
Design of An AI-Based Self-Sustaining Habitats Control System

Tag Gon Kim and George Mignon

The Environmental Research Lab., The University of Arizona

Bernard P. Zeigler

Electrical & Computer Engineering Dept., The University of Arizona

ABSTRACT

The work described here derives from the implementa-

tion of intelligent control for a Bioregenerative Closed

Ecological Life Support System. The AI-Based, Dis-

tributed Environment Control System (A1DECS) will

be capable of supporting, in an integrated fashion, all ac-

tivities ranging from planning of agricultural activities

at the highest level to real-time control of environmen-

tal conditions at the lowest level. This paper describes

the AIDECS subsystem that deals with control over two

widely different time scales: 1) that of scheduling crop

planting and harvesting over the extended horizon

needed to ensure maintenance of the CO2/O2 and other

gas balances (typically involving units of weeks, months

and years), and 2) that of controlling environmental

parameters such as temperature and humidity to be

properly correlated with crop requirements and external

weather conditions (typically involving units of hours

and days).

INTRODUCTION

"Intelligent control," the intersection of artificial intel-

ligence (AI), conventional automatic control, and

operations research approaches, is receiving increasing

attention in both theory and application[I].

This paper describes the AI-Based, Distributed En-

vironment Control System (AIDECS) under develop-

ment for a Bioregenerative, closed ecological life sup-

port system (BCELSS) at the Environmental Research

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© A C M 1 9 8 8 0 - 8 9 7 9 1 - 2 7 1 - 3 / 8 8 / 0 0 0 6 / 1 0 5 9 $1.50

Lab of the University of Arizona. The AIDECS will be

capable of supporting, in an integrated fashion, all ac-

tivities ranging from planning of agricultural activities

at the highest level to real-time control of environmen-

tal conditions at the lowest level. This paper describes

the AIDECS subsystem that deals with control over two

widely different time scales: 1) that of scheduling crop

planting and harvesting over the extended horizon

needed to ensure maintenance of the CO2/O2 and other

gas balances (typically involving units of weeks, months

and years), and 2) that of controlling environmental

parameters such as temperature and humidity to be

properly correlated with crop requirements and external

weather conditions (typically involving units of hours

and days).

The AIDECS subsystem contains a natural language-

like interface in which the wide variety of schedules re-

quired in the BCELSS may be specified in a uniform

manner. Such specifications are mapped into schedule

objects that are stored for later implementation and

reuse. Such objects may include specification of events

which put into effect other schedule objects. This gives

rise to hierarchical schedules which facilitate timing of

events to occur at coarse- and fine-grained time units.

Likewise, several schedule objects may be put into effect

at the same time, thus enabling scheduling of concur-

rent, correlated activities.

A hierarchical schedule is implemented by first inter-

preting its root schedule object. Such an interpretation

is performed by mapping the schedule into a set of

elementary, rule-like "activities" to be evaluated by an

evaluator, in similar fashion to that of a conventional in-

ference engine. The evaluator continually cycles

through its list of activities, checking whether the timing

and preconditions of activities are satisfied, and executes

the actions of those that are so triggered. Actions at the

1059

http://crossmark.crossref.org/dialog/?doi=10.1145%2F55674.55725&domain=pdf&date_stamp=1988-06-01

lowest level are commands to sample environmental

variables or to actuate control mechanisms. Actions at

higher levels include carrying out the schedule replace-

ments dictated by hierarchical schedules.

The AIDECS subsystem is written in SCHEME for PC

or TI Explorer execution. It communicates with C lan-

guage data acquisition and control software for interfac-

ing to sensors and actuators. It affords much greater

flexibility in schedule specification and online modifica-

tion than would be possible in a pure C language (or

other conventional programming approaches). The sys-

tem design exemplifies general principles by which ex-

pert system architectures may be extended to include

time-sensitive behaviors. This paper describes the rep-

resentations employed to realize these principles and

details in the overall design of the AIDECS subsystem.

SYSTEM ARCHITECTURE

The AIDECS consists of the Executive Expert System

(EES), the Natural Language Interface (NLI), the Con-

straints Checker (CC), the Schedule Manager (SM), the

Schedule Executor (SE), and the Real-Time CTRL &

DAQ System (RTCDAS), as shown in Fig. 1.

