system. Also, of the two expert systems constructed by 
Ricks and Abbott only one of which was knowledge- 
based. 

Two other terms must be distinguished: 
verification and validation. Verification is the process 
of demonstrating that software possesses features 
specified by its documentation. Validation is the 
process of demonstrating that software possesses 
features desired by its end-user. Without 
documentation verification cannot be done, but 
validation can be. The standard "waterfall" model of 
software development emphasizes verification as its 
primary method for moving toward validation. 
Requirements lead to specification, which in turn are 
translated into designs that are refined until code is 
produced. Verification can be performed at each of 
these stages. Most effort in verification has 
concentrated at showing that the code has desired 
features. Many techniques have been developed for 
verifying code as a whole [3] and at the unit level [4]. 

Validation is more comparable to a field test, i.e., 
placing the software in an operational environment and 
observing its behavior. Frequently validation must be 
conducted in a simulated operational environment 
because the operation environment is not available. 
Software for a lunar landing is an example of this; it is 
clearly impossible to test it in its operational 
environment before deploying it! 

2. Problems faced in verifying a knowledge- 
based system 

Many have commented upon problems faced in 
verifying and validating knowledge-based systems. 
The arguments may be summarized by the following 
questions[ 5]: 

(1) What do you verify? 

(2) Against what do you verify? 

(3) With what do you verify? 

Each of these questions are addressed briefly below. 

What  do you verify? The two principal 
components in a knowledge-based system, the 
knowledge base and the inference engine, are both 
candidates for verification. Frequently an off-the-shelf 
inference mechanism is used and thus requires no 
verification. Custom built inference mechanisms do, 
since any contained faults may have indeterminable 
effects on all processing, even if the knowledge base is 
perfect. 

The knowledge base is the crucial component for 
verification in a knowledge-based system. Aspects of 
the knowledge to be verified appear later in this paper, 
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but a few are named here to illustrate the complexity of 
the task. The correctness, accuracy, and timeliness of 
each individual knowledge item must be verified. The 
consistency of the knowledge must be shown, separate 
knowledge items should not be mutually contradictory. 
The knowledge base should be complete: obvious 
"holes" should be filled in. Consistency and 
completeness are discussed in depth later. What 
further compounds the problem is that individual 
knowledge items may be correct or incorrect according 
to the relationships they bear to other items. These 
relationships might not be explicitly stated in the 
knowledge base; some may be induced by the inference 
engine. It is also necessary that human factor 
considerations be verified. 

Against what do you verify a knowledge-base? 
Verification presumes a specification. All too often in 
knowledge-based systems no such specification exists. 
The argument is made that it is more work to write a 
specification than it is to write the knowledge base 
directly. In some cases this arguments holds, but in 
general there are many desirable properties that need to 
be specified that can be used as incomplete or semi- 
specifications. This knowledge about the knowledge 
base is called meta-knowledge and is a vital necessity 
for verification. An example would be a listing of 
reliable sources of medical information. If each 
knowledge item in a medical database indicates its 
source, then the exclusive use of reliable sources can 
be verified. An important aspect of this paper is to 
argue for the judicious use of metaknowledge as an aid 
to verification. 

What  tools and techniques can be used to 
verify features of the knowledge base? Traditional 
software verification techniques do not appear 
immediately applicable to verification of knowledge- 
based systems. For one reason, most verification 
techniques require a full specification of a problem. 
Furthermore, many verification techniques are aimed at 
executable code as opposed to static data bases. 
Certain techniques such as program coverage, data flow 
analysis, and safety analysis appear to have their 
counterpart in knowledge-based systems, but will 
require adaptation. Many tools developed so far that 
are applicable to knowledge bases come from the 
expert system community and tend to be oriented 
toward particular languages outside mainstream 
Algol-like languages. 

Many other questions arise related to the nature 
of verifying knowledge bases. Additional information 
can be found in [5] and[6]. 

3. A Model of Knowledge-based Systems 
This section describes a model of knowledge- 

based systems which facilitates discussion of features 
which impact verification. 

