
Teaching of Tree Data Structures using Microcomputer Graphics

G. Scott Owen
Dept. of Mathematics and Computer Science

Georgia State University
Atlanta, Ga 30303

Plbstract

PI set of procedures to graphically
display ordered and unordered tree5 has
been developed. The procedures have been
U5ed in sever a 1 class demonstration
program5 to illustrate tree insertion,
deletion, and balancing algorithms. The
procedures are available for inclusion in
student programs so that they can
determine if their programs are working
correctly. The procedures are written in
Turbo Pascal for an IBM PC.

Introduction

In our course on data strut tures
stacks, queues, graphs, and trees are
covered, with a heavy emphasis on trees.
The students grasp the concept of stacks
and queues easily as these are simple one
dimensional structures, i.e. they just get

bigger or smaller. However, it is much
more difficult for them to visualize a
tree structure as elements are added to
and/or deleted from the tree.

A very sophisticated system for
algorithm animation hqs been recently
reported(l) but we do not have the
necessary resources to use this system.
Since our computer science program is
based largely on microcomputers (IBM PC’S

and compatibles) it was decided to take
advantaqe of the graphics cabability of
these machines. Thus, procedures to
graphically display binary ordered and
unordered trees were developed in Turbo
Pascal.

Permission 10 copy without fee all or part of this material is pantal
provided that the copies are no1 made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
othtisc, or to republish, requires a fee and/or specific permission,

Q 1986 ACM-O-89791-178-4/86/0002/0067 $00.75

The procedures draw the trees with

small rectangles representing the nodes

and with edges connecting parent nodes to
their children. There is space in the

rectangles for a two or three character
display of information. The procedure to
display b i nary ordered trees, named

GraphTree, was used in sever a 1
demonstration programs to illustrate tree
insertion, deletion, and balancing. The

students incorporated this procedure into
their own programs and were able to use it
to quickly determine if their programs
were working correctly. The procedure to
display unordered trees, named GraphHeap,
was used in demonstrating the construction
of a heap from an array and in performing
a heap sort. Both procedures are
incorporated into programs by using the
Turbo Pascal include file compiler

directive, e.g. ($1 Graftree.inc 1, where
Graftree.inc is a file containing the
GraphTree procedure.

In the following f will discuss the

two procedures Gr aphTree and Gr aphHeap ,
and give examples of their use.

GraphTree ;s
I

The input to the GraphTree procedure
consists of the pointier to the root node
of the original tree, of type TreePtr. The
tree nodes must have a field labeled
InfoType, which contains the item to be
displayed in the tree graph bones. This
type should be three characters or loos to
fit into the tree bones. An example might
be the declaration: InfoType = StringEel.
When invoked, GraphTree creates a new tree
with pertinent graphics information9
displays it.9 and disposes of it when the
user is finished viewing the tree.

The graphics tree has, in addition to
thr InfoT+pe and left and right children
pointer fields9 two additional fields with
graphics information. The first field is
the node level with the root having a
level value of one* it’s children at level
two, etc.. Thm second field is the
posi tian of the node at that level,
start inq at zero and incrementing f rot+
left to right. For rxamplrr the root has

67

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953055.5634&domain=pdf&date_stamp=1986-02-01

porition zero, it’s left child position
zero, and it’s right child position one.
On the third level the positions vary from
zero on the far left to three on the far
right.

The procedure only displays five
levels even though the tree can have up to
eleven levels. For any levels past five
the boxes and edges are not drawn but the
Info field is displayed on the bottom line
of the screen. The graph tree declarations
are included in Listing 1 and a full five
level tree and the associated position
numbers is given in Figure 1.

Creation of the Graphics Tree

The Graphics Tree ia created in the
procedure PreTravBuild. This is a
recursive procedure which performs a pre-
order traversal of the original tree. cl5
each node of the original tree is
encountered the corresponding node of the
graphics tree is created. In the procedure
GetNode each graph node has it’s Info
field initialized to the value of the Info
field of the original tree node, it’s
Level field is initialized to one (the
root level 1 and it’s Position field is
initialized to zero.

In the recursive procedure CIddNode
the Level and Position fields of the graph
tree node are determined. When the
procedure AddNode is reentered if the
rorrect insertion spot has not yet been
found then the Level field is incremented.
rf the search moves to the right then the

nld Position is multiplied by two and one
is added, and for a left move the old
Position is just multiplied by two.

Plotting of the Graphics Tree

The graphics tree is plotted in the
procedure PreOrderGraph, which performs a
recursive pre-order traversal of the tree
and draws the rectangles and parent-
children edges. The graphic5 mode used has
a resolution of 640 x 200 pixels and the
root is always centered. Thus, the root
box is located at X = 320 and V = 0. On
the next level the boxes are at positions
160, 40 and 490, 40. For the third level
the positions are (80, eo), (240, 801,
(4009 801, and (560, 80). The X and V

positions at any level are given by the
equations

’ = WeCe f
(Level-l)
-11

+ Position x 2 x
320 n 2

Y = 40 x (Level - 11.

In the program the Turbo Pascal shift
right (shr) operation is used instead of
enlicitly raising two to the power of
(Level - 1).

The bones and connecting lines are
drawn in the procedure

Dt awEdgeAndRec ting 1 e . c\ vertical fudge
factor (Vfudqe) is used to correctly align
the characters in the boxes.