The EES decides an optimal advisory schedule by as-

king the user a sequence of questions or by simulating

the environment. The NLI enables a person to specify a

time-based schedule to the environmental control sys-

tem. The CC decides whether the schedule is acceptable

or not by comparing it with a set of constraints contained

within it, and sends it to the SM. The SM generates the

specification of the schedule, translates the specification

into a schedule object, and sends the object to the SE.

The SE transforms the object into a set of activities, each

of which has slots for a pair of condition and action, and

others. The SE continually evaluates each activity in the

set; if the condition of an activity is satisfied, the as-

sociated action in the activity is fired, which sends a

micro-level control signal(s) to the RTCDAS. This sig-

nal has information on setpoint(s) such as temperature,

and location within the BCELSS.

EXPERT SYSTEM S

Expert systems for the EES components are being

developed using a consultation system shell (CESM,

Classification Expert System Maker), which accepts an

entity structure-l ike description of a classification

hierarchy and writes a set of production rules to do the

specified classification. The uncertainty management

module of this system employs a modified version of

~ NLI

Schedule I Manager

Schedule@ Executor

Command~ > Oata Po in ts

~ RTCDAS

a c t u a t o r s s e n s o r s

~EE S

Fig. 1. The/El-Based Environmental Control System

D e m p s t e r - S h a f e r ' o p e r a t o r s to provide adjustable

evidence accumulation properties[2]. Forward Chain-

ing, Backward Chaining, and Mixed modes of rule inter-

pretation are provided. Graphic displays are easily in-

corporated to facil i tate user comprehension. Since

CESM is written in Scheme, it is readily integrated with

other components in the AIDECS system. Commercial

shells would present difficulties in this respect.

We have found that it is much easier to keep track of

rules being developed for a consultation system when

there is a graphical aid to organize the knowledge being

employed. CESM can automatically generate rules from

such a graphical description, thus saving much develop-

ment effort and guaranteeing a greater degree of com-

ple teness (humans tend to think only in terms of

hypothesis-confirming rules, omitting hypothesis-dis-

confirming rules that narrow the final classification).

For example, working with pest management experts,

we developed an expert system for pest identification

1060

and control. Concentrating first on aphids, the most im-

portant insect pest problem anticipated, the consult-

ation system provides assistance in distinguishing aphids

from other insects, recognizing important species of

aphids, deciding what form of action is needed, and

recommending environmental controls as appropriate.

The system displays pictures of distinguishing body

characteristics upon user request. The AIDECS call the

pest management expert system whose recommenda-

tions may be checked by the CC accessing a crop toleran-

ces knowledge base. The user may override the environ-

menta l schedule current ly in force to implement

emergency pest control environmenta l enhancers

recommended by the pest management expert system.

NATURAL LANGUAGE INTEFACE

The NI~I is designed to facilitate specifying a time-based

schedule for an environmental control system with con-

siderable freedom of expression. An Augmented Transi-

tion Network (ATN)[3] is used to implement the syntax

and semantics of schedule specifications.

Consider a simplified example of a schedule specifica-

tion:

from 1988/1/1 to 1989/12/31

in all plots in intensive-agriculture biome

for 24 hours period

maintain temperature at 70 degrees for first 12 hours

increase temperature by 5 degrees for next 12 hours.

We expect the ATN to produce the following variables

with values assigned after parsing:

start-date = 1988/1/1

end-date = 1989/12/31

plot-type = all

biome-type = intensive-agriculture

period-value = 24

period-units = hours

control = (maintain increase)

parameter = (temperature temperature)

parameter-value -- (70 5)

parameter-units = (degrees degrees)

duration-time-value = (12 12)

duration-time-units = (hours hours)

