Check for
Updates

An Object-Oriented Approach to Switching Circuit Minimization

James Paul Vita
City College of New York

minimal
specified set

The determination of a
function to realize a
of outputs is a basic problem of
switching circuit design. Circuit
production costs have evidenced a
steady decline over the past few
years due mainly to technological ad-
vances in the areas of
pilation and VLSI implementation. In
a just a few years, cost factors have
taken a backseat to implmentation
issues. Nonetheless, basic minimiza-
tion techniques at the design level,
are still a major vehicle for cost
containment.

Techniques for the minimization
of switching networks by
reduction, Tabular methods, and Kar-
naugh established.
Such techniques can be easily imple-
mented in conventional programming
languages. Algorithmic implementa-
tions of such techniques, however,
tend to be rather specialized and
lacking in generality.
we shall object oriented
approach to the circuit minimization
probltem. It will be demonstrated that
an object representation of a circuit
specification, forms the basis for an
Expert System with the capability for
both simulation and design.

The procedures described in this
paper were developed for a Personal
Computer using PROLOG-2 (Expert Sys-
tems International). PROLOG was

silicon com-

Boolean

Maps are well

In this paper
examine an

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission,

© ACM 1988 0-89791-271-3/88/0006/0975 $1.50

975

chosen for two reasons. First, the
goal was to develop a set of proce-
dures which would implement the sym-
bolic minimization of a set of cir-
cuit object representations. PROLOG
provides intrinsic facilities for the
representation of objects as unit
clauses. Further, since PROLOG is a
rule-based language by nature,

Boolean minimization theorems are

easily represented by PROLOG rules.
Having specified the theorems as
rules, the simplification is per-
formed automatically by the PROLOG

proof mechanism.

Specifying Circuit Requirements

A minimum specification for a
circuit is a set of outputs under all
possible input conditions. Such a
specification can be represented as a
list. A simple combinatorial func-
tion of n inputs can have 2" possible

outputs. The output specification is
a canonical list, the order of terms
being the value of the minterm or

maxterm. As an example consider the
function f(A,B) = A + B. There are
four possible input conditions repre-
sented by 00, 01, 10, and 11. The
output Llist corresponding to these
conditions (assuming a boolean value
of "1" for true and "0" for false) is
as follows:

[00,01,10,11]
to, 1, 1, 1

The latter of these two Llists is the
output specification. Each value is

the output wunder the corresponding

input in the former Llist. Another
type of possible output value is
"Don't Care". This can be repre-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F55674.55715&domain=pdf&date_stamp=1988-06-01

sented by an in the correspond-

ing list position, as in [1,1,1,-,-
,0,0,-1. These values are allowed to
be II1II or IIOII.

Creating Minterm/Maxterm Objects
Analysis of the output
begins with the <creation
minterm and maxterm sets. The dual
nature of the minterms and maxterms
allows the same procedures to be used
with each set. Creation of the
minterm objects depends upon the ex-
amination of the terms which produce
a "1" as output. For the output
specification [0,0,0,11, the only
term which produces a "1" output is
the final one in the Llist which cor-
responds to the input condition "11m
(A=1,B=1). The form of the minterm
and maxterm objects has been chosen
to pair the name of the input vari-
able with its value. Thus, the fol-
lowing minterm object is created:

function
of the

min_term([iC(A,1),i(B,1)1).

The object has "minterm" as its prin-

cipal functor and has as its only ar-
gument a Llist representing the name-
value input pairs. The "i/2" notation

is a dummy functor which achieves the
required pairing. Representation of
the minterm (or maxterms) as lists of
inputs allows the same procedures to
be used with output specifications
requiring a arbitrary number of input
variables. The output specification
given above generates the following
maxterm objects:

max_term(LiCA,0),i(B,0)]).
max_term(LiC(A,0),i(B,1)1).
max_term(L[i(A,1),i(B,0)]1).

