
GPGS

A Device-independent General Purpose Graphic System for
Stand-alone and Satellite Graphics

LoC. Caruthers
J. van den Bos

Informatica/Ccmputer Graphics Group
Faculty of Science

University of Wijaegen
]iijnegen

The Netherlands

Ao van Dam

Program in Computer Science
Brown University

Providence, Rhode Island
U.S.A

ABSTRACT

GPGS is a subroutine package offering powerful and versatile support for passive and
interactive vector graphics, for time-sharing, batch, and stand-alone minicomputer
systems. The package is computer, language, and operating system, as well as display
device independent. Its key purpose is to allow for transpQrtabilitx of programs and
programmers by providing easy to learn, high level features. The applications programmer
writes his program once and then ezecutes it on any supported graphics equipment without
recompiling or relinking it. Device-independence uas implemented by dividing GPGS into a
device-independent part invoked by the applications programmer, and internal, 0 device
drivers", one per display device. Like the GSPC "Core System" whose design it
influenced, GPGS is a general purpose package. It has a subset of graphics facilities to
handle output of line and character primitives with attributes such as line style and
character size, and input from interaction tools such as lightpens, keyboards, valuators,
and function keys. It also supports 2D and 3D vieuin transfgrmations for clipping and
window to viewport mapping, and coordinate transformations.

Unlike the GSPC Core System, GPGS also includes a set of basic features for modelling
objects which alloas definition of device independent masters called §gsad2 picture
segSlent . These are distinguished frca normal, device (DPU) dependent ERiceUr segments
into which primitives and their attribute-value settings are ordinarily compiled. These
masters may be instanced subject to affine transformations (translate, rotate, and scale)
to create a typical master-instance hierarchy. The hierarchy may be stored in a disk
based library or compiled into a normal picture segment for output to a display device.

The images of objects stored in device dependent picture segments may be transformed on
the display surface by y gfieSrt JiaSL1 transformatios. These typically allow use of
hardware transformation capabilities for dragging or tumbling object images.

Host/satellite graphics is accommodated by having the device independent part of GPGS in
the host and splitting the device drivers across host and satellite. At the source code
level it therefore makes no difference on which. configuration a program will be executed.

Among the existing implementations are versions written in assembler for the IBE 360/370
and the PDP 11, in both stand-alone and satellite mode, and under a variety of operating
systems. They support plotters, storage tubes, and high performance refresh displays.
PORTRAN based implementations exist for the Univac 1108, the PDP 10, and a Harris
minicomputer.

Keywords and Phrases: interactive graphics, device independent graphics, graphics
subroutine package, satellite graphics

CR Categories: 8.2, 4.29

112

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
Siggraph ’77, July 20-22 San Jose, California

http://crossmark.crossref.org/dialog/?doi=10.1145%2F965141.563878&domain=pdf&date_stamp=1977-07-20

1 INTRODUCTION

GPGS offers high level graphics support
easily accessible to high level language
programs. The subroutine call mechanism
has been employed in preference to new
language primitives as the easiest
extension mechanism. Thus any
(mini) computer with FORTRAN is a possible
candidate for a GEGS implementation. GPGS
interfaces to the operating system and
handles all ccmmunications and data
conversion problems for passive and
interactive physical devices. The
resulting environment and device
independent graphics application programs
may be transported without change (given
identical FORTRAB's).

The design started as a joint effcrt of
the Universities of Nijmegen and Delft,
with consulting provided by Cambridge
University. It was meant to supersede
such device dependent packages as IBH's
GSP [1] for 22_0»s and Calcomp's well
known plotting subroutines. At Cambridge
and several other locations in the O.K.,
experience with machine and device
independent graphics had already proved
successful, with the Cambridge GINO-3 [2]
system. Rather than reiapleoent GINO for
new hardware being acquired by all three
Universities, it was decided to provide
more extensive facilities and improve
GINO's design.