Subsequent modules can read the values of the variables

and eventually issue corresponding instructions to set

the thermostat of the heating-cooling system. Fig. 2

command -> when-phrase where-phrase peri,M-phrase act&rials-phrase
J where-phrase when-phrase perlt~d-)hrase act&tiros-phrase

when-p u'ase -> start-phrase end-phrase
start-phrase -> frtml-prep start<[ale

fronl-prep -> fiom Jbegimfiug
s ta r tda te -> [read a dale]

end-phrase -> to-prep end<late
to-prep -.> to L ending [until
end-date -> [read a dlite]

where-phrase -> plot-phrase biome-phrase
ph)t-phrase -> Iocator determiner-phrase ph)t-type-phrase I empty

hmator-> in
detorminer-phrase -> determiner [empty

determiner-> tile
plot-type-phrase -> plat-type plot-word

plot-type -> a l l | plato plot-type plot I plot-type
plot'~ plot-type plot:l plot-type [plot4 plot-type

plot-ward -> plots I empty
biome-phrase -> locator de.trainer-phrase biome-type-phrase

biome-type-phrase -> biome-type biome-word
biome-type -> ia I intensive-agriculture I savannah I fin'est
biome-word - > bib)me I empty

periud-phrase -> cycle-prep-phrase cycle-phrase
cycle-prep-phrase -> cycle-prep cycle

cycle-prep-> for
cycle-> every empty

cycle-phrase -> period-t me-value period-time-units period
period-time-value -> [read a number]
period-time-units -> sec] sees min [mins I hour I hours

I hrs] hr I days day
period -> period [empty

act&tiros-phrase -> action-phrase duration-phrase act&tiros-phrase
lduration-phrase action-phrase act&tiros-phrase

action-phrase -~> control what parameter-phrase
control-> maintain I increase [decrease
w h a t - > temperature | humidity
parameter-phrase -> designator parameter-value parameter-units

designator -> to I a t l by
parameter-value . > [read a number]
parameter-units -> degrees deg degs per-cent %

durat on-phrase -> sequence-phrase dm'ation-time-value duration-time-milts
seqence-phrase -> for-prep seq-word

fur-prep-> for
seq-word -> first next last empty

durafion-t me-va ue -> [read a humber]
duratlon-time-units -> sec secs I rain [rains [hours

I h°ukl hrs I h"l days ~iay

Fig. 2. Context-free Grammar for Schedule Specification

shows the context-free grammar underelying the ATN

design. As shown in the figure, humans have several

ways to express the same information. For example, the

rewrite rules for "command" permit any order of action

and timing phrases. Other freedoms are less significant

but equally user-friendly: alternative prepositions (to,

until), abbreviations (hours, hrs), etc.

The parser reads a schedule specification either from

the keyboard or from a file. It has a back-tracking

capability that detects syntax errors and allows the user

to go back to the point where he/she made an error and

continue specifying the schedule from that point. It also

has interactive help invoked by "?" that gives all pos-

sibilities for specification at the current point.

CONSTRAINTS CHECKER

The CC contains a set of constraints on environmental

parameters such as temperature and humidity and

tolerances for various crops. The CC compares the set of

constraints with a set of values of variables correspond-

ing to the specified schedule, set by the parser of NLI.

Only the schedule that satisfies these constraints is sent

to the Schedule Manager to prune the entity structure of

the Timed Action Language (see below). For example, a

1061

temperature schedule for a crop to "maintain tempera-

ture at 60 degrees for 4 hours" can be checked with such

constraints as:

1) Is 60 degrees lower than temperature upper limit?

2) Is 60 degrees higher than temperature lower limit?

3) Is 4 hours longer than maximum exposure time at 60

degrees?

4) If so, does 60 degrees for 4 hours result in a tolerable

loss of crop?

Violations of constraints are reported to the user who

must decide (in conjunction with the EES) how to revise

the designed schedule appropriately.

