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ABSTRACT 

The work described here derives from the implementa- 

tion of intelligent control for a Bioregenerative Closed 

Ecological Life Support System. The AI-Based, Dis- 

tributed Environment Control System (A1DECS) will 

be capable of supporting, in an integrated fashion, all ac- 

tivities ranging from planning of agricultural activities 

at the highest level to real-time control of environmen- 

tal conditions at the lowest level. This paper describes 

the AIDECS subsystem that deals with control over two 

widely different time scales: 1) that of scheduling crop 

planting and harvesting over the extended horizon 

needed to ensure maintenance of the CO2/O2 and other 

gas balances (typically involving units of weeks, months 

and years), and 2) that of controlling environmental 

parameters such as temperature and humidity to be 

properly correlated with crop requirements and external 

weather conditions (typically involving units of hours 

and days). 

INTRODUCTION 

"Intelligent control," the intersection of artificial intel- 

ligence (AI), conventional automatic control, and 

operations research approaches, is receiving increasing 

attention in both theory and application[I]. 

This paper describes the AI-Based, Distributed En- 

vironment Control System (AIDECS) under develop- 

ment for a Bioregenerative, closed ecological life sup- 

port system (BCELSS) at the Environmental Research 
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Lab of the University of Arizona. The AIDECS will be 

capable of supporting, in an integrated fashion, all ac- 

tivities ranging from planning of agricultural activities 

at the highest level to real-time control of environmen- 

tal conditions at the lowest level. This paper describes 

the AIDECS subsystem that deals with control over two 

widely different time scales: 1) that of scheduling crop 

planting and harvesting over the extended horizon 

needed to ensure maintenance of the CO2/O2 and other 

gas balances (typically involving units of weeks, months 

and years), and 2) that of controlling environmental 

parameters such as temperature and humidity to be 

properly correlated with crop requirements and external 

weather conditions (typically involving units of hours 

and days). 

The AIDECS subsystem contains a natural language- 

like interface in which the wide variety of schedules re- 

quired in the BCELSS may be specified in a uniform 

manner. Such specifications are mapped into schedule 

objects that are stored for later implementation and 

reuse. Such objects may include specification of events 

which put into effect other schedule objects. This gives 

rise to hierarchical schedules which facilitate timing of 

events to occur at coarse- and fine-grained time units. 

Likewise, several schedule objects may be put into effect 

at the same time, thus enabling scheduling of concur- 

rent, correlated activities. 

A hierarchical schedule is implemented by first inter- 

preting its root schedule object. Such an interpretation 

is performed by mapping the schedule into a set of 

elementary, rule-like "activities" to be evaluated by an 

evaluator, in similar fashion to that of a conventional in- 

ference engine.  The evaluator continually cycles 

through its list of activities, checking whether the timing 

and preconditions of activities are satisfied, and executes 

the actions of those that are so triggered. Actions at the 
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lowest level are commands to sample environmental 

variables or to actuate control mechanisms. Actions at 

higher levels include carrying out the schedule replace- 

ments dictated by hierarchical schedules. 

The AIDECS subsystem is written in SCHEME for PC 

or TI Explorer execution. It communicates with C lan- 

guage data acquisition and control software for interfac- 

ing to sensors and actuators. It affords much greater 

flexibility in schedule specification and online modifica- 

tion than would be possible in a pure C language (or 

other conventional programming approaches). The sys- 

tem design exemplifies general principles by which ex- 

pert system architectures may be extended to include 

time-sensitive behaviors. This paper describes the rep- 

resentations employed to realize these principles and 

details in the overall design of the AIDECS subsystem. 

SYSTEM ARCHITECTURE 

The AIDECS consists of the Executive Expert System 

(EES), the Natural Language Interface (NLI), the Con- 

straints Checker (CC), the Schedule Manager (SM), the 

Schedule Executor (SE), and the Real-Time CTRL & 

DAQ System (RTCDAS), as shown in Fig. 1. 

The EES decides an optimal advisory schedule by as- 

king the user a sequence of questions or by simulating 

the environment. The NLI enables a person to specify a 

time-based schedule to the environmental control sys- 

tem. The CC decides whether the schedule is acceptable 

or not by comparing it with a set of constraints contained 

within it, and sends it to the SM. The SM generates the 

specification of the schedule, translates the specification 

into a schedule object, and sends the object to the SE. 