Parallel ioplementations were begun in
1971 on an IBH 370 with a PDP-11/45
graphics satellite at Nijmegen and on a
PDP-11/45 in standalone aode at Delft. In
1974-75 the graphics group at the
computing center at the University of
Trondheim in Norway, made an ANSI PORTRAN
implementation fcr the Univac 1108 of a
large subset of GPGS. Their GPGS-F is
based on the Delft PDP implementation.
Additional versions of GPGS exist in
countries as fax apart as Germany and
India (the latter on a PDP 10); the
official version is now being licensed at
nominal cost. Altogether the system runs
in production in several dozen
installations.

2 GIOBAL DEIGN _CtIBADERTIOS

2L_LSU _SEBRoUXL_PAf_.iAiBD__AN OVERVIEW
oP ITS FACILITILZ

A primary GPGS design decision was to
create a sobrotAne pEiScs instead of a
new graphics language cr graphics
extensions to an existing language. A
subroutine package is easier to design and
implement than language extensions,
simpler for programmers to learn, and

easily extended by adding more
subroutines. The ease of implementation
also allowed for more efficient assembler
language implementations on different
computer systems. The obvious
disadvantage of a subroutine package is
its limited, awkward syntax.

The subroutines included in GPGS were
chosen to be just far enough removed from
the hardware to provide device
independence and still allow the
applications programmer to control the
hardware of an advanced CRT display
reasonably efficiently. An additional
guideline for choosing which features to
include in GPGS was to make the package
general ErEIpoe and rich [3, 4]. At the
same time, the design would be modular, to
minimize the cost of learning and using a
limited subset of the full system.

The features included are those required
or generally useful for implementing a
powerful graphics "Core System" (5].
Unlike the designers of the GSPC Standard,
the GPGS designers felt a basic modelling
component to be generally useful as well:
both subsystems are overviewed in Sections
4 and 5.

The graphics subsystem includes line and
text output primitives and their
attributes (line style, intensity,
character size, etc.), 2D and 3D windowing
and clipping, and perspective and
axonometric projections. The modelling
subsystem allows specification of an
object as a hierarchy of previously
defined picture segments, with inclusion
of picture segments controlled by
placement (instancing) transformations
(translation, rotation, and scale) and a
transformation stack. The hierarchy is
always compiled to a single device
dependent picture segment for output
purposes.

To aid viewing and/or modelling, (clipped)
images of objects may be post-transformed
on the display surface with hardware
facilities for dragging or tumbling, using
viewport transformations.

Provisions for more specialized facilities
such as hidden-line removal, data
structure support beyond n-level segment
hierarchy, and animation were not
included. Note that GPGS is a rich,
stand-alone package with over a hundred
subroutines, which may have special
purpose packages built on top. GPGS-F,
for example, supports a high level
plotting package (6].

When designing the subroutines themselves,
the key concept was simplicity. The
mnemonic name of a subroutine indicates
what its function is, and what type of

113

entity it operates on; for example,
SELDEV(I) means select device 1 ewhereas
SELLIB(I) means select library I. Each
subroutine has as few arguments as
possible. GPGS supplies reasonable
default values to allou the
unsophisticated user to have to learn only
a few calls.

2.2_OUTPUT DEVICE INDEPENDENCE

To avoid having to urite and load a
complete device dependent package for each
output device on uhich a picture is to be
displayed, GPGS as a device independent
package has a common, shared device
independent part and as many device
dependent device drieES (to be loaded at
execution time) as there are devices for
that implementation (see figure 1)o To
the applications programmer this means
Rortability in that he can write his
graphics program once and use it uith
different graphics devices without
changing the source code or relinking his
program.

The applications programmer defines
objects in user coordinates as Ejiclte
segmegts composed of primitives (picture
eleaents) These include lines and text
and previously defined sub-objects pseudo

114

pSctUrI saignents). He then specifies
views of these objects (images) to be
plotted on an idealized output device. In
reality, the device independent part of
GPGS uses the setting of the vie ing
transformation parameters (including type
of projection if 3D. windou, clipping
mode, vieuport) to compile a (clipped)
device independent image of the object.
This intermediate form is then further
mapped by a specific device driver onto a
viewport of an actual output surface.
These include plotters, microfilm
recorders, storage tube displays and
steered beam CRT refresh displays. By
specifying viesports in "normalized device
coordinates" which are fractions of actual
physical dimensions of the display
surfaces, the applications programmer need
not be concerned about real device
dimensions and can dram device independent
pictures in user coordinates.