SCt lEDULE MANAGER

The SM has two subsystems: a schedule generator and a

schedule translator. The generator generates a schedule

using the values of variables assigned by the parser of the

NLI. To genera te the schedule specif icat ion, we

developed the Timed Action Language (TAL) using the

concept of system entity structuring formalism[4]. As

shown in Fig. 3, TAL can specify the following informa-

tion for a schedule:

- E N T : T A L , a t t r i bu te s - > (ICO-ORDINATOII? I)))
--ASP : T A L - D E C
-- -ENT : W I t E R E ,a t t r ibu tes - > 0
- - - A S P : W I t E R E - D E C
- - - E N T : I N T E N S I V E - A G R I C U L T U R E , a t t r i b u t e s - > (tMA'X- I 'LOTS 5)J
. E N T : ALL-P , a t t r i b u t e s - > 0
- -4"NT : S T A R T - D A T E ,a t t r i lmtes - > ((DATE 198711 l / I))
- - -ENT : E N D - D A T E , a t t r i b u t e ~ - > ((DATE 1988/12/:1111
- - -ENT : C Y C L E , a t t r i bu te s - > ((PERIOD 24) (U N I T ItlIS))
- - E N T : A C T & T I M I N G S ,a t t r iButes - > ()
. . . . ASP : A C T & T I M I N G S - A S P
. . . . E N T : B A C K G R O U N D - A C T S , a t t r i bu t e s - > 0
. ASP : B A C K G R O U N D - A C T S - D E C
. E N T : DAS , a t t r i b u t e s - > 0
. E N T : S C R E E N , a t t r i bu te s - > 0
. . . . E N T : A C T & T I M S , a t t r i bu t e s . > ((N U M - C l t l L D R E N 9))
. ASP : A C T & T I M S - A S P
. E N T : A C T & T I M 0 , a t t r i h u t e s - > 0
. ASP : A C T & T I M 0 - A S P
. E N T : A C T I O N 0 , a t t r i bu te s - > ((P U T - I N - E F E E C T 0))
. A S P : A C T I O N 0 - A S P
. E N T : I t O W 0 , a t t r i bu t e s - > ((ACTION M A I N T A I N))
. E N T : TEMPO , a t t r i bu t e s - > ((R A N G E 55))
. E N T : C O N T I N U O U S 0 , a t t r i h u t e s . > ((l t O W - L O N G 5) (U N I T I tRS))
. E N T : A C T & T I M I , a t t r i b u t e s - > 0
. A S P : A C T & T I M I-ASP
. E N T : ACTION1 ,a t t r ibu te~ - > ((P U T - I N - E F F E C T 0))
. A S P : ACTION 1-ASP
. E N T : H O W l , a t t r i b u t e s - > ((ACTION M A I N T A I N))
. E N T : T E M P I , a t t r i bu t e s - > ((R A N G E 60))
. E N T : C O N T I N U O U S I . a t t r i b u t e s - > ((N O W - L O N G 2) (U N I T HRS))
. E N T : A C T & T I M 2 , a t t r i b u t e s - > 0
. A S P : A C T & T I M 2 - A S P
. E N T : A C T I O N 2 , a t t r i bu te s - > ((P U T - I N - E F F E C T 0))
. A S P : A C T I O N 2 - A S P
. E N T : H O W 2 ,at tr i lautes - > ((ACTION M A I N T A I N))
. E N T : T E M P 2 , a t t r i bu t e s - > ((R A N G E 65))
. E N T : C O N T I N U O U S 2 . a t t r i b u t e s - > ((H O W - L O N G 1) (U N I T HRS))
. E N T : A C T & T I M 3 , a t t r i bu te s - > 0
. A S P : A C T & T I M 3 - A S P
. E N T : A C T I O N 3 , a t t r i bu t e s - > ((P U T - I N - E F F E C T 0))
. A S P : A C T I O N 3 - A S P
. E N T : H O W 3 , a t t r i bu t e s . > ((ACTION M A I N T A I N))
. E N T : T E M P 3 , a t t r i bu t e s - > ((R A N G E 70))
. E N T : C O N T I N U O U S 3 . a t t r i b u t e s - > (CHOW-LONG 1) (U N I T HRS))
. E N T : A C T & T I M 4 , a t t r i b u t e s - > 0
. . . . A S P : A C T & T I M 4 - A S P
. E N T : A C T I O N 4 , a t t r i bu t e s - > ((PUT-I N - E F F E C T 0))
. A S P : A C T I O N 4 - A S P
. E N T : HOW4 , a t t r i bu t e s . > ((ACTION M A I N T A I N))
. E N T : T E M P 4 , a t t r i bu t e s - > ((R A N G E 75))
. E N T : C O N T I N U O U S - I , a t t r i b u t e s - > ((H O W - L O N G 7) (U N I T HRS))
. . . . E N T : A C T & T I M 5 . a t t r i b u t e s - > 0
. ASP : A C T & T I M 5 - A S P