The first
is

step in the minimiza-
the derivation of the un-
reduced function expression from the

tion

output specification. The output
specification list is examined ele-
ment by element. If the term under

consideration produces a "“1" output,

then a minterm must be generated. 1f

976

0" then a maxterm must
be generated. If the required output
is a "-u (wpon't Care") then both a
minterm and maxterm can be generated.
Each minterm or maxterm is created by
decoding the position of the term in
the output specification list. For a
function of n inputs, n bit positions
must be examined in each of the 2"
terms. Once the minterm and maxterm
expressions are generated, the
reduced expression(s) can deter-
mined as a disjunction of the
minterms and a conjunction of the
maxterms. The first step in the pro-
cedure is to solve the goal
"golves1®, Consider the following
example, using the output specifica-
tion (0,1,1,1,0,0,0,11.

the output is

un-
be

?- solve(f0,1,1,1,0,0,0,11).

Output is a maximal function of 3

variables.

f(a,b,c) = atb'c + a'bc' + a'bc + abec
f(a,b,c) = &(1, 2, 3, 7)
f(a,b,c) = (a+b+c) (a'+b+c)
(a'+b+c') (at+b'+c)
fta,b,c) =TT (0, 4, 5, 6)
yes
?.
The following clauses are also as-

serted into the PROLOG database:
min_term([iCa,0),i(b,0),i(c,0)1).
min_term([i(a,0),i(b,1),i(c,0)1).
min_term([i(a,0),i(b,1),i(c,1)]).
min_term(li(a,1),i(b,1),i¢c,1)1).

max_term({i(a,0),
max_term([i(a,1),
max_term([iCa,),
max_term([iCa, 1),

i(b,0),i(c,0)1).
i(b,0),i(¢c,0)1).
i(b,0),i(c,1)1).
i(b,1),i(c,0)1).

Determining Minimal Expressions

For a circuit minimization pro-
cedure to be useful and practical, it
must satisfy two requirements: com-

pleteness and uniqueness. The
results of Boolean reduction are de-
pendent upon the order in which terms
are clashed. Thus, it is possible to

achieve different solutions. In
fact, it is possible for a particular
order to make the minimal expression

underivable. The completeness
quirement insures that we derive
possible reduced forms.
ness requirement insures that we
eliminate redundant forms, an impor-
tant consideration for large circuit
expressions.

The advantage of an object-
oriented approach to the minimization
problem is the ability to symboli-
cally manipulate circuit expressions.
The symbolic approach
related to the terms
engineers formulate

re-
all
The unique-

is most closely
in with design
minimization

problems. Further, the symbolic ap-
proach more naturally captures the
functional relationships within the
problem.

The first step in the minimiza-
tion procedure 1is to state the
Boolean reduction theorems as PROLOG
rules. Circuit minimization 1is
achieved by repeatedly applying the

rules until no further simplification
is possible. The result is a minimal
expression which is logically equiv-
alent to the original circuit.
PROLOG rules were created for the
Boolean properties of idempotence,
absorption, and consensus.

Logically, the property of idem-
potence can be stated as follows:

X+X = X
XX = X

1Ca)
1¢(b)
Expression 1(a) would be
in PROLOG as:

represented

min_term(L[i(X,1)]).
min_term(I[i(X,1)1).

that is, two clauses for X could be
contained in the PROLOG database.
The idempotence rule tells that
one of these minterms be

us
can

977

eliminated or “retracted®.
plication of this rule,
would consist only of:

After ap-
the database

min_term(L[i(X,1)1).

The absorption property can be

described logically as:

X+XY = X
X(X+Y) =

2Ca)
X 2(b).
The equivalent PROLOG
of 2(a) would be that:

implementation

min_term([i(X,1)1).
min_term(L[i¢(X,1),i(Y,1)1).

is equivalent to

min_term({[i(X,1)1).

The larger minterm is completely sub-
sumed by a smaller term, and is
therefore redundant. Consequently,
the Lltarger term term can be

retracted.
A corollary to
property states that:

the absorption

XYZ+X'Y = YZ+X'Y 3(Ca)
(X+Y+Z)(X'+Y) = (Y+Z)(X'+Y) 3(b).
In 3Ca), the X'Y is "npearly" con-
tained within the term XYZ. The only

is
term and

difference is the variable X which
uncomplemented in the first

complemented in the second term. The
corollary states that this cross-
signed variable is redundant and can
be eliminated. In terms of the

PROLOG database:

min_term(Li¢(X,1),i(Y,1),i¢2,1)1).
min_term(L[i¢X,0),iCY,1)1).

is equivalent to

min_term(L[iCY,1),i(¢2,1)1).
min_term([i(X,0),i(Y,1)1).

or to

min_term(Li¢X,1),iC¢Y,1),i¢(2,1)1).
min_term¢LiC(Y,1)1).