A knowledge-based system can be modeled as a 
symbolic manipulation system in which a problem 
from a particular problem space is encoded and 
manipulated according to a knowledge base in order to 
produce a solution (see Figure 1). In this figure H 
represents the encoding of the problem, R represents 
the derived solution and the turnstyle represents the 
deductive process applied by the inference engine 
operating on the knowledge base. The solid arrow 
indicates the method of solution that would be used if 
the operation were performed manually. The dotted 
line represents the interpretation mapping, I, and its 
inverse relation, 1 "1 . This mapping (and its inverse) 
assigns meaning to the represented problem, the 
knowledge base and the solution. Verification presumes 
this mapping because any assertion of inadequacy must 
be grounded in the world in which the actual problem 
is to be solved. Put another way, a computer solves a 
problem only if it accurately encodes the problem and 
produces an acceptable solution. 

A knowledge-based system can be deficient in 
two ways: it can be inconsistent, incomplete, or both. 
Brief definitions of these terms are given here and 
expanded upon later. Inconsistency is a characteristic 
of the interpretation I. If in applying I at any point the 
system is asserting something patently false about the 
domain it models, the system is inconsistent. If, on the 
other hand, the system lacks deductive capability it 
should have, it is incomplete. Weakness in either area 
can yield an incorrect program. Verification therefore 
focuses on demonstrating that various forms of 
inconsistency and incompleteness have not occurred. 

Note that under these definitions of consistency 
and completeness neither implies the other. In a 
knowledge-based system the knowledge is separated 
from the inference mechanism, and each can be 
independently wrong. It is most likely, however, that 
inconsistency or incompleteness will imply 
incorrectness. It is therefore important to understand 
ways in which a system can be inconsistent or 
incomplete, and determine methods for demonstrating 
that such is not the case for a given system. 

One immediate observation is that no one 
verification technique will demonstrate a system to be 
both complete and consistent. Specific techniques are 
applicable for some inconsistencies but not for others. 
Data flow analysis [7, 8], for instance, may be useful 
for demonstrating the absence of loops in the 
knowledge base, but not for demonstrating the absence 
of timing defects. A second observation is that 
correctness cannot be deduced automatically for an 
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arbitrary knowledge-based system. The emphasis in 
this paper is to discuss techniques applicable to a broad 
class of knowledge-based systems. This the motivation 
for the highly abstract model of knowledge-based 
systems given here. 

4. Verification Techniques 

4.1. Consistency 

A knowledge-based system is inconsistent if and 
only if applying the interpretation function I to a state 
of the knowledge base produces a state that is 
inconsistent with the modeled world. This definition 
does not restrict when such a mapping occurs - it 
merely asserts that when applied a consistent state must 
be produced. Since consistency is thus a property of 
the initial knowledge base as well as at intermediate 
states during the execution of the knowledge-based 
system, a natural classification of types of consistency 
is thereby induced. A knowledge-based system is said 
to statically consistent if its initial knowledge base state 
is consistent with the modeled world (as determined by 
mapping/). A knowledge-based system is dynamically 
consistent if any intermediate state of its knowledge 
base is consistent with the modeled world. Thus, static 
consistency deals with what the knowledge base 
directly asserts, dynamic consistency deals with what 

the knowledge base potentially asserts. Each of these 
forms of consistency are now discussed in depth. 

4.1.1. Static Inconsistency 

One approach to verifying static consistency is to 

(1) collect a number of assertions about the modeled 
world 

(2) using I, map the knowledge base to a state 
description about the modeled world, and 

(3) verify the state produced in (2) satisfies the 
assertions collected in (1). 

Such a scheme succeeds if the set of assertions 
completely characterize the modeled world, for then 
the knowledge base contains no inconsistencies with 
the modeled world. Provided the correctness of the 
inference engine has been proved, the knowledge- 
based system is dynamically consistent as well. 

If such a complete characterization is available 
and if a suitable inference engine can be found, the 
characterization could be used as the knowledge base 
itself, eliminating the need for building the 
knowledge-based system in the first place! Of course a 
separate system may be necessary for improved 
efficiency. In such cases it might be possible to compile 
the characterization. This applies when the system is 
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specified in an executable specification language. 

In lieu of a complete characterization, a 
specification of an incomplete set of properties is all 
that is possible. Given such a set of properties, P, the 
goal is then to ensure that the knowledge base satisfies 
at these. The approach mentioned above involves 
verifying that the knowledge base under I satisfies P. 
There are several difficulties with this approach. 