Fig. 3. The Entity Strucuture for Timed Action Language

1. Where
1.1 Which biome (e.g., {intensive-agriculture ...})

1.1.1Which plots in a biome

1.1.1.l Which sectors in a plot

2. Start-date

3. End-date

4. Period

5. Action(s) and Timing(s)

5.1 Action(s)

5.1.1 What (e.g., {crop, temp, humidity....})

5.1.2 How (e.g., {maintain increase....})

5.2 Time(s) (e.g., {discrete, continuous....})

An actual schedule can be set by pruning the Entity

Structure of the TAL with respect to the schedule

specified by the user through the NL1. The pruning pro-

cedure assigns values of attributes in an entity and

makes choices where alternatives exist for the same en-

tity[5]. It also generates as many actions and correspond-

ing timings (ACT&TIMS in Fig. 3) as the schedule

specifies. For example, Fig. 8, a pruned entity structure,

has biome type of intensive-agriculture and a sequence

of 9 different actions and timings about temperature

schedule as specified in the schedule of Fig. 7.

TAL specifies a schedule in a hierarchical manner.

Each schedule has a sequence of intervals represented

by sub-schedules; each sub-schedule in turn has its own

sub-schedules, recursively. Such a capability allows the

SM to change its schedule locally on any level of the

hierarchy. It can also specify more than two different

schedules in the same interval (called a "joint schedule").

For example, a temperature schedule and a humidity

schedule can be specified in the same interval of a cycle,

as shown in (13) through (22) and in (24) through (33) in

Fig. 4.

The schedule translator in the SM translates the high-

level schedule specification into low-level schedule ob-

ject(s). The procedure of translation is as follows:

1. Create space object

1.1 Create biome object(s)

1.2 Create plot object(s)

1.3 Create sector object(s)

2. Attach sector(s) to plot(s), and plot(s) to biome(s)

3. Create schedule object(s)

4. Attach the schedule object(s) to space object(s)

including biome(s), plot(s), and sector(s)

1062

For all plots in Intensive-Agq'iculture Biome
preform the following schedule fi'om 1988/I/I to 1990/12/31

(1) fiw every year period
(2) for first 4 months
(3) for every 2 mouths period
(4) tbr first 20 days
(5) fi)r every 1 day period
(6) for first 8 hours, maintain temp at 50
(7) for next 8 hours, maintain temp at 55
(8) for last 8 hours, maintain temp at 60
(9) for next 40 days
(10) for every 1 day period
(l l) for first 12 hours, maintain temp at 50
(12) for next 12 hours, maintain temp at 60
(13) for next 4 months perform following 2 schedules
(14) schedule l for temp:
(15) for every l day period
(16) for first 12 hours, maintain temp at 60
(17) for next 12 hours, maintain temp at 65
(18) schedule 2 for humid:
(19) for every 1 month period
(20) for first 10 days, maintain humi at 65
(21) for next 10 days, maintain humi at 70
(22) for last 10 days, maintain humi at 75
(23) for last 4 months
(24) for every 2 months period
(25) for first 20 days perform following 2 schedules
(26) schedule 1 for temp:
(27) for every 1 day period
(28) for f'u'st 18 hours, maintain temp at 70
(29) for next 6 hours, maintain tcmp at 75
(30) schedule 2 for humid:
(31) for every 1 day period
(32) for first 12 hours, maintain humi at 65
(33) for next 12 hours, maintain humi at 70
(34) for next 40 days
(35) for every 20 days period
(36) for first 10 days, maintain temp at 65
(37) for next lO days, maintain temp at 7(}

Fig.4. A Hierarchical Schedule Specification

SCHEDULE EVALUATOR

The concept of SE evolved from the canonical architec-

ture of rule-based expert systems as shown in Fig.5. We

see that the if-then rules are replaced by activities con-

taining a special section for time management. The In-

ference Engine is called an Activity Evaluator (AE)

since inferencing is now only a part of the effect of rule

evaluat ion. The AE achieves its rule evaluat ion by

referencing the clock and the t iming section of ac-

tivities, in addition to the usual rule conditions. The user

is replaced by the real world process to be managed. The

usual question and response interaction between the In-

ference Engine and the user is replaced by a more com-

plex interaction in which the AE exerts actions upon the

process and receives sensorial feedback from it. The

structure of an activity is as shown in Fig. 6.