The SE transforms the object into a set of activities, each 

of which has slots for a pair of condition and action, and 

others. The SE continually evaluates each activity in the 

set; if the condition of an activity is satisfied, the as- 

sociated action in the activity is fired, which sends a 

micro-level control signal(s) to the RTCDAS. This sig- 

nal has information on setpoint(s) such as temperature, 

and location within the BCELSS. 

EXPERT SYSTEM S 

Expert  systems for the EES components are being 

developed using a consultation system shell (CESM, 

Classification Expert System Maker), which accepts an 

entity structure-l ike description of a classification 

hierarchy and writes a set of production rules to do the 

specified classification. The uncertainty management 

module of this system employs a modified version of 

~ NLI 

Schedule I Manager 

Schedule@ Executor 

Command~ > Oata Po in ts  

~ RTCDAS 

a c t u a t o r s  s e n s o r s  

~EE S 

Fig. 1. The/El-Based Environmental Control System 

D e m p s t e r - S h a f e r ' o p e r a t o r s  to provide adjustable 

evidence accumulation properties[2]. Forward Chain- 

ing, Backward Chaining, and Mixed modes of rule inter- 

pretation are provided. Graphic displays are easily in- 

corporated to facil i tate user comprehension.  Since 

CESM is written in Scheme, it is readily integrated with 

other components in the AIDECS system. Commercial 

shells would present difficulties in this respect. 

We have found that it is much easier to keep track of 

rules being developed for a consultation system when 

there is a graphical aid to organize the knowledge being 

employed. CESM can automatically generate rules from 

such a graphical description, thus saving much develop- 

ment effort and guaranteeing a greater degree of com- 

ple teness  (humans tend to think only in terms of 

hypothesis-confirming rules, omitting hypothesis-dis- 

confirming rules that narrow the final classification). 

For example, working with pest management experts, 

we developed an expert system for pest identification 
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and control. Concentrating first on aphids, the most im- 

portant  insect pest problem anticipated, the consult- 

ation system provides assistance in distinguishing aphids 

from other insects, recognizing important species of 

aphids, deciding what form of action is needed, and 

recommending environmental controls as appropriate. 

The system displays pictures of distinguishing body 

characteristics upon user request. The AIDECS call the 

pest management expert system whose recommenda- 

tions may be checked by the CC accessing a crop toleran- 

ces knowledge base. The user may override the environ- 

menta l  schedule current ly  in force to implement  

emergency  pest  control  environmenta l  enhancers 

recommended by the pest management expert system. 

NATURAL LANGUAGE INTEFACE 

The NI~I is designed to facilitate specifying a time-based 

schedule for an environmental control system with con- 

siderable freedom of expression. An Augmented Transi- 

tion Network (ATN)[3] is used to implement the syntax 

and semantics of schedule specifications. 

Consider a simplified example of a schedule specifica- 

tion: 

from 1988/1/1 to 1989/12/31 

in all plots in intensive-agriculture biome 

for 24 hours period 

maintain temperature at 70 degrees for first 12 hours 

increase temperature by 5 degrees for next 12 hours. 

We expect the ATN to produce the following variables 

with values assigned after parsing: 

start-date = 1988/1/1 

end-date = 1989/12/31 

plot-type = all 

biome-type = intensive-agriculture 

period-value = 24 

period-units = hours 

control = (maintain increase) 

parameter = (temperature temperature) 

parameter-value -- (70 5) 

parameter-units = (degrees degrees) 

duration-time-value = (12 12) 

duration-time-units = (hours hours) 

Subsequent modules can read the values of the variables 

and eventually issue corresponding instructions to set 

the thermostat of the heating-cooling system. Fig. 2 

command -> when-phrase where-phrase peri,M-phrase act&rials-phrase 
J where-phrase when-phrase perlt~d-)hrase act&tiros-phrase 

when-p u'ase -> start-phrase end-phrase 
start-phrase -> frtml-prep start<[ale 

fronl-prep -> fiom Jbegimfiug 
s ta r tda te  -> [read a dale] 

end-phrase -> to-prep end<late 
to-prep -.> to L ending [ until 
end-date -> [read a dlite] 

where-phrase -> plot-phrase biome-phrase 
ph)t-phrase -> Iocator determiner-phrase ph)t-type-phrase I empty 