(1) It requires developing a second description of the 
domain. 

(2) It is difficult to automate since this would entail 
implementing both I and a procedure for 
checking to see if P(I(KB)) = True. 

An alternate approach is to map P into P' by 1 -t, 
so that I-t(P) = assertions about the knowledge base, 
i.e., assertions the knowledge base must satisfy. This 
method has served well in practice, but the application 
o f / - t  to P may not be straightforward. To map domain 
assertions to knowledge base assertions requires the 
ability to represent arbitrary assertions about the 
application domain. The formalism for such meta- 
knowledge may not be readily representable in the 
knowledge-based system. 

This second means of checking static consistency 
may be characterized as using type metaknowledge. 
Information about the format of the knowledge base, 
what constitutes incompatible information, ranges of 
legal values, etc. can be used to detect whether 
violations have occurred in the knowledge base. This 
is called type metaknowledge since it closely 
corresponds to the data type information used by 
compilers to determine inconsistent use of variables. 

Extensive use of type metaknowledge is used in 
many expert system shells and support tools. Early 
work in this area included the knowledge base 
enhancement system TEm.ESlAS [ 9] and the knowledge 
base debugging system used in ONCOC~ [10]. More 
recent work includes CHECK [11] and EVA [ 12], both of 
which are oriented toward verification of rule-based 
systems. EVA is briefly described here since it 
encompasses most of the functionality of CHECK. 

EVA [12] checks three aspects of a rule base: 

• structural consistency 

• logical consistency 

• semantic consistency 

A rule base is structurally consistent if every rule is 
usable. Redundant rules, rules involved in cycles, and 
rules whose left-hand side cannot be satisfied are 
examples of useless rules. A rule base is logically 
consistent if no left-hand side implies both A and -A, 
and no rule contains a redundant clause. Lastly, a rule 
base is semantically consistent if no user-defined 

qualifications are violated. These qualifications 
function in the same role as a typing mechanism in a 
strongly typed language, ensuring that variables and 
constants are used correctly in a given context. 
Examples include specifying the bounds and types of 
variables and constants, and indicating their proper 
usage in defined relations. 

4.1.2. Dynamic Inconsistency 
Dynamic inconsistency arises when a 

knowledge-based system has the potential of producing 
a state that is inconsistent under the interpretation 
mapping I. Dynamic inconsistency therefore 
encompasses the semantics of how the inference engine 
maps one state into another state. Using this 
information it is possible to determine the relationships 
among various knowledge items. Expressing these 
relationships enables two important analyses to be 
performed on the knowledge-based system. Safety 
analysis verifies that a system does not violate 
prescribed safety conditions. It may be possible to 
tolerate an occasional failure of a program, but not if 
that failure is catastrophic. Sensitivity analysis 
determines the system response to slight modifications 
in the knowledge base or the input. Extreme sensitivity 
does not necessarily imply incorrectness, but does 
indicate areas where additional verification techniques 
should be directed. 

Several standard verification techniques appear 
adaptable to safety and sensitivity analysis. 
Possibilities include mutation analysis, symbolic 
execution, proof-of-correctness, data flow analysis, and 
symbolic testing. The adaptation of these techniques to 
safety and sensitivity analysis of knowledge-based 
systems is discussed below. 

4.1.2.1. Safety Analysis 
Safety analysis [ 13, 14] begins with assertions 

describing safe behavior of a system. Deductions are 
then made as to the degree to which this behavior is 
attained. 

We first introduce some notation, and then 
proceed to discuss methods that are potentially 
applicable to safety analysis of knowledge-based 
systems. It is necessary to distinguish between a 
program, its behavior and the function it computes. 