The crossed-sign variable can be
eliminated from either term when the
other conditions are met. The latter
variation however, allows a further
simplification to simply:
min_term(L[i(Y,1)1).

by an additional application of the

absorption property.
The property of consensus can be
demonstrated by:

XY+X'Z+YZ = XY+X'Z
(X+Y) (X' +2Z)(Y+Z)=(X+Y)I(X'+2Z)

4(a)
4(b).

The PROLOG clauses for 4(a):
min_term(L[i(X,1),i(Y,1)1).
min_term([i(X,0),i¢(2,1)1).
min_term([i¢Y,1),i1¢Z,1)1).

would minimize to:

min_term([iC(X,1),iC¢Y,1)1).
min_term¢L[i(X,0),i(Z,1)1).

The above examples have all be
conducted by applications of the min-

imization rules on minterms.
KRowever, an exactly dual process can
be conducted on the maxterms with
identical results.

PROLOG Minimization Procedure
Imptementing the
procedure in PROLOG

minimization
is a somewhat

tedious process, consisting of four
steps. The first step is to produce
a copy of each minterm and maxterm

and add an extra argument, numbering
the terms. Second, at each iteration
two terms must be chosen which will
be examined for the property of idem-
potence and absorption. When
amination of pairs of terms is
hausted, trios of terms must be ex-
amined for the property of consensus.
When minimization is completed on any

ex-
ex-

978

one step, the process must be re-
started from the beginning since the
new clauses which are generated may
reduce other terms. Third, a
"matching" process must be performed
which examines the components of the
pair or trio of the minterm or
term. No assumptions can be made
about the order of variables within
the minterms or maxterms since the
minimization procedure Wwill eliminate
some but retain other variables
(components). Finally, after the
components of the minterms and max-
terms are "matched”, the actual mini-
mization rules may be applied, and
the clauses of the database updated.

max-

This process is repeated until no
further minimization is possible.
When this is achieved, the only task
remaining is to print the results in
a readable format.
Manipulating Terms

As already noted, copying the
minterms and maxterms is the first
step in the minimization procedure.
When PROLOG matches objects in the
database it has no insight into the
fact that two terms are the same
term. Naming the terms prevents
PROLOG from inappropriately attempt-
ing to apply the idempotence rule to

a single clause. Naming the minterms
and maxterms by number also allows a

degree of control over the order in
which terms are compared. Permuta-
tions of the clause numbering can be
formed. An indirect matching can be

performed from these permutations. A

"choose" function (implemented in
PROLOG) is used to select pairs and
trios of clauses from the database.
Normally, the PROLOG database 1is
searched from top to bottom when
matching clauses. However, the

choose function effects an alteration
in the clause order without actually
physically moving the clauses in the
database. This allows a complete set
of clause clashings to be examined.
Once the minterms or maxterms

are copied and numbered, they are

gathered into a Llist which is per-
muted into all possible orderings of
clause numbers. Pairs and trios are
selected for clashing by a PROLOG
choose function. The predicate
"match/8" performs the selection of
the clauses to be clashed. The
clauses "gen_term/2" are the copied

and named versions of the minterm or
maxterm clauses (depending upon which
minimization is being performed).

Choose is a resatisfiable predicate
which selects permutations of n
clauses taken k at a time. Pairs of

clauses are passed to the "clash/5"
predicate. Trios of clauses (used in
the implementation of consensus) are
handled by special rules which do not
use the clashing procedure. The
PROLOG implementation of the matching

procedure is given below.

match(Term_Llist,A,AN,B,BN,X,Y,2) :-
choose(Term_list,2, [AN|J[BN11),
gen_term(AN,A),
gen_term(BN,B),
AN \= BN,
clash(A,B,X,Y,2).

match(Term_Llist,A,AN,B ,BN,C,CN) :-
choose(Term_Llist,3,
[AN][BN]ICNI11),
gen_term(AN, A),
gen_term(BN,B),
gen_term(CN,C),

AN \= BN,
CN \= AN,
CN \= BN.