2.3 INPUT DEVICE INDEPENDENCE

The idealized device concept is also
appropriate for describing the GPGS scheme
for handling input from the console
operator. Unlike most other high level
packages which are primarily oriented
touards plotters and storage tubes with
limited input capability, GPGS was
designed to handle powerful refreshed
CRT0s with a wide variety of input tools
such as lightpens, joysticks, tablets, and
keyboards. Upuard compatibility from
simple displays to pouerful ones is
achieved automatically since GPGS handles
the superset of facilities of the most
powerful commercially available vector
displays. Downaard compatibility from
more complex to simpler graphics devices
is provided through sigulatiPo of higher
level (harduare) facilities carried out by
device drivers. For exaaple, a lightpen
may be simulated with cursor crosshairs, a
dial with a keyboarded value, etc. In
this way, an applications program oay
still run essentially unchanged on a
simple device, but with an altered
{probably slower) operator interaction.

The GPGS idealized device includes all the
basic input devices proposed by Ballace
[7]o It supports the following single
input tools: refresh clock, alphanumeric
keyboard, lightpen for picking, and
audible alarm. It also has at least one
tool in each of the following classes of
tQols: function switches, dials (1
dimension), tracking cross and data tablet
(2 dimensions), and joystick (3
dimensions). Each single tool or class of
tools (including the simulated ones)
returns appropriate information to the
applications program in a specific format;
function switches return their
identifiers, dials return fractions
beteeen 0 and 1, the lightpen returns a
name stack, etc.

3_RESOURCE MANAGEMENT

As part of solving the problem of
interfacing graphics programs to the
operating envircnment, GPGS performs
applications prcgrau requested
manipulations of the following graphics
resources: graphics devices with their
associated drivers, picture buffers, and
picture libraries. The sanipulations
include initialize, select, clear,
release, and status inquiry. Output
buffers and devices nay be sequentially
selected as the current one; multiple
input tools may be simultaneously enabled.

Pictures may be stored off-line in picture
libraries which are controlled by the
applications programmer much in the same
way as the device and buffer resources.
Indeed libraries can be thought cf as
extensions of buffers. Thus one can build
a picture on disk rather than using a core
buffer, and subsequently either send the
picture directly from the library to a
storage tube, or overlay a piece of the
applications program to create a refresh
buffer. Libraries are therefore
particularly useful for making large
pictures on small computers, or saving
standard menus or standard drawing symbols
(picture parts).

To allow the applications program to find
the properties and status of its currently
allocated resources, and to retrieve
previously established attribute settings,
GPGS has inquiry facilities for returning
execution environment information to the
applications program. Inquiry can be used
by an optionally specified applications
program subroutine which receives control
on the occurrence of an error condition.

a OUTSUT_ CILiTIS

4LI__PISTURE ELE E ITS.__I PCTOIR_SGgEBTS,
AND-THEIR_ATTIBISES

Using GPGS, an applications programmer
specifies an object as a ccllection of
output primitives called Erfgiig el ntug- .
defined by manipulating an idealized
drawing stylus in a 2D or 3D user
coordinate system. Among the picture
elements are individual lines and polyline
sequences, character strings, and markers
(special characters used for point
plotting). PiGtuKE legaBt ._ttr i beute
like line style and width, character size
and spacing, color, intensity, or blinking
are used to modify the output
characteristics of these basic picture
elements.

All picture elements and their
attribute-value specifications are
collected in one or more named picture

egetial. . Individual elements in the
picture segment may not be altered after

the segment has been defined. The segment
as a whole is the GPGS unit of
manipulation, for purposes of deleting or
extending its set of elements as a logical
unit. To alter the contents of a segment
the programmer has to regenerate it.

The only other manipulation of a picture
segment allowed is to change its
associated segment attributes (visibility,
lightpen sensitivity (pickability), and
viewport transformations). These
attributes are global for the picture
segment and may be changed any time after
the creation of the picture segment has
begun and before it has been deleted.