Definition If P is a program, then [P] denotes the 
program function computed by P defined as 

[P] = {(x,y) I Program P on input x outputs y} 

and <P> denotes the behavior function computed by P 
defined as 
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<P> = {(x,y) I Program P on input x halts, 
having behaved in a manner described by y } 

The definition of <P> is imprecise in that it does not 
specify the particular behavior of interest; the intent is 
to capture those aspects of the program's execution not 
inferable from its output. The definition of <P> does 
not prevent <P>(x) from containing [P](x); in fact, 
unless otherwise specified it will be assumed that [P] 
can be deduced from <P>, i.e., <P>(x) will always 
contain enough information from which to deduce 
[P](x). Obvious additional candidates for inclusion in 
<P>(x) are the program's execution time and space 
consumption, since these two characteristics are 
sometimes vitally important to safety. For example, a 
program that computes the time at which the landing 
gear should be lowered on an aircraft, but completes 
the computation only after the plane is on the ground, 
has unacceptable behavior. In contexts of national 
security, something as obscure as the radio frequencies 
emitted by the computer while the program executes 
might be considered part of the program's behavior. 
The amount of information included in the behavior 
will vary according to the needs of the project. 

Safety and correctness are related concepts and 
can now be defined. 

Definition 
A program P is safe with respect to an assertion 
pair <A, B > if and only if for all x that satisfies 
A, <P>[x] satisfies B.  Otherwise it is said to be 
not safe (or unsafe ) with respect to <A, B >. 
<A, B > is called a safety specification. 

Definition 
A program P is correct with respect to an 
assertion pair [A, B ] if and only if for all x that 
satisfies A, [P] Ix] satisfies B Otherwise it is said 
to be not correct (or incorrect) with respect to 
[A,B] .  [A,B]  is called a a correctness 
specification. 

Both of these specifications must also be unambiguous 
and decidable. 

Safety and correctness differ in their intent and 
scope. Safety has a broader scope since it considers the 
entire behavior of the program, while correctness 
considers only input-output pairs. The intent of safety 
specifications is more narrow than correctness 
specifications, though. Safety focuses on the impact a 
program may have on its environment; correctness 
provides no such focus. 

Several safety specifications can apply to a 
program simultaneously. Safety analysis then is the 
process of determining which safety specifications are 
satisfied and to what extent. The most straightforward 
method of doing this is to capture the behavior of the 

system for all inputs which satisfy the input assertion, 
and to compare this behavior to that specified by the 
output assertion. This "black box" analysis is 
frequently impossible, because the input space defined 
by the input assertion is too large. It is thus necessary 
to analyze classes of computations at one time. In 
traditional programming a data flow graph is 
constructed to aid in this processing [7]. For 
knowledge-based programs a complementary graph is 
necessary. The construction of such a graph, is 
described below. 

Recall that a knowledge base is a collection of 
knowledge items from which the inference engine 
performs its deductions. The deduction process 
proceeds as follows: one state of the knowledge base 
yields the next which yields the next, and so on until 
the inference mechanism halts. During any of these 
transitions the inference engine determines the next 
state from a subset of the current knowledge items. 
The next state is a modification or enhancement of the 
previous set of knowledge items. For the purposes of 
discussion here it will be assumed that all existing or 
potential knowledge items are known. Each transition 
connects a set of knowledge items referenced in the 
current state with the set of knowledge items modified 
or produced in the succeeding state. This may be 
represented by a graph, in which the nodes denote 
knowledge items and the arcs represent connections 
induced by potential transitions. Such a graph is called 
here a computation flow graph, an analogue of data 
flow graphs associated with conventional programs 
(see [7]). Knowledge items which may be present 
when the inference engine begins execution are 
specially marked as initial nodes. Knowledge items 
which may be present when the inference engine halts 
are specially marked as terminal nodes. 

An example of a computation flow graph is 
shown in figure 2. Here the inference engine uses xx, 
x2, and x3 during some transition to produce or modify 
knowledge item y.  It may also be the case that x2 is 
related to some other knowledge item z, and hence 
there would be an arc connecting x2 to z in the 
complete graph. 

Safety analysis can be performed on a 
computation flow graph. This analysis may proceed in 
two directions: forward or backward. In the backwards 
mode, sets of terminal knowledge items which do not 
satisfy the safety assertion are successively traced to 
initial knowledge items that generate them. Each 
subset of initial items so identified which satisfies the 
input assertion yields a violation of a safety 
assumption. The simplest instance of this process 
occurs when the output assertion involves only single 
terminal nodes. In this case no back tracing is 
necessary since the presence of a terminal node that 
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Figure 2 

does not satisfy the output assertion is indicative of a 
violation. An example would be a control system in 
which a particular output, x, would be considered 
dangerous. This safety specification might be 
represented by (TRUE, SETTING :# X), i.e., for all inputs 
the output setting is never x. Inspecting the 
computation flow for the presence of x as a terminal 
item requires no backward tracing. 