hmator-> in 
detorminer-phrase -> determiner [ empty 

determiner-> tile 
plot-type-phrase -> plat-type plot-word 

plot-type -> a l l |  plato plot-type plot I plot-type 
plot'~ plot-type plot:l plot-type [ plot4 plot-type 

plot-ward -> plots I empty 
biome-phrase -> locator de.trainer-phrase biome-type-phrase 

biome-type-phrase ->  biome-type biome-word 
biome-type -> ia I intensive-agriculture I savannah I fin'est 
biome-word - > bib)me I empty 

periud-phrase -> cycle-prep-phrase cycle-phrase 
cycle-prep-phrase -> cycle-prep cycle 

cycle-prep-> for 
cycle-> every empty 

cycle-phrase -> period-t me-value period-time-units period 
period-time-value -> [read a number] 
period-time-units -> sec ] sees min [ mins I hour I hours 

I hrs] hr I days day 
period -> period [ empty 

act&tiros-phrase -> action-phrase duration-phrase act&tiros-phrase 
lduration-phrase action-phrase act&tiros-phrase 

action-phrase -~> control what parameter-phrase 
control-> maintain I increase [ decrease 
w h a t - >  temperature |  humidity 
parameter-phrase -> designator parameter-value parameter-units 

designator -> to I a t l  by 
parameter-value . >  [read a number] 
parameter-units -> degrees deg degs per-cent % 

durat on-phrase -> sequence-phrase dm'ation-time-value duration-time-milts 
seqence-phrase -> for-prep seq-word 

fur-prep-> for 
seq-word -> first next last empty 

durafion-t me-va ue -> [read a humber] 
duratlon-time-units -> sec secs I rain [ rains [ hours 

I h°ukl hrs I h"l days ~iay 

Fig. 2. Context-free Grammar for Schedule Specification 

shows the context-free grammar underelying the ATN 

design. As shown in the figure, humans have several 

ways to express the same information. For example, the 

rewrite rules for "command" permit any order of action 

and timing phrases. Other freedoms are less significant 

but equally user-friendly: alternative prepositions (to, 

until), abbreviations (hours, hrs), etc. 

The parser reads a schedule specification either from 

the keyboard or from a file. It has a back-tracking 

capability that detects syntax errors and allows the user 

to go back to the point where he/she made an error and 

continue specifying the schedule from that point. It also 

has interactive help invoked by "?" that gives all pos- 

sibilities for specification at the current point. 

CONSTRAINTS CHECKER 

The CC contains a set of constraints on environmental 

parameters  such as temperature and humidity and 

tolerances for various crops. The CC compares the set of 

constraints with a set of values of variables correspond- 

ing to the specified schedule, set by the parser of NLI. 

Only the schedule that satisfies these constraints is sent 

to the Schedule Manager to prune the entity structure of 

the Timed Action Language (see below). For example, a 
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temperature schedule for a crop to "maintain tempera- 

ture at 60 degrees for 4 hours" can be checked with such 

constraints as: 

1) Is 60 degrees lower than temperature upper limit? 

2) Is 60 degrees higher than temperature lower limit? 

3) Is 4 hours longer than maximum exposure time at 60 

degrees? 

4) If so, does 60 degrees for 4 hours result in a tolerable 

loss of crop? 

Violations of constraints are reported to the user who 

must decide (in conjunction with the EES) how to revise 

the designed schedule appropriately. 

SCt lEDULE MANAGER 

The SM has two subsystems: a schedule generator and a 

schedule translator. The generator generates a schedule 

using the values of variables assigned by the parser of the 

NLI.  To genera te  the schedule specif icat ion,  we 

developed the Timed Action Language (TAL) using the 

concept of system entity structuring formalism[4]. As 

shown in Fig. 3, TAL can specify the following informa- 

tion for a schedule: 