Objects specified to GPGS as picture
segments are compiled by device
independent GPGS and the appropriate
device driver into display device
dependent code. This display file (for
refreshed displays) will typically be a
chain of buffers, each linearly segmented
into picture segments. Each segment
contains a header where the segment
attributes are stored for subsequent
modification.

4.2 VIEHING TRANSFORnATIONS

To produce one or more "snapshots" or
views of an object on an output device(s),
the applications programmer first sets the
proper viewing transformation conditions'
and then defines the object as one or more
picture segments. For 3D, he specifies
the type of projection to be used
(perspective or axonoaetric), a window and
a viewport. The window is a rectangle in
2D, or a parallelepiped or rectangular
pyramid in 3D, determining the limits of
the user coordinate space in which the
object is defined that will be displayed
(if clipping is enabled). The viewport is
the portion of the display surface on
which the contents of the window are going
to be mapped on. Viewport boundaries are
specified device independently in
fractional normalized device coordinates.

As explained in Section 2.2, the picture
elements in each picture segment are
successively passed through the GPGS
viewing transformation pipeline where they
are (optionally) clipped to the boundaries
of the window, and then mapped to the
viewport by a device driver which produces
actual device dependent coordinates.

4.3__ IAGE HBNIPULATIO ITH VIEWPORT
TJASFORMATIONS

Viewport Transformations are a facility
introduced by GPGS primarily for refresh
displays to take advantage of hardware
facilities for translation (most displays

115

support relative vectors), or even 2D or
3D rotation (via hybrid cr digital
transformation hardware)

Since typical transformation hardware
affects only DPC primitives, it can be
used only after the entire device
independent viesing transformation
pipeline described above has been applied
to produce DPO code consisting of clipped
picture elements mapped to a viewport.
The picture segment contains in its header
instructions to load transformation
registers. The vieuport transformation
changes only these instructions in the
header. As an example, in the simple case
of 2D translaticn (for dragging) using
relative coordinates, the picture segment
of relative DPU primitives oould have an
initial absolute move it its header. It
should be noted that even for DPU°s
lacking transformation hardware, viewport
transformations are a limited but
efficient facility because they affect a
clipped image of an object, with typically
many fewer picture elements than the
original object bad, Thus the console
operator can select a piece of his object
using the viewing transformation pipeline
once, and thereafter manipulate it on the
screen with vieuport transformations,
rather than with the more expensive
viewing transformation pipeline.

4- _A_-BAIC -ODELIING_§ISTgH

If the user has a hierarchical object data
structure, he may mirror this application
oriented hierarchy in device independent
GPGS definitions of pseudo EiStue
S§9gents. These may be inserted as many
times as desired in a normal picture
segment. Furthermoreo . they may be
arbitrarily nested,, ith a classical
master/instance reference scheme,
including the ability to use translation,
rotation, and scale transformations to
properly place a subpicture instance in a
higher level one. High level facilities
for stacking, saving, and restoring 4 x 4
homogeneous coordinate transformations
exist, as Bell as for pre- and
post-oultiplying for matrix composition
and matrix vector multiplication, Pseudo
picture segments, ouch like macros, may
be copied directly (subject to the
instancing transformation) as they are
specified inside the higher level (pseudo)
picture segment, or this inclusion may be
postponed until an entire hierarchy is
built up and then is instanced in a real
picture segment. Thus an entire device
independent hierarchy, with all (pointer)
references and transformations may be
stored as a standard symbol in a library.

4L5_shENE LEEL!PEGL iTZlIBl-lm
NgIHEG RU.E COBBiEIQ

While GPGS allots the definition of a
hierarchy of objects as a tree of pseudo

picture segments, they must ultimately be
compiled to a linearly segmented display
file. In order· to allow mapping
(correlation) from picture elements on the
display surface to the original
application data structure from which they
were derived, n-level naming for
picking/correlation is supported. within
named picture segments, picture elements
may be given unique names as part of their
specification, and may additionally be
grouped with another unique name using
BGWNAHa, ENWDHA "brackets". These group
names may be nested to reflect the
original hierarchy, and will be returned
as a name hierarchy (stack) by the
correlation mechanism. Note that GPGS
only supports a single level of device
dependent picture segmentation for
manipulation purposes, but at least allows
hierarchical naming [8]. If the hierarchy
must be preserved for manipulation of
individual subobjects, each should be
compiled to its own picture segment, to be
individually highlighted, deleted, or
viewport transformed.