In some cases, to determine if a violation could 
happen it is necessary to propagate the output safety 
assertion backwards through the system, deducing the 
set of states which are safe. A state in this sense is a 
collection of knowledge items which could 
simultaneously exist during execution of the system. 
Hence each state S that satisfies the output assertion 
determines a set of predecessor states, namely that set 
of states from which S is a logical successor. Each of 
these predecessor states determines a set of predecessor 
states and so on until the set of initial states are 
determined which will ultimately lead to satisfaction of 
the output assertion. If this set includes all states which 
satisfy the input assertion then the safety specification 
is satisfied. 

Safety analysis can use forward propagation as 
well. Given states that satisfy the input assertion, 
forward propagation successively generates states in 
the same manner as the original graph is defined. If all 
terminal states satisfy the output safety assertion, then 
the safety specification is satisfied. 

A knowledge-based system of sufficient 
complexity could induce a computation flow graph that 
is unmanageably large. One way of handling such 
situations is produce an abstract graph. Several 
abstlactions of computation flow graphs can be 
imagined. One abstraction which has already been 

used is that of treating the graph as a collection of 
states, rather than of individual knowledge items. 
Another abstraction results from overlaying nodes 
which share characteristics considered important. The 
resulting nodes represent collections of knowledge 
items that may be processed uniformly by the inference 
engine. 

An alternative to abstracting the graph is to 
explore multiple paths through the graph simultaneous. 
A symbolic execution system [15, 16] does precisely 
this. In symbolic execution of a conventional program, 
a path is selected through the program and the 
computation along that path is determined by executing 
the path with a symbolic input. The output produced is 
then expressed in terms of this symbolic input. The 
parallel in knowledge-based systems is to use symbolic 
input to represent a collection of inputs satisfying an 
input assertion. The system is then executed, 
traversing all paths in the computation flow graph 
determined by inputs represented by the symbolic 
input. 

If the backward or forward propagation must 
stop at an earlier point (perhaps due to insufficient 
information or combinatoric explosion) at least a set of 
safe intermediate states has been identified. Such 
information can then be supplied to the inference 
engine as metaknowledge to help it decide whether it is 
in a safe state. Deductions from potentially unsafe 
states may be viewed more suspiciously than those 
derived from safe states. 

4.1.2.2. Sensitivity Analysis 
Sensitivity analysis determines the system 

response to slight modifications in the knowledge base 
or the input. Sensitivity analysis is particularly 
appropriate to knowledge-based system because the 
knowledge base sometimes contains artificially precise 
rules or values. It is not uncommon, for instance, for 
an expert system to include estimates of the reliability 
of certain facts as metaknowledge to the inference 
engine. The impact of such estimates on the operation 
of the system is an important phenomenon to 
investigate. If changing an estimate by 1% radically 
affects the functioning of the program, and the estimate 
is only considered accurate to 10%, further 
investigation is warranted. Similarly, demonstrating 
that an estimate can be changed considerably without 
impacting the program may imply that as long as the 
estimate is within the ball park, it can be trusted. 

Mutation testing [17, 18, 19], symbolic execution 
[15,16], a n d  symbolic testing [20,21,22] appear 
applicable to sensitivity analysis. 

Mutation testing is a technique of judging the 
quality of test data. Test data distinguishes one version 
of a knowledge base from another version by 
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demonstrating that the output of the two systems differ 
on the test data. A mutation operator applied to the 
knowledge base produces a slightly different 
knowledge base, called a mutant. Test data is 
considered adequate if it distinguishes all non- 
equivalent simple mutants from the original program. 
A simple mutant is a slight variant on the original 
program, e.g. changing 1.890 to 1.892. Mutation 
testing thus explores sensitivity boundaries by requiring 
test data to distinguish slight changes. The knowledge 
base is mutated slightly and test data is developed that 
distinguishes this mutant from the original knowledge 
base, if possible. This process is repeated for every 
possible application of a mutation operation. The 
resulting test data then reflects the sensitivity 
boundaries of the knowledge base. 