- E N T  : T A L  , a t t r i bu te s  - >  ( ICO-ORDINATOII?  I))) 
--ASP : T A L - D E C  
-- -ENT : W I t E R E  ,a t t r ibu tes  - >  0 
- - - A S P  : W I t E R E - D E C  
- - - E N T  : I N T E N S I V E - A G R I C U L T U R E  , a t t r i b u t e s  - >  ( tMA'X- I 'LOTS 5)J 
. . . . .  E N T :  ALL-P  , a t t r i b u t e s - >  0 
- -4"NT : S T A R T - D A T E  ,a t t r i lmtes  - >  ( (DATE 198711 l / I ) )  
- - -ENT : E N D - D A T E  , a t t r i b u t e ~ - >  ( (DATE 1988/12/:1111 
- - -ENT : C Y C L E  , a t t r i bu te s  - >  ( (PERIOD 24) ( U N I T  ItlIS)) 
- - E N T  : A C T & T I M I N G S  ,a t t r iButes  - >  () 
. . . .  ASP  : A C T & T I M I N G S - A S P  
. . . .  E N T :  B A C K G R O U N D - A C T S  , a t t r i bu t e s  - >  0 
. . . . . .  ASP  : B A C K G R O U N D - A C T S - D E C  
. . . . . . .  E N T :  DAS , a t t r i b u t e s - >  0 
. . . . . . .  E N T  : S C R E E N  , a t t r i bu te s  - >  0 
. . . .  E N T  : A C T & T I M S  , a t t r i bu t e s  . >  ( ( N U M - C l t l L D R E N  9)) 
. . . . .  ASP  : A C T & T I M S - A S P  
. . . . . .  E N T  : A C T & T I M 0  , a t t r i h u t e s  - >  0 
. . . . . . .  ASP  : A C T & T I M 0 - A S P  
. . . . . . . .  E N T  : A C T I O N 0  , a t t r i bu te s  - >  ( ( P U T - I N - E F E E C T  0)) 
. . . . . . . . . .  A S P  : A C T I O N 0 - A S P  
. . . . . . . . .  E N T  : I t O W 0  , a t t r i bu t e s  - >  ( (ACTION M A I N T A I N ) )  
. . . . . . .  E N T  : TEMPO , a t t r i bu t e s  - >  ( ( R A N G E  55)) 
. . . . . .  E N T  : C O N T I N U O U S 0  , a t t r i h u t e s  . >  ( ( l t O W - L O N G  5) ( U N I T  I tRS))  
. . . . .  E N T :  A C T & T I M  I , a t t r i b u t e s - >  0 
. . . . .  A S P  : A C T & T I M  I-ASP 
. . . . . . .  E N T  : ACTION1  ,a t t r ibu te~  - >  ( ( P U T - I N - E F F E C T  0)) 
. . . . . . .  A S P  : ACTION 1-ASP 
. . . . . . . . .  E N T :  H O W l  , a t t r i b u t e s - >  ( (ACTION M A I N T A I N ) )  
. . . . . . . . .  E N T  : T E M P I  , a t t r i bu t e s  - >  ( ( R A N G E  60)) 
. . . . . . .  E N T  : C O N T I N U O U S I  . a t t r i b u t e s  - >  ( ( N O W - L O N G  2) ( U N I T  HRS))  
. . . . .  E N T :  A C T & T I M 2  , a t t r i b u t e s - >  0 
. . . . .  A S P  : A C T & T I M 2 - A S P  
. . . . . .  E N T  : A C T I O N 2  , a t t r i bu te s  - >  ( ( P U T - I N - E F F E C T  0)) 
. . . . . .  A S P  : A C T I O N 2 - A S P  
. . . . . . . .  E N T  : H O W 2  ,at tr i lautes - >  ( (ACTION M A I N T A I N ) )  
. . . . . . .  E N T  : T E M P 2  , a t t r i bu t e s  - >  ( ( R A N G E  65)) 
. . . . . .  E N T  : C O N T I N U O U S 2  . a t t r i b u t e s  - >  ( ( H O W - L O N G  1) ( U N I T  HRS))  
. . . . .  E N T  : A C T & T I M 3  , a t t r i bu te s  - >  0 
. . . . . .  A S P  : A C T & T I M 3 - A S P  
. . . . .  E N T  : A C T I O N 3  , a t t r i bu t e s  - >  ( ( P U T - I N - E F F E C T  0)) 
. . . . . .  A S P  : A C T I O N 3 - A S P  
. . . . . . . . .  E N T  : H O W 3  , a t t r i bu t e s  . >  ( (ACTION M A I N T A I N ) )  
. . . . . . . . .  E N T  : T E M P 3  , a t t r i bu t e s  - >  ( ( R A N G E  70)) 
. . . . .  E N T  : C O N T I N U O U S 3  . a t t r i b u t e s  - >  (CHOW-LONG 1) ( U N I T  HRS)) 
. . . . . .  E N T  : A C T & T I M 4  , a t t r i b u t e s  - >  0 
. . . .  A S P  : A C T & T I M 4 - A S P  
. . . . .  E N T  : A C T I O N 4  , a t t r i bu t e s  - >  ((PUT-I N - E F F E C T  0)) 
. . . . . .  A S P  : A C T I O N 4 - A S P  
. . . . . . .  E N T :  HOW4 , a t t r i bu t e s  . >  ( (ACTION M A I N T A I N ) )  
. . . . . . .  E N T  : T E M P 4  , a t t r i bu t e s  - >  ( ( R A N G E  75)) 
. . . . .  E N T  : C O N T I N U O U S - I  , a t t r i b u t e s  - >  ( ( H O W - L O N G  7) ( U N I T  HRS))  
. . . .  E N T  : A C T & T I M 5  . a t t r i b u t e s  - >  0 
. . . . . . .  ASP  : A C T & T I M 5 - A S P  