5_ITERACTION FACILITIES

The approach to provide the programmer
with hardware or simulated interaction
tools such as lightpens, keyboards,
joysticks and function keys was explained
in Section 2.3. To support these tools,
the device driver will sample or be
interrupted by each tool to see if it has
been used by the operator. It does this
independent of (possibly asynchronous to)
the device independent part of GPGS and
the applications program. To communicate
this asynchronous activity (i.e., to
simulate tool interrupts) to the
applications program GPGS maintains a PIFO
interrupt queue. The device driver fills
the queue with event reports, which the
application program can interrogate using
the IBUAIT function, at its convenience.

The applications program calls the INBAIT
function with a list of identifiers of the
tools that it wishes to accept information
froa. GPGS then looks at the interrupt
queue to see if the console operator has
used any of the specified tools. If he
has, the tool identifier and the event
report for that tool is returned to the
applications program,

The interrupt queue can be polled for any
past tool activity or the applications
program can go into a wait state to be
"interrupted" by tool activity, as a
function of the time parameter. If the
time parameter is positive, GPGS will
return to the applications program either
when the time expires or the console user
uses a requested tool, If the time
parameter is zero, information is returned
from a tool only if the console user had
used the tool prior to the call to INUAIT,

116

otherwise GPGS returns immediately without
providing any tccl information. If the
time parameter is negative, INBAIT returns
to the applications program only after the
console user uses one of the tools in the
list. Though not all iuplementations
currently support it, INIAIT is designed
to wait for informaticn frcm more than one
display at the sane time.

The gueueing discipline used by GPGS is to
allow each tool of each initialized device
to make at most one entry at a time in the
interrupt queue common to all GPGS
devices. Thus the first interrupt from a
tool stays in the queue until it is either
passed to the applications prcgram or
flushed by INWAIT because it was not
requested by the applications program.
The entire interrupt queue may also be
cleared (flushed) by the applications
program.

when INHAIT returns to the applications
program it gives tack the information from
only one tool. So allow the applications
program to sample tcol values without
using the more expensive INRAIT interrupt
queue mechanism, GPGS has the REATOL
subroutine which has a tool identifier as
parameter and returns information in the
same format as INEAIT.

6 SATELLLTEI_ Pi fED2Si!_QoUESTIONS

Standard implementations of GPGS were
visualized either fcr a host
(multi-prograDmed or dedicated)
suffi- ciently powerful to run the entire
applications procram and its environment,
or for a host/satellite system where the
application would run on the host and the
satellite would need to be only
sufficiently powerful tc implement an
"intelligent" terminal capable of
supporting local graphics housekeeping.
no . genuine "cooperative distributed
processing" between co-equal host and
satellite proessors was visualized.

2

The satellite processor in GPGS therefore
only holds the part of a device driver
that deals directly with the physical
device (e.g., -data ccnversion, tool
sampling, interrupt handling, and
viewport transformaticns). The
communication between the host and the
satellite is in the fcro of messages
between two parts of a driver. The
primary consideration in designing the
satellite support was to get the best
response tine pcssible for the console
user. Typically, the determining factor

on response time is the opportunity for
executicn (dispatching) of the
applications program on the multi-
programmed host processor. with this in
mind it is clear that the response time
(and link traffic) is optimized by
minimizing the total number of messages
between-the host and the satellite, i.e.,
having as small a number of large messages
as possible.

Each picture segment that is created must
be sent to the satellite for display. To
minimize the number of messages it is
better to send the whole picture segment
after it has been closed rather than
sending each picture element in a separate
message to the satellite. The situation
for interaction is less advantageous than
for sending picture segments because each
INWAIT and REATOL request must be sent to
the satellite as a separate message, and
the reply from the satellite is, of
course, another message. Each message
requires operating system intervention for
I/O, and potential loss of execution
control, with the need for subsequent
redispatching. Interaction is therefore
likely to be slow on a busy host.