After the user has finished vieding
the graphed tree it is destroyed by using
a post-order traversal in the procedure
PosTravDispose.

Sample Programs

The GraphTree procedure wa5
incorporated into several class
demonstration programs. The importance of
maintaining a balanced tree was emphasized
and the use of GraphTree enabled the
students to quickly grasp the effect. of
insert ions and deletions in a tree. An

example is given in Figures 2, 3, and 4
which shows the two general ways to delete
a node with two children, in this case the
root node with Info value ‘D’. Figure 2
shows the tree before any deletions and
Figures 3 and 4 show the tree after the
root node, containing ‘D’r is deleted.

In the first deletion method (Figure
3) the root node is not actually deleted.
The tree is searched for the node with an
Info field value which is the immediate

predecessor of the node to be deleted and
the Info field of the root node is
rep 1 aced with this value. The immediate
predecessor node is then deleted. In the
second deletion method (Figure 4) the root
node is actually deleted. The left subtree
of the root node is attached to the root
node’s right subtree and then the root
node is deleted. It can be easily seen

from Figures 3 and4 that the second
deletion algorithm unbalances the tree
more than the first algorithm.

GraphTree WIS also used to
demonstrate the tree balancing algorithm
of Kruse(2). This algorithm builds a new
balanced tree from the old tree and then
destroys the old tree.

The general principles of RVL trees
are covered in the course, but not: the
detailed algorithms. GraphTree is used to
demonstrate the rotations that occur in
the &VL trees with insertions and
deletions of nodes. An example using fWL
trees is given in Figures 5 and 6. Figure
5 is. the initial AVL tree and figure 6
shows the tree after insert ion of the node
with an Info value of ‘ta’.

Gr aphHeap

A second application of this
technique was in displaying an unordered
binary tree. This was used in
demonstration of the Heap Sort. Th:
program first generated an array of random
integers and the resulting non heap tree

wa5 displayed. Then as the heap was being
created the tree was displayed for each
pass through the array. Finally, the tree
was displayed at each step of the sort.

68

Since the GraphTree procedure W8S

designed to create and display an ordered
binary tree, a skightly modified version,
called GraphHeap, was written to display
the unordered trees involved in the heap
sort proces. Whereas the oriqinal tree

root was passed to GraphTree, the array of
integers was passed to GraphHeap. The only
other difference between GraphTree and

Gr apht-ieap wa5 in the procedure to build

the tree, called RebuildTree in the
GraphHeap procedure.

Rebui 1dTree con5ists of a for loop
which goes through all of the array
elements. It cal Is two procedures,

GetNodeFromQrray and AddNode. The
procedure GetNodeFromRrray perform5 the

same function as GetNode in GraphTree

except that the Info fieId of the node
take5 it5 value from the data array.

The procedure AddNode determines the
Level and Position fields of the new node

and also makes the parent of the new node
point to the new node. In converting an
array into a tree the first element ie the
root, the next is the left child of the
root, then the right child of the root,
then the left child of the first left
child, etc. So for any array element the
corresponding tree level is one plus the
highest power of two that divides the
array index lcomputed in the function
Power2 1. For example, array element number
5even is the right child of the right
child of the root. This place5 it on level
three. The highe5t power of two which
divides seven is two which plus one equals
three.

The node position is the array index
mod the index raised to the highest power
of two that divides the index (computedin
Exp2). For example, array element four has
position zero (four mod four), element
five has position one, element six has
position two 1 and element seven ha5
position three.

The final task of FIddNode is to
determine the correct parent of the new
node and whether the new node is a left or
right child. The array index of the left
child of a node with index I i5 two x I
and the right child is (two x I) + one.
Therefore, the parent of a node with array
index I is I div two. If I is odd then it
is a right child and if I is even then it
is a left child.

One or Two Monitors

There are two slightly different
versions of the above procedures. My IBM
PC has two monitor5, a monochrome monitor
and a color graphics monitor. Therefore, I
use one for text and the other for
graphics. To switch between the two from
inside a program the public domain

procedure SwitchRdapter, which is included
in the procedure GraphTree listing, wa5

used. In the classroom there was one large
display 5c r een attached to a PC with a
graphic5 card, 50 the Swi tchFIdapter
commands were commented out for classroom
use.

Conclusion

Procedure5 have been developed to
graphically display ordered binary search

trees and unordered binary trees der i ved
from arrays. These procedures were used in

,c 1 a55room demonstrations and incorporated
into student programs. The use of these
procedure aIlowed the students to quickly

view the result5 of var i ous tree
operations such as insertions, deletions,
tree rebalancing, building a heap and

performing a heap sort. The stu$ent

response to the5e procedure5 was very
positive.

These procedure5 can be easily
adapted to other microcomputer graphics
systems, e.g. the Ftpple II Pascal system.

The procedures can be modified to display
more levels by chang i ng the Height

constant in PreOrderGraph. This m.-w
require the changing of the character

fudge factor to align the characters in
the boxes. Complete Tree programs using
these procedure5 are available from the

author.

References

1.1 M. l-l. Brown and R. Sedgewick,
“Techniques for Fllgorithm animation”, IEEE
Software, vol. 2, No. 1, p. 28, (January,
1985).

2.1 R. L. Kruse, “Data Structures &
Program Design”, Prentice Hall, 1984.

69

Figure 1

Figure 2

70

Figure 3

Figure 4

Figure 5

Figure d