Fig. 3. The Entity Strucuture for Timed Action Language 

1. Where 
1.1 Which biome (e.g., {intensive-agriculture ...}) 

1.1.1Which plots in a biome 

1.1.1.l Which sectors in a plot 

2. Start-date 

3. End-date 

4. Period 

5. Action(s) and Timing(s) 

5.1 Action(s) 

5.1.1 What (e.g., {crop, temp, humidity....}) 

5.1.2 How (e.g., {maintain increase....}) 

5.2 Time(s) (e.g., {discrete, continuous....}) 

An actual schedule can be set by pruning the Entity 

Structure of the TAL with respect to the schedule 

specified by the user through the NL1. The pruning pro- 

cedure assigns values of attributes in an entity and 

makes choices where alternatives exist for the same en- 

tity[5]. It also generates as many actions and correspond- 

ing timings (ACT&TIMS in Fig. 3) as the schedule 

specifies. For example, Fig. 8, a pruned entity structure, 

has biome type of intensive-agriculture and a sequence 

of 9 different actions and timings about temperature 

schedule as specified in the schedule of Fig. 7. 

TAL specifies a schedule in a hierarchical manner. 

Each schedule has a sequence of intervals represented 

by sub-schedules; each sub-schedule in turn has its own 

sub-schedules, recursively. Such a capability allows the 

SM to change its schedule locally on any level of the 

hierarchy. It can also specify more than two different 

schedules in the same interval (called a "joint schedule"). 

For example, a temperature schedule and a humidity 

schedule can be specified in the same interval of a cycle, 

as shown in (13) through (22) and in (24) through (33) in 

Fig. 4. 

The schedule translator in the SM translates the high- 

level schedule specification into low-level schedule ob- 

ject(s). The procedure of translation is as follows: 

1. Create space object 

1.1 Create biome object(s) 

1.2 Create plot object(s) 

1.3 Create sector object(s) 

2. Attach sector(s) to plot(s), and plot(s) to biome(s) 

3. Create schedule object(s) 

4. Attach the schedule object(s) to space object(s) 

including biome(s), plot(s), and sector(s) 

1062 



For all plots in Intensive-Agq'iculture Biome 
preform the following schedule fi'om 1988/I/I to 1990/12/31 

(1) fiw every year period 
(2) for first 4 months 
(3) for every 2 mouths period 
(4) tbr first 20 days 
(5) fi)r every 1 day period 
(6) for first 8 hours, maintain temp at 50 
(7) for next 8 hours, maintain temp at 55 
(8) for last 8 hours, maintain temp at 60 
(9) for next 40 days 
(10) for every 1 day period 
( l l )  for first 12 hours, maintain temp at 50 
(12) for next 12 hours, maintain temp at 60 
(13) for next 4 months perform following 2 schedules 
(14) schedule l for temp: 
(15) for every l day period 
(16) for first 12 hours, maintain temp at 60 
(17) for next 12 hours, maintain temp at 65 
(18) schedule 2 for humid: 
(19) for every 1 month period 
(20) for first 10 days, maintain humi at 65 
(21) for next 10 days, maintain humi at  70 
(22) for last 10 days, maintain humi at 75 
(23) for last 4 months 
(24) for every 2 months period 
(25) for first 20 days perform following 2 schedules 
(26) schedule 1 for temp: 
(27) for every 1 day period 
(28) for f'u'st 18 hours, maintain temp at  70 
(29) for next 6 hours, maintain tcmp at 75 
(30) schedule 2 for humid: 
(31) for every 1 day period 
(32) for first 12 hours, maintain humi at 65 
(33) for next 12 hours, maintain humi at  70 
(34) for next 40 days 
(35) for every 20 days period 
(36) for first 10 days, maintain temp at 65 
(37) for next lO days, maintain temp at 7(} 