Symbolic execution can be used in a way to 
perform sensitivity analysis in a manner called 
symbolic testing [21,22]. In symbolic testing, a 
knowledge item in the knowledge base is replaced by a 
symbolic term. The system is then symbolicly 
executed, as described earlier. In this case, however, 
the symbolic output is expressed in terms of both the 
symbolic input and the symbolic tenn. This process 
therefore captures the impact of the original knowledge 
item. Sensitivity can therefore be deduced directly 
from this expression. 

4.2. Completeness 
The preceding section discusses ways of 

analyzing a knowledge-based system for inconsistency. 
The model discussed in section 3 indicates an 
additional way in which a knowledge-based system can 
be insufficient: it can be incomplete. Whereas 
consistency deals with the degree to which the 
knowledge base faithfully represents the application 
domain, completeness addresses the expressibility of 
the system and the limits of its deductive mechanism. 
Consistency assesses what is; completeness addresses 
what should be. To see the difference, consider the 
following example. A knowledge base with one 
knowledge item may be fully consistent, in that the 
information encoded in that item accurately portrays a 
true assertion in the modeled domain. It may even be 
that all deductions from this single item are consistent. 
But it is likely that the system is woefully incomplete, 
since there could be much relevant knowledge from the 
application domain which is not represented and 
therefore unavailable to enter into the deductive 
process. 

Definition 
A deductive system D is complete for a problem 
space P and an interpretation function I if and 
only if for every P ~ P 

P is expressible in D as some H under 1-1, 

H ---> R, and 

R maps under I to S, a solution of P. 

where a problem domain is the set of problems to 
be solved. 

Incompleteness can arise then from several sources: 

• inadequate expressiveness of the model 

• inadequate knowledge base 

• inadequate deductive power 

Each of these are discussed below. 

4.2.1. Inadequate expressiveness of the model 
A knowledge-based system provides one or more 

ways of encoding or expressing knowledge. The 
encoded knowledge is, of course, a knowledge item or 
a collection of knowledge items. Popular encoding 
methods include rules, frames, and semantic nets. The 
expressibility of a knowledge-based system is the 
degree to which arbitrary units of knowledge from the 
application domain can be expressed via the facilities 
provided by the system. The greater the expressibility, 
the greater the flexibility of the system. Clearly, if a 
problem cannot be presented to the system, it cannot be 
solved by the system. Equally clear is that the system 
must be able to express the solution. Deficiency in 
either regard is an example of an incomplete system. 

What is addressed here is the ability to represent 
the problem to be solved using the mechanisms 
supplied by the model. Adequate expressiveness in this 
regard is sometimes assumed a priori, but this is not 
necessarily appropriate. To verify adequate 
expressibility would require a formal description of the 
problem domain. This can be very complex in some 
cases, e.g., how does one characterize all the potential 
faults in an aircraft engine for use in a diagnostic 
system? 

The knowledge base verification system EVA 
incorporates a primitive form of specification that 
enables the description of constraints on legal 
combinations of values. Much work remains to be 
done in this area. A potential source of applicable 
methods may come from the area of formal 
semantics[23], since it has expressibility as a primary 
concern. 

Another related issue is how "user-friendly" is 
the manner of expression for stating the problem. 
Though a full expressibility may be present, the syntax 
or order may be so convoluted that it is very difficult to 
use. It has been suggested that this issue be checked as 
a separate phase in verification [6] so as not to entangle 
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the assessment of the capability of the system with its 
usability. 

4.2.2. Inadequate  knowledge base 

What kinds of metaknowledge enables the 
detection of an inadequate knowledge base? The 
answer to this question reveals the strengths of a 
knowledge-based approach to programming. Since the 
knowledge items must be represented with some 
degree of uniformity, tools can be developed to search, 
manipulate, and generalize the information found 
therein. Furthermore, the metaknowledge must equally 
be represented by some uniform mechanism, and the 
metaknowledge about the metaknowledge, ad 
infinitum. 

The following list contains categories of 
metaknowledge that could prove useful in verifying 
knowledge-based systems. The list is not intended to 
be exhaustive; rather it is representative of the kind of 
information that needs to be collected in order to 
maintain intellectual control over the development of a 
knowledge-based system. 