An activity will be fired, i.e., its action part will be ex-

ecuted by the AE, under the following circumstances:

1) its t iming requirements are met

2) its condit ion is satisfied

3) the activities of its source schedule are not overriden.

RULE BAS.~
.

TIMING + PROCESS INTERACTION

I t Z gZT&
comman~ensor readings

Fig. 5. Upper: A Rule-Based Expert System Architecture

Lower: A Schedule Excutor Architecture

In one cycle of rule evaluation, more than one activity

can be fired. This is similar to the classifier systems ap-

proach[6] and contrasts with the usual inference engine

cycle in which a conflict resolution scheme selects only

one rule to fire of those that are triggered.

As depicted in Fig. 6, in each cycle the AE scans the

current set of activities and writes a new set of activities

for the next cycle. At the start of a cycle, the AE reads

the clock. Then for each activity, it may perform one or

more of the following actions:

• fire the activity: if the above conditions 1), 2)
and 3) hold

• reschedule the activity: modify its t iming
specification and place it in the activities set of
the next cycle. This occurs whenthe timing re-
quirements 1) are satisfied, whether or not re-
quirements 2) or 3) are also met.

• retain the activity: place it unmodified in the ac-
tivities set of the next cycle. This occurs when
the t iming requirements 1) are not met.

• remove the activity: do not retain the activity
for the activities set of the next cycle. This oc-
curs when the timing requirements 1) have be-
come impossible to satisfy.

• handle user interrupt: respond to the user in-
terrupt by calling the EES for consultation to
possibly override the current schedule in the
period to be specified.

1063

source timing-specs condition action

start-time end-time next-event-time period

USER interrupt

L
J ACTIVITIE~ this ¢ycleJ

>

l?I
AE

f i re

override schedOle

ACTIV IT IES : next cycle]

/

f i r e >
reschedule

~ P e m o v e

- handle
interrupt

sensor readings commands

Fig. 6. Upper: Structure of Activity
Lower: Overview of Activity Evaluation

Note that the action part of a fired activity may cause ad-

ditions or deletions of activities for the next cycle. This
reprogramming of the activity set is a powerful

capability that is employed in hierarchical scheduling

(see Fig. 4) among other possibilities.
In more detail, the timing requirements of an activity

are met if all the following hold:

1) its starting time has arrived, i.e.,

start-time < = current-time

2) its life time has not expired, i.e.,

current-time < = end-time

3) its next-event-time has arrived, i.e.,

current-time = next-event-time.

When an activity is rescheduled, its next-event-time is

increased by its period. That is, the next-event-time slot

is modified by next-event-time := (next-event-time +

period) and is placed in the activities for the next cycle.

Because rescheduling occurs when the timing require-

ments are met, an activity gets a chance to be fired peri-

odically while it is alive. An activity is removed from

consideration when its life time has expired, i.e., when

current-time end-time.

TEST OF AIDECS
The AIDECS under development has been tested on the

real-time basis under a PC/AT-based computer network.

Two computers have been used for two dedicated jobs:

one (computer I) for the RTCDAS component (Fig. 1)

; ; ; ; temp and hunlid schedule f o r winter ; ; ; ;

fi'om 1987/11/1 to 1988/12/31
in all plots in intensive-alffieulture biome
for every 24 hrs period

mainta in temperatm'e at 55 degs for
mainta in temperature at 60 degs for
maintain temperature at 65 degs for
maintain temperature at 70 degs for
maintain temperature at 75 degs for
maintain tempe,-ature at 70 degs for
maintain temperature at 65 degs tbr
maintain temperature at 60 degs for
maintain temperature at 55 degs for

mainta in humidity at 70 % for 24 hrs.