Fig.4. A Hierarchical Schedule Specification 

SCHEDULE EVALUATOR 

The concept of SE evolved from the canonical architec- 

ture of rule-based expert systems as shown in Fig.5. We 

see that the if-then rules are replaced by activities con- 

taining a special section for time management.  The In- 

ference Engine is called an Activity Evaluator (AE) 

since inferencing is now only a part of the effect of rule 

evaluat ion.  The AE achieves its rule evaluat ion by 

referencing the clock and the t iming section of ac- 

tivities, in addition to the usual rule conditions. The user 

is replaced by the real world process to be managed. The 

usual question and response interaction between the In- 

ference Engine and the user is replaced by a more com- 

plex interaction in which the AE exerts actions upon the 

process and receives sensorial feedback from it. The 

structure of an activity is as shown in Fig. 6. 

An activity will be fired, i.e., its action part will be ex- 

ecuted by the AE, under  the following circumstances: 

1) its t iming requirements are met 

2) its condit ion is satisfied 

3) the activities of its source schedule are not overriden. 

RULE BAS.~ 
. 

TIMING + PROCESS INTERACTION 

I t Z gZT& 
comman~ensor readings 

Fig. 5. Upper: A Rule-Based Expert System Architecture 

Lower: A Schedule Excutor Architecture 

In one cycle of rule evaluation, more than one activity 

can be fired. This is similar to the classifier systems ap- 

proach[6] and contrasts with the usual inference engine 

cycle in which a conflict resolution scheme selects only 

one rule to fire of those that are triggered. 

As depicted in Fig. 6, in each cycle the AE scans the 

current  set of activities and writes a new set of activities 

for the next cycle. At the start of a cycle, the AE reads 

the clock. Then for each activity, it may perform one or 

more of the following actions: 

• fire the activity: if the above conditions 1), 2) 
and 3) hold 

• reschedule  the activity: modify its t iming 
specification and place it in the activities set of 
the next cycle. This occurs whenthe timing re- 
quirements 1) are satisfied, whether or not re- 
quirements 2) or 3) are also met. 

• retain the activity: place it unmodified in the ac- 
tivities set of the next cycle. This occurs when 
the t iming requirements 1) are not met. 

• remove the activity: do not retain the activity 
for the activities set of the next cycle. This oc- 
curs when the timing requirements 1) have be- 
come impossible to satisfy. 

• handle user interrupt: respond to the user in- 
terrupt by calling the EES for consultation to 
possibly override the current schedule in the 
period to be specified. 

1063 



source timing-specs condition action 

start-time end-time next-event-time period 

USER interrupt 

L 
J ACTIVITIE~ this ¢ycleJ 

> 

l?I 
AE 

f i re  

override schedOle 

ACTIV IT IES :  next cycle ] 

/ 

f i r e  > 
reschedule 

~ P e m o v e  

- handle 
interrupt 

sensor readings commands 

Fig. 6. Upper: Structure of Activity 
Lower: Overview of Activity Evaluation 

Note that the action part of a fired activity may cause ad- 

ditions or deletions of activities for the next cycle. This 
reprogramming  of  the activity set is a powerful 

capability that is employed in hierarchical scheduling 

(see Fig. 4) among other possibilities. 
In more detail, the timing requirements of an activity 

are met if all the following hold: 

1) its starting time has arrived, i.e., 

start-time < = current-time 

2) its life time has not expired, i.e., 

current-time < = end-time 

3) its next-event-time has arrived, i.e., 

current-time = next-event-time. 

When an activity is rescheduled, its next-event-time is 

increased by its period. That is, the next-event-time slot 

is modified by next-event-time := (next-event-time + 

period) and is placed in the activities for the next cycle. 

Because rescheduling occurs when the timing require- 

ments are met, an activity gets a chance to be fired peri- 

odically while it is alive. An activity is removed from 

consideration when its life time has expired, i.e., when 

current-time end-time. 

TEST OF AIDECS 
The AIDECS under development has been tested on the 

real-time basis under a PC/AT-based computer network. 