Clashing Terms
clashing
process,
be made about
or the
terms.
must
there

terms is a complicated
in which no assumptions may
the ordering of
ordering of variables within
The components of the terms
be compared pairwise. Although
are probably several ways
which to effect this comparison, the
one selected works efficiently and
extracts the information necessary to
apply the minimization The
clashing process examines terms
and extracts three lists the

terms

in

rules.
two
from

979

terms: a Llist of matching com-
ponents, a Llist of components from
the first term unrepresented in the
second, and a list of components of
the second term unrepresented in the
first term. The following example

demonstrates how these lists are ex-

tracted from clashing of the minterms

XY and XZ:

?2- clash(L[i(X,1),i¢(Y, 01},
[i¢x,1),i¢z2,11,
Match_Llist,
ListA,

ListB).

Execution of the above goal
the following bindings:

produces

?7- clash(Li(X,1),i(Y, 037,
Li¢x,1),icz, N1,
Li¢x, 11,
ticy, 11,

[i(z,11).

The code which effects these bindings
is as follows:

clash¢y,r1,01,01,01) - 1'.
clash([],X,Match_Llist,ListA,ListB) :-

append([],Match_new,Match_Llist),
append([],NewA, ListA),
append(X,NewB,ListB),
clash([],[]1,Match_new,
NewA,NewB).
clash¢(X, [1,Match_Llist,ListA,ListB) :-

append([],Match_new,Match_list),
append(X,NewA,ListA),
append([],NewB,ListB),
clash(I[),[]1,Match_new,
NewA, NewB).
clash([HeadA|RestAl, X, Match_list,
ListA,ListB) :-
member(HeadA,X),
delete(HeadA,X,RestB),
append([HeadAl,Match_new,
Match_Llist),
append([]1,NewA,ListA),
append([]l,NewB,ListB),
clash(RestA,RestB Match_new,
NewA,NewB).

clash(X, [HeadB|RestB] ,Match_Llist,
ListA,ListB) :-
member(HeadB,X),
delete(HeadA,X,RestA),
append([HeadAl ,Match_new,
Match_list),
append([]1,NewA,ListA),
append([] ,NewB,ListB),
clash(RestA,RestB,Match_new,
NewA,NewB).
clash({HeadA|RestAl, [HeadB|RestB],
Match_Llist,ListA,ListB) :-
HeadA \= HeadB,
append([HeadAl ,NewA,ListA),
append([HeadB] ,NewB,ListB),

append(l] ,Match_new,Match_Llist),
clash(RestA,RestB,Match_new,
NewA,NewB).

The clash procedure examines the
elements of the two lists and recur-
sively builds the matching, and non-
matching lists by determining the set
membership of each tist element. The
"clashed" Llists are in a form that
can be minimized by PROLOG rules.

Minimization Rules

The minimization is performed by
simple PROLOG rules. For all of the
Boolean theorems except consensus,
the results of the %“clash/5" proce-
dure are passed to the "reduce/7"
predicate. The calls to the reduce
predicate have the form:

reduce(TermA,NumberA,TermB,NumberB,
Matching,RestA,RestB).

Consensus is handled as a exception
by special rules.

The rule which identifies and
reduces the expressions by the idem-

potence property is as follows:

/* Exactly Matching Terms */

’/* */
/* AA = A */
/* (A+A) = A */
/* */
reduce(A,AN,B,BN, X, (]1,[1) :-

A = B,

980

retract(gen_term(AN,A)).

The arguments to "reduce/7" are the
two clauses being compared (A, B),
the ordering number (AN, BN), the
tist of matching subterms from the

two clauses, the nonmatching subterms

from the first clause, and the non-
matching subterms from the second
clause. As can be seen above, this

definition of the reduce predicate
recognizes that A and B are the same
clause. There are no nonmatching
terms as indicated by the null Llists
11>. When these conditions are met
one of the clauses can be eliminated.
As can be seen above, one of the
clauses is retracted from the PROLOG
database.

rule is somewhat
is given by:

The absorption
complicated and

more

/* One Term is Completely Subsumed
by a Larger Term */
/* */
/* AB+ABC = AB *y
/* (A+B)(A+B+C) = (A+B) */
/* */
reduce(A,AN,B,BN,X,[1,_) -
retract(gen_term(BN,B)).
reduce(A,AN,B,BN,X,_,[1) =:-
retract(gen_term(AN,A)).
In this case, it can be seen that
only one nonmatching list is null
([)). This indicates that one of the
terms is contained within the other
but the two do not match exactly.
This is a more general case for the
exactly matching case above. When
these conditions are met, the larger

retracted
There are

of the two terms may be
from the PROLOG database.
two instances of this predicate be-
cause the larger term may be the
first or second of those "clashed”.
The reduction rule must be able to
recognize both variations in order to
effect a complete minimization.
Recognizing partially matching
differing in sign by one sub-
term variable is somewhat more

terms
com-

plicated. The PROLOG rules which ac-
complishes this reduction is as fol-
lows:
/* One Subterm Subsumed by
Larger Term Except for a
Single Variable which
Differs in Sign */
*/
*x/
*/
*/

/*
/*
/*
/*
reduce(A,AN,B,BN,X, [i(N,0) |
ListB) :-
member(i(N,1),ListB),
delete(i(N,1),B,NewB),
retract(gen_term(BN,B)),
assert(gen_term(BN,NewB)).
reduce(A,AN,B,BN,X,[i(N,1) | I]
ListB) :-
member(i(N,0),ListB),
delete(i(N,0),B,NewB),
retract(gen_term(BN,B)),
assert(gen_term(BN,NewB)).
reduce(A,AN,B,BN,X, ListA,
Li(N,0) | [1 1) :-
member(i(N,1),ListA),
delete(i(N,1),A,NewA),
retract(gen_term(AN,A)),
assert(gen_term(AN,NewA)).
reduce(A,AN,B,BN, X, ListA,
Li(N,1) | 1 1) =-
member(i(N,0),ListA),
delete(i(N,0),A,NewA),
retract(gen_term(AN,A)),
assert(gen_term(AN,NewA)).

ABC+A'B = BC+A'B
(A+B+C)(A'+B) = (B+C)(A'+B)

11,

that the two terms
match up to a single subterm. A

Here we assume
will

check is made to see if the single
subterm is a complemented version of
some member of what is left over in

the other term. If this condition is
met, the variable from be deleted
from either term. By convention, we
choose to eliminate the variable from
the larger term. Four instances of
the predicate are require because we
cannot make any assumptions about the
position that the crossed-sign vari-

able will be found. 1t can be found
in either term and its value in the
first may be "QW opr #1u, This

981

creates four specific The
predicate relies on a destructive
list function (implemented in PROLOG)

which allows the deletion of a member

cases.

from a list.
Recognizing the property of con-
census is the most difficult of atll

of the Boolean theorems to implement.

It involves the simultaneous com-
parison of three terms. As in the
other cases, no assumption may be

made about the positions in which the
matching subterms will be found.

/* One Term is a Cross Product of

Two Other Terms */
/* */
/* A'B+BC+AC = A'B+AC */
/* (A'+B)Y(B+C)(A+C) = (A'+ B)(A+C) */
/* */

comp(1,0).
comp(0,1).

reduce([i(L,LVO),i(M,MV)], AN,
[i¢L,Lv1),i¢0,0V)1,BN,
[i¢M1,MV1),i¢01,0V1)I,CN) :-
comp(LVO,LV1),
permutation([i(M,MV),i(0,0V)1,
[i(M1,MV1),i(01,0V1)]),
retract(gen_term(CN,_)).

reduce(Li(L,LVOD),i(M,MV)], AN,
[i¢(M1,MV1),i(01,0V1)],BN,
[i¢L,Lv1),i(0,0v)],CN) :-
comp(LVO,LV1),
permutation([i(M,MV),i(0,0V)],
[i(M1,MV1),i(01,0Vv1)]),
retract(gen_term(BN,_)).

reduce(L[i(M1,MV1),i¢01,0V1)], AN,
[i(L,LVO),i(M,MV)], BN,
[i(L,LV1),i(0,0V)>),CN) :-
comp(LVO,LV1),
permutation([i(M,MV),i(0,0V)],
[i(M1,MV1),i(01,0V1)]1),
retract(gen_term(AN, _)).

A Complete Example
The reduction procedure
described above are carried out until

no further minimization can be per-
formed. The procedures are carried
out on both minterms and maxterms,

yielding minimal and equivalent,

though not necessarity equal expres-
sions. The minimization procedure is
concluded by printing the reduced

solution(s) found and tallying up the

number of gates required by each
simptified form. The following is a
complete example of the techniques
using the output specification

t0,1,1,1,0,0,0,11.