first 5 hrs
next 2 hrs
next 1 hrs
next i hrs
next 7 hrs
next 1 hrs
next 1 hrs
next l hl~
last 5 hrs

Fig. 7. Actual Schedule Tested in Real-Time Basis

This File is accepted by the Parser in NLI

.ENT : TAL ,attr ib.tes -> ((COORDINATOR? U))
-ASP : TAL-UeC
- - eNT : WHEre .attribute= -> 0
--ASP : WIt ERE-DEC
- -ENT : INTENSIVE-AGRICULTURE .attributes *> ((MAX.PLOTS 5))
- - E N T : ALI~P , a t t r i b u ~ -> 0
- . E N T : START-DATE ,attributes .> ((DATe 198711111))
- - E N T : END-DATE ,attr;bute~ -> ((DATE 1988/12J31))
- -ENT : CYCLE ,attrihutes -> ((PERIOD 241 (UNIT Il l{S))
- - C N T : ACT&TIMINGS ,attrlbutes -> 4)
- -ASP : ACT&TI MI NGS-AfiP
- -ENT : BACKGROUN~ACTS attributes .> O
- -ASP : BACKGROUND*ACTS-DEC
. - -ENT : UAS ,a t t r lbut~ *> ()
- - - -ENT : SCREEN =ttr ;but~ .> (}
. - - - eNT : ACT&TIME ,attril~utes . > {(NUM-CHILDREN 9
--ASP : ACT&TI MS-ASP
--ENT : ACT&TIM0 ,a t t r lbut~ -> 0
. - -ASP : ACT&TIM0.AEP
----ENT : ACTION0 .attributes -> ((PUT.IN,E FF~CT 0))
- - - - -ASP : ACr lON0~ASP
----ENT : HOWO ,arbutus . > ((ACTION MAINTAIN))
- - - - E N T T~MP0 atCribut~ .> ((RANGE 55)) Has
. - -ENT : CONTINUOUS{) ,at~-ibutes .> (HOW.LONe 5) (UN T))
. - - E N T : ACT&TIMI .attc;butes -> 0
- - A S P : ACT&TIM I .ASP
- - E N T : ACTION! ,=¢¢6bu~ *> ((PUT.IN-EFFECT()))
- - A S P : ACTION I-ASP
- - E N T : HOWl attrlbutes -> ((ACTION MA NTAIN))
- - E N T : T E M P I ' at, t r ibut=s.> ((RANGE 60))
- -ENT : CONTINUOUSI ,=tt~but~ -> ((HOW-LONG 2) (UNIT HAS))
- - E N T : ACT&T[M £ .attribute= -> 0
- - A S P : ACT&TIM~-ASP
- - E N T : ACTION2 .attributes -> ((PUT.IN-EFFECT 0))
- -ASP : ACTION2-ASP
- -Eb rP : HOW2 i tE r l bu~ .> ((ACTION MAINTAIN))

E N T TEMP2 a t w i b u t ~ - > ((RANGE 65})
~ E N T : CONT[NUOUS2 .attr~but<s . > HOW-LONG UNIT ERE))
- - E N T : ACT&T[M3 , a i r ' b u t t s -> (}
- - A S P : ACT&T[M 3-ASP
- - E N T : ACTION3 . a t t H b u ~ -> ((PUT-IN-EFFECT ()))
- - A S P : ACTZON3-ASP
- - E N T : SOW3 ,attributes -> ((ACTION MAINTAIN))