Another question in designing satellite
support is why the division between host
and satellite code was put inside the
driver. This leaves the whole work of the
device independent picture processing
pipeline to be done by the host processor.
Although it would be possible to put some
part of the pipeline (say, clipping) on he
satellite, it would probably violate the
goal of minimizing message traffic. For
example, if a small window would result in
very few lines to be displayed, it would
be very inefficient to send the entire
(set of) segment(s) to the satellite for
local clipping. Splitting the pipeline
between any of the other stages of
processing simply adds additional overhead
to the total processing by gathering the
half-processed picture elements into a
message on the host which must be split
apart again for further processing on the
satellite. Given our assumptions about the
limited power of the satellite, the best
strategy is thus to create complete device
dependent (clipped) picture segments on
the host and send them to the satellite
for display and local manipulation (e.g.,
changes in segment attributes or viewport
transformations).

7 CONCLZ2aXNs

7.1_UPEICE IHDEPEDPEHT VERSIOVS

Transportability of highly interactive
programs through device independence has
been achieved with GPGS. Plotter programs
can make the sane picture on a storage
tube and on a refresh CRT, with only minor
variation due to character font, etc.

117

Programs which use all the interaction
tools of a 3D Vector General display can
be debugged (with somewhat painful
simulation) on a simple storage tube with
only cursor crosshairs and a keyboard.
But in order to allow this, the plotter or
storage tube programs have been forced to
abide by the same picture creaticn and
manipulation rules as a refresh CBT
program.

In our experience in writing device
drivers we have seen that a driver for a
simple output device like a plotter or
line printer is very easy to write, while
the driver for an interactive device,
though much more work, is certainly
simpler than creating a whcle new package
and conversion interfaces for other
devices. Simulating interacticn tools and
viewport transfcrmaticns for devices
lacking adequate hardware is the hardest
job. Making a new driver is usually a
matter of modifying the lowest level of
some existing driver.

Full assembly language implementations
exist for PDP 11 (under rOS, RSX, PT-11,
and Unix operating systems) and for IBM
360/370 - PDP 11 ({T-11 and Onix)
satellite systems. The GPGS-F ANSI
FORTRAN subset implementation supports
Tektronix 4010-4015 and Kingmatic plotters
(9]. Currently the following graphics
devices are supported by the assembly
language versions:

stand-alone:

Vector General on PDP 11

GPGS was designed without general data
structure support and as a highly modular
package in which sophisticated features
such as input tool simulation, viewport
transformations, and device independent
picture hierarchies are optional code
segments, loaded only when needed. This
has resulted in basic packages which take
little memory space and run quickly. with
a basic driver (no tool simulaticn) for
the Tektronix 4014(4015), the RT-11
version of device independent GPGS and
device driver takes a total of only 5.5k
words of PDP 11 storage, less than the
BT-11 batch system nucleus. A 370 system
with PDP 11 satellite and full 3D Vector
General display takes 32k bytes for device
independent GPGS, the 370 portion of the

118

device driver, and a picture segment
buffer. as far as performance is
concerned, for highly interactive (not
much computation) applications programs on
the IBE implementation, the CPU
utilization and response time are
comparable to that of text editing
programs.

z72 SUITABIITY FOB APPLICATIONS

The following comments pertain to how
"general purpose" GPGS has proven to be,
that is, how easy it is to write
applications programs. For computer-aided
design programs, where a fairly low level
interface is needed along with multiple
devices (interactive CRT and plotter),
GPGS has proven to be very effective.
GPGS has the primitives needed for making
static data plots but it does not have any
utilities to draw graphs. Therefore, a
set of graphing routines to go on top of
GPGS has been designed [6].

Applications that have proven to be
unreasonable to attempt with GPGS have had
to do with a picture which oust be
structurally changed in real time in
response to console operator input. Due
to the requirement that a picture segment
must be completely rebuilt each time it is
changed, even if the building of the next
version of the picture is overlapped with
the displaying of the previous version, it
is difficult to achieve real time changes
with anything but the simplest of
pictures. Where a device has
transformation hardware, however, a
program accessing this hardware through
GPGS can produce real time motion of
arbitrarily complex picture parts.