Two computers have been used for two dedicated jobs: 

one (computer I) for the RTCDAS component (Fig. 1) 

; ; ; ;  temp and hunlid schedule f o r  winter ; ; ; ;  

fi'om 1987/11/1 to 1988/12/31 
in all plots in intensive-alffieulture biome 
for every 24 hrs period 

mainta in  temperatm'e at 55 degs  for 
mainta in  temperature at 60 degs for 
maintain  temperature at 65 degs for 
maintain temperature at 70 degs for 
maintain  temperature at 75 degs  for 
maintain tempe,-ature at 70 degs for 
maintain temperature at 65 degs tbr 
maintain  temperature at 60 degs for 
maintain  temperature at 55 degs  for 

mainta in  humidity at  70 % for 24 hrs. 

first 5 hrs 
next  2 hrs 
next  1 hrs 
next  i hrs 
next  7 hrs 
next  1 hrs 
next  1 hrs 
next  l hl~ 
last 5 hrs 

Fig. 7. Actual Schedule Tested in Real-Time Basis 

This File is accepted by the Parser in NLI 

.ENT : TAL  ,attr ib.tes ->  ((COORDINATOR? U)) 
-ASP : TAL-UeC 
- - eNT  : WHEre  .attribute= ->  0 
--ASP : WIt ERE-DEC 
- -ENT  : INTENSIVE-AGRICULTURE .attributes *> ((MAX.PLOTS 5)) 
- - E N T  : ALI~P , a t t r i b u ~  -> 0 
- . E N T  : START-DATE ,attributes .>  ((DATe 198711111 )) 
- - E N T  : END-DATE ,attr;bute~ -> ((DATE 1988/12J31)) 
- -ENT : CYCLE ,attrihutes ->  ((PERIOD 241 (UNIT Il l{S)) 
- - C N T  : ACT&TIMINGS ,attrlbutes -> 4) 
- -ASP  : ACT&TI MI NGS-AfiP 
- -ENT  : BACKGROUN~ACTS attributes .>  O 
- -ASP  : BACKGROUND*ACTS-DEC 
. - -ENT  : UAS ,a t t r lbut~ *> () 
- - - -ENT  : SCREEN =ttr ;but~ .>  (} 
. - - - eNT  : ACT&TIME ,attril~utes . >  {(NUM-CHILDREN 9 
--ASP : ACT&TI MS-ASP 
--ENT : ACT&TIM0 ,a t t r lbut~ -> 0 
. - -ASP  : ACT&TIM0.AEP 
----ENT : ACTION0 .attributes -> ((PUT.IN,E FF~CT 0)) 
- - - - -ASP  : ACr lON0~ASP 
----ENT : HOWO ,arbutus . >  ((ACTION MAINTAIN)) 
- - - - E N T  T~MP0 atCribut~ .>  ((RANGE 55)) Has 
. - -ENT  : CONTINUOUS{) ,at~-ibutes .>  (HOW.LONe 5) (UN T )) 
. - - E N T  : ACT&TIMI  .attc;butes -> 0 
- - A S P  : ACT&TIM I .ASP 
- - E N T  : ACTION!  ,=¢¢6bu~ *> ((PUT.IN-EFFECT())) 
- - A S P  : ACTION I-ASP 
- - E N T  : HOWl  attrlbutes ->  ((ACTION MA NTAIN)) 
- - E N T  : T E M P I  ' at, t r ibut=s.> ((RANGE 60)) 
- -ENT  : CONTINUOUSI ,=tt~but~ ->  ((HOW-LONG 2) (UNIT HAS)) 
- - E N T  : ACT&T[  M £ .attribute= -> 0 
- - A S P  : ACT&TIM~-ASP 
- - E N T  : ACTION2 .attributes -> ((PUT.IN-EFFECT 0)) 
- -ASP  : ACTION2-ASP 
- -Eb rP  : HOW2 i tE r l bu~  .>  ((ACTION MAINTAIN) )  

E N T  TEMP2 a t w i b u t ~ - >  ((RANGE 65}) 
~ E N T  : CONT[NUOUS2 .attr~but<s . >  HOW-LONG UNIT ERE)) 
- - E N T  : ACT&T[M3 , a i r ' b u t t s  -> (} 
- - A S P  : ACT&T[  M 3-ASP 
- - E N T  : ACTION3 . a t t H b u ~  -> ((PUT-IN-EFFECT ())) 
- - A S P  : ACTZON3-ASP 
- - E N T  : SOW3 ,attributes -> ((ACTION MAINTAIN)) 