E N T : TEMP3 .aOJ~but~ -> ((RANGE 70))
- -ENT : CONTINUOUS3 .at~but4~ .> ((HOW-LONG 1) (UNIT NRS))
- - - - E N T : ACT&TIM4 ,attributes -> 0
- - A S P : ACT&TIM4-ASP
- - E N T : ACTION4 ,att~buCes .> ((PUT.IN.EFFECT 0))
- -ASP : ACT[ON4-ASP
- - E N T : HOW4 ~ t t r l b u t ~ . > ((ACTION MAINTAIN))
- -ENT : TEMP4 ,attr ;but~ -> ((RANGE TS])
- -ENT : CONTINUOUS4 .attr;butes .> ((HOW-LONG 7) (UNIT HAS))
- -SNT : ACT&TI M 5 , a t t r i b u ~ ->
- -ASP : ACT&TI M5-ASP
- -ENT : ACTION5 ,at~bute~ -> ((PUT.IN-EFFECT 0))
- -ASP : ACTIONS-ASP
- - E N T : HOW5 a t t ~bu~ .> ((ACTION MAINTAIN))
--ENT : TEMPS ,attributes .> ((RANGE T0)
---ENT : CONTINUOUS5 .au~but~s .> ((HOW-LONG 1) (UNIT URS))
- - - - E N T : ACT&T[M6 ,&ttr lbut~ . > 0
- -ASP : ACT&T{ M fPASP
- -ENT : ACTION6 ,attr ibut~ .> ((PUT.IN.EFFECT O))
---ASP : ACTION6-ASP
~ E N T : HOW6 .attributes . > ((ACTION MAINTAIN))
- -ENT : TEMP6 ,at~ribut~ .> ((RANGE 65))
- -ENT : CONTINUOUS{; ,atu~but~ -> ((HOW-LONG 1) (UNIT HAS))
- - E N T : ACT&TIM7 .at tr lbut~ .> 0
--ASP : ACT&TIM?-ASP
- - E N T : ACTION? ,att~butes -> ((PUT*IN-EFFECT O))
- -ASP : ACTIONT-ASP
- -ENT : UOW7 ,a t t r i bu~ *> ((ACTION MAINTAIN))
--~ENT : TEMPT ,at t r ibut~ .> ((RANGE 60))
- -ENT : CONTINUOUS7 . a t t H ~ u ~ - > ((HOW-LONG I) (UNIT Has))
- - - - E N T : ACT&TI M0 ,attrlbutcs .> 0
- -ASP : ACT&TI MS-ASP
- -ENT : ACTION8 ,JttHbute~ -> ((PUT-IN-EFFecT U))
- - - -ASP : ACTIONS*ASP
- - - - - E N T : HOW8 ,attr ibut~ . > ((ACTION MAINTAIN))

E N T : TEMP8 ,s t t r ibut~ -> (tRANCE 55))
- - E N T : CONTINUOUS8 ,attr ibut~ -> ((HOW-LONG 6) {UNIT HAS))
end of dlsplay

Fig. 8. Puned Entity Structure of Fig. 3 with respect

the Temperature Schedule in Fig. 7

1064

using C language, and the other (computer 2) for EES,

NLI, CC, SM, and SE using SCHEME language. Com-

puter 2 was used to specify schedule shown in Fig. 7

through the NLI. The specification accepted by the CC

was sent to the SM which generated the pruned entity

structure of the TAL (Fig. 8) with respect to the

schedule, which in turn was transformed into schedule

object(s) by the SE. The SE successfully sent commands

to the RTCDAS in computer 1. The RTCDAS, having a

set of control software written by C, issued micro-level

signals to the control devices. Conversely, data acquired

by the RTCDAS was been periodically sent to computer

2, where the EES stores current data for late use. Work

is continuing to install and test the AIDECS in a

prototype life support system.

REFERENCES

1. Proceedings of IEEE International Symposium on In

telligent Control, edited by A. Meystel and J.Y.S. Luh,

Jan. 1987, Phil, PA.

2. B.P. Zeigler , "Some Proper t ies of Modified

Dempster-Shafer Operations in Rule-Based Inference

System," Tech Report AIS-5, Electrical and Computer

Engineering Department, University of Arizona, April,

1987.

3. P.H. Winston, Artificial Intelligence, 2nd ed. Addi-

tional Wesley, Reading, MA., 1984

4. B.P. Zeigler, Multifaceted Modeling and Discrete

Event Simulation, Academic Press, London and Orlan-

do, FL., 1984.

5. B.P. Zeigler, "Knowledge Representation From New-

ton to Minsky and Beyond," Applied Artificial Intel-

ligence, vol.1 87-107, Hemisphere Pub. Co., 1987.

6. J.H. Holland, K.J. Holyoak, R.E. Nesbit and P.R.

Thagard, Induction: Process of Inference, Learning, and

Discovery, The MIT Press, Cambridge MA, 1986.

1065