7,3 US§G_ GPGS_ FOB SATELLJTE GRAPHI;S

From our experience to date we can
conclude that for satellite use with GPGS,
a fairly simple satellite processor is
sufficient. a PDP-11/10 is probably
sufficient for all satellite work required
by the current design. The amount of
memory required by the satellite is
determined by the amount of picture that
can be refreshed flicker-free by the
graphics device. A very high speed
communications link (600K baud) is
certainly nice for GPGS because it means
that picture segment (message) length
really isn't much of a factor in the
response time. Even with a slower
communications link, say 9600 baud, GPGS
satellite support would still be useable.
Because all decision making must be done
by the applications program as to how to
respond to the interactive tools, the
limiting factors for the response of GPGS
satellite graphics are the speed with
which the applications program can be
dispatched on the multiprogrammed host

computer, and the speed of message
transmission.

7.4 SU.MMiRY

GPGS has largely achieved its original
design goals of being a device
independent, easy to use subroutine
package to allcw program portability.
GPGS provides applications programs with
access to multiple, diverse graphics
devices through the same subroutine calls.
The GPGS design has been shcwn to be
implementable on small and large computers
alike, with an implementation effort
required from one to four or five
man-years as a function of the language
coded in, operating system support, number
and sophistication of device drivers, etc.
The FORTRAN implementation took
approximately one man-year for device
independent GPGS and simple device
drivers.

GPGS is the only generally available
graphics system that prcvides high level
support for the whole range of devices
from plotters to high perfcrmance vector
displays, with device independence for
both output and input facilities. Because
of this, GPGS has had a significant
influence on the design of the GSPC Core
System.

ACKNOWLEDGEHENTS

Many people have contributed their efforts
to the design, implementation, and
critique of GPGS. we list them here with
their present and/or former
affiliations: Ed Anson, tan Bergercn, Jan
van den Bos, Steve Carmcdy, Larry
Caruthers, Marty Michel, Martin Mueller,
John Patberg, Dave Rice, Julie Schuartz of
Nijmegen University; Andy van Dam of
Nijnegen and Broun Universities (U.S.A.);
Dik Groot, Lex Hensels, Edwin Hermans,
Kees Thijs, Guns van der Wal, Peter
Veenman of Delft University; Charles Lang
and Peter icodsford of Cambridge

University; Dick Newell, Martin Nevell,
and Tom Sancha of the Cambridge Computer
Aided Design Center. The helpful revievs
of this paper by Ingrid Carlbom, Dan
Bergeron, and Jim Foley are also much
appreciated.

REFERENCES

1. IBM - Graphics Subroutine Package
(GSP) for FORTRAN IV, COBOL, and PL/I;
form GC27-6932.

2. Woodsford, P.A., The Design and
Implementation of the GINO 3-D
Graphics Software Package, Software -
Practice and Experience, Vol. 1
(October 1971), p. 335.

3. Caruthers, L.C., and van Dam, A., GPGS
User's Tutorial, Informatica, Faculty
of Science, University of Nijmegen,
The Netherlands, October 1975.

4. Groot, D., Hermans, E., Caruthers,
L.C., and Schwartz, J., GPGS Reference
Manual, Rekencentrum, T.H. Delft and
Informatica, Faculty of Science,
University of Nijmegen, The
Netherlands, May 1977.

5. SIGGRAPH GSPC, First Report on
Graphics Standards, Proceedings of
SIGGRAPH 77, San Jose, July 1977.

6. Skaland, M., Zachrisen, B., High-Level
Graph-Plotting Routines for GPGS-F,
Preliminary Specifications, RUNIT
Report, University of Trondheim,
Norway, 1976.

7. Wallace, V.L., The Semantics of
Graphic Input Devices, Proceedings ACM
Symposium on Graphic Languages, 26-27
April 1976, Miami Beach, Florida, pp.
61-65.

8. Foley, J.D., Picture Naming and
Modification: An Overview, Proceedings
ACB Symposium on Graphics Languages,
26-27 April 1976, Miami Beach,
Florida, pp. 49-53.

9. GPGS-F User's Guide, RUNIT Computer
Centre, University of Trondheim,
Norway, September, 1975.

119