E N T  : TEMP3 .aOJ~but~ -> ((RANGE 70)) 
- -ENT  : CONTINUOUS3 .at~but4~ .>  ((HOW-LONG 1) (UNIT NRS)) 
- - - - E N T  : ACT&TIM4 ,attributes ->  0 
- - A S P  : ACT&TIM4-ASP 
- - E N T  : ACTION4 ,att~buCes .>  ((PUT.IN.EFFECT 0)) 
- -ASP  : ACT[ON4-ASP 
- - E N T  : HOW4 ~ t t r l b u t ~  . >  ((ACTION MAINTAIN))  
- -ENT  : TEMP4 ,attr ;but~ ->  ((RANGE TS]) 
- -ENT  : CONTINUOUS4 .attr;butes .>  ((HOW-LONG 7) (UNIT HAS)) 
- -SNT  : ACT&TI  M 5 , a t t r i b u ~  ->  
- -ASP  : ACT&TI  M5-ASP 
- -ENT  : ACTION5 ,at~bute~ -> ((PUT.IN-EFFECT 0)) 
- -ASP  : ACTIONS-ASP 
- - E N T  : HOW5 a t t ~bu~  .>  ((ACTION MAINTAIN)) 
--ENT : TEMPS ,attributes .>  ((RANGE T0 ) 
---ENT : CONTINUOUS5 .au~but~s .>  ((HOW-LONG 1) (UNIT URS)) 
- - - - E N T  : ACT&T[  M6 ,&ttr lbut~ . >  0 
- -ASP  : ACT&T{ M fPASP 
- -ENT  : ACTION6 ,attr ibut~ .>  ((PUT.IN.EFFECT O)) 
---ASP : ACTION6-ASP 
~ E N T  : HOW6 .attributes . >  ((ACTION MAINTAIN)) 
- -ENT  : TEMP6 ,at~ribut~ .>  ((RANGE 65)) 
- -ENT  : CONTINUOUS{; ,atu~but~ -> ((HOW-LONG 1) (UNIT HAS)) 
- - E N T  : ACT&TIM7 .at tr lbut~ .>  0 
--ASP : ACT&TIM?-ASP 
- - E N T  : ACTION?  ,att~butes -> ((PUT*IN-EFFECT O)) 
- -ASP  : ACTIONT-ASP 
- -ENT  : UOW7 ,a t t r i bu~  *> ((ACTION MAINTAIN))  
--~ENT : TEMPT ,at t r ibut~ .>  ((RANGE 60)) 
- -ENT  : CONTINUOUS7 . a t t H ~ u ~  - >  ((HOW-LONG I )  (UNIT Has)) 
- - - - E N T  : ACT&TI M0 ,attrlbutcs .>  0 
- -ASP  : ACT&TI  MS-ASP 
- -ENT  : ACTION8 ,JttHbute~ ->  ((PUT-IN-EFFecT U)) 
- - - -ASP  : ACTIONS*ASP 
- - - - - E N T  : HOW8 ,attr ibut~ . >  ((ACTION MAINTAIN) )  

E N T  : TEMP8 ,s t t r ibut~ ->  (tRANCE 55)) 
- - E N T  : CONTINUOUS8 ,attr ibut~ -> ((HOW-LONG 6) {UNIT HAS)) 
end of dlsplay 

Fig. 8. Puned Entity Structure of Fig. 3 with respect 

the Temperature Schedule in Fig. 7 
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using C language, and the other (computer 2) for EES, 

NLI, CC, SM, and SE using SCHEME language. Com- 

puter 2 was used to specify schedule shown in Fig. 7 

through the NLI. The specification accepted by the CC 

was sent to the SM which generated the pruned entity 

structure of the TAL (Fig. 8) with respect to the 

schedule, which in turn was transformed into schedule 

object(s) by the SE. The SE successfully sent commands 

to the RTCDAS in computer 1. The RTCDAS, having a 

set of control software written by C, issued micro-level 

signals to the control devices. Conversely, data acquired 

by the RTCDAS was been periodically sent to computer 

2, where the EES stores current data for late use. Work 

is continuing to install and test the AIDECS in a 

prototype life support system. 
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