?2- solve((0,1,1,1,0,0,0,11).

Output is a maximal function of 3

variables.

f(a,b,c) = atb'c + a'bec!' + a'bc + abc

f(a,b,c) = £ (1, 2, 3, T

f(a,b,c) = (a + b + ¢c) (a' + b + ¢)
(a' + b + c') (a' + bt + ¢)

f(a,b,c) =TT ¢0, 4, 5, 6)

yes

?2- minimize.

Minimal Expression Derived from

Minterms

bc + a'b + a'c

Gate Summary

7 Total Gates (3 And, 2 Or, 2 Not)

Minimal Expression Derived from

Maxterms

(a' + c) (a' + b) (b + ¢)

Gate Summary

7 Total Gates (2 And, 3 Or, 2 Not)

yes

?.

The expression derived from
minterms is kept in sum of products
form, while the expression derived
from maxterms is kept in product of

sums form. Expanding the product of

982

sums form derived from the maxterms,
and performing a little extra mini-
mization shows that the two expres-
sions are indeed equivalent.

is no obvious simplification
will reduce bc + a'b + a'c.
pression

There
that
The ex-
is thus considered minimal.

Completeness and Uniqueness

Early in this paper, it was
stated that a useful minimization al-
gorithm would have to have the
properties of completeness and
uniqueness. Ideally, it would
desired for the algorithm to derive a

single absolutely minimal form.
However, wWe know from applications of
Boolean reduction methods that
several Llogically equivalent though
precisely different forms are often
attainable. Even among forms which
require an equal number of Llogical
gates, a particular form may be more
desirable than another because it is

composed of a preponderance of a par-

ticular type of gate which is easier
to fabricate, less expensive, or more
commonly available. Thus, we would
really Llike to have the opportunity
to examine all possible minimal
forms.

Since minimization by Boolean

reduction requires clashing of terms,
different results are possible when
the clashing order is varied. To
comply with the completeness require-

ment, it is necessary to employ a
procedure which produces a complete
set of the possible clashes among
terms. It is here that the use of
PROLOG as a development tool finds
its greatest advantage. The mini-
mization procedure was initiated by
producing a numbered copies of the

original minterms and maxterms.
Clashes were selected by means of a
“choose" procedure applied to per-
mutations of the original minterm and
maxterm order. The natural back-
tracking mechanisms inherent in
PROLOG <carry the procedure through
all possible permutations of the

original minterm and maxterm sets.

The effect is to attempt all possible
clashings of the terms.
There are enormous costs 1in

terms of computation time to a proce-
dure employing such a strategy. The
worst-case behavior of a simple algo-

rithm to find a single minimal solu-
tion by clashing is (2). However,
when all possible clashings are ex-
amined the order of complexity rises
to (2) * n! This can be
demonstrated by observing that the
(2) clashes must be performed

against the n! possible orderings of
the original minterms and maxterms.
The uniqueness requirement can
be stated as a desire to examine only
unique solutions. Many of the clash-
ings will yield identical solutions.
As each solution is obtained, we can
determine whether it is a permutation
of a solution already derived.
Redundant solutions can thus be
eliminated. This adds a level of
complexity which is trivial when com-
pared to the complexity added by the
completeness requirement.

Observations

The object of this paper has
been to describe a set of procedures
to perform a symbolic minimization of

switching circuit expressions by a
PROLOG implementation of Boolean
simplification rules. The applica-
tion of such rules with simple cir-
cuits at least, produces accurate
results. Artificial constraints on
completeness and wuniqueness were

placed on the
The results
theoretical
as

results to be derived.
are undoubtedly of
significance. However,
in many applications of Artificial

Intelligence to real {ife problems,

the practical significance given the
computational overheads involved can
be questioned at many levels. The
questions raised are certainly valid

given the Llevel of computational
"horsepower" presently attainable.
However, on a daily basis we are
presented with the evidence that com-

puting machines are advancing to a

983

of unprecedented computational
Given these technological ad-
it is not heresy to pre-
algorithms which approach
the same manner as the
human user, wWwill be technically, as
well as, theoretically practical.

The author wWelcomes any feedback

level
pouér.
vantages,
dict, that
problems in

on the material presented here. Cor-
respondence should be addressed to
the author at City College of New
York. A text of the code will be
made available to interested con-

ference participants.