Accuracy 
How precise is the knowledge? 

Applicability 
What are the limits of its applicability? What are 
the conditions under which this knowledge item 
could prove useful? What aspect of the problem 
or system does it address? 

Assessment 
How do you assess the value of this knowledge? 
Can run-time statistics aid in certifying its 
usefulness? For example, how frequently has the 
knowledge item been employed in producing a 
correct solution? 

Consistency 
What knowledge would prove inconsistent with 
this knowledge? 

Completeness 
What addition knowledge is necessary to 
complement this knowledge? 

Disambiguation 
When two pieces of knowledge are both 
applicable, how should one choose between 
them? 

Justification 
Why is this knowledge believed important 
enough to include in the knowledge base? 

Life Span 
How long should this knowledge remain in the 
system? Truth maintenance in a dynamic 
environment can be very complicated. 

Purpose 
What circumstances (goals) motivated the 
inclusion of this knowledge? 

Reliability 
What is the probability that this knowledge will 
be correct for a given situation? 

Source 
What is the source of the knowledge (expert, 
book, experiment, etc.)? 

It should be emphasized that these metaknowledge 
categories may be applicable to more than one type of 
knowledge. It is possible to have metaknowledge 
about all aspects of the system, including, but not 
limited to, the representation method, the system tools, 
the application domain, and the system execution 
history. For example it is perfectly meaningful to 
discuss the reliability of a fact, a rule, a heuristic, and 
even a reliability metafact. Likewise completeness 
may refer to the logical completeness of a rule 
(according the format of legal rules) or the 
completeness of having covered all the values from the 
application domain for some particular assertion. 
Clearly if metaknowledge is used in the system to 
improve the performance of the system, it is then 
possible to have meta-metaknowledge, and so on. 
Thus, these categories of metaknowledge span the 
spectrum from the minutia of the knowledge items to 
the overall goals of the system. 

Metaknowledge has been used to some degree in 
MYCN and ONCOCIN, but not to the degree suggested 
above. Completeness of the knowledge base will be 
much improved if the metaknowledge categories 
suggested above are incorporated routinely into every 
knowledge-based system. 

4.2.3. Inadequate  inference mechanism 

Another way the system could be incomplete is 
through limited inference mechanism. Though this is 
unlikely in a standard system, it could easily occur in a 
custom-made inference engine. An example would be 
a too-rigid disambiguation method of conflict 
resolution in a rule-based system. The following kinds 
of metaknowledge might prove useful in these 
circumstances: 

Knowledge about when a given rule or 
knowledge item is enabled; i.e. context 
dependencies that make certain knowledge 
items applicable. An example would be a 
control program which must behave dif- 
ferently in different phases of operation. 
Certain knowledge items nfight become ac- 
tive, while others become subdued. 
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Knowledge about goal ordering and schedul- 
ing. 

Knowledge about the representation used, for 
debugging and explanation. 

Knowledge about how long certain computa- 
tions should take. 

Causal knowledge about the system which 
can be used to judge the adequacy of the 
deductions made in the system. CASNET [24] 
had such a "first principles" model available 
to it to judge its own behavior. 

5. Summary and conclusions 
A knowledge-based system has been modeled as 

a deductive system. The model indicates that the two 
primary areas of concern in verification are 
demonstrating consistency and completeness. A 
system is inconsistent if it asserts something that is not 
true of the modeled domain. A system is incomplete if 
it lacks deductive capability. Two forms of consistency 
were discussed, static and dynamic. Particular 
emphasis was placed on safety and sensitivity analysis. 
Three forms of incompleteness were discussed. The 
use of metaknowledge, knowledge about knowledge, 
was explored in connection to each form of 
incompleteness. 

The following is suggested by earlier 
discussions: 

(1) It is imperative that metaknowledge be explicitly 
incorporated into knowledge-based systems. 
Research needs to be done to determine what 
categories of metaknowledge is most useful, and 
how those categories are best represented. 

(2) Conventional verification techniques appear 
adaptable to knowledge-based systems. To 
establish this it will be necessary to apply some 
of the ideas presented here to a "real world" 
knowledge-based system. Safety and sensitivity 
analysis techniques described here appear to be 
appropriate candidates for such an experiment. 
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