GPGS

| A Devi ce-i ndependent General Purpose G aphic Systemfor
Check or St and- al one and Satellite Graphics
updates
L.C. Caruthers A. van Dam

J. van den Bos

I nf ormati ca/ Ccnput er G aphi cs Group Programin Conputer Science
Facul ty of Science Brown University
University of Nijmegen Provi dence, Rhode I|sl and
Nijmegen U. S. A

The Hetherlands
ABSTRACT

GPGS is a subroutine package offering powerful and versatile support for passive and
interactive vector graghics, for time-sharing, batch, and stand-alone m niconmputer
syst ens. The package s conmputer, language, and operating system as well as display
device independent. |Its key purpose is to allow for transportabilit of prograns and
programers by providing easy to learn, high |evel features. The aﬁpﬂ cati ons programrer
wites his programonce and then exzecutes it on any supported graphi cs equi pmrent w t hout
recoampilingjor relinking it. Device-independence was inplenmentedby dividing GPGCS.into a
devi ce-1 ndependent part invoked by the applications programer, and internal, ®device
drivers®, one per display device. Li ke the GSPC wcore Systeni’ whose design it

i nfl uenced, GPGS is a general purpose package. |t has a subset of graphics facilitiesto
handl e output of Iline and character primtiveswth attributes such as line style and
character size, agd input frominteractiontools such as |ightpens, keyboards, val uators,
and function keys. It also supports 2D and 3D viewim gtransformatiomssfor clipping and

wi ndow to viewport nappi ng, and coordi nat e transformations.

Unlike the GSPC Core System GPGS also includes a set of basic features for nodelling
objects which allous definition of device independent masters called seudo picture
seqgnent These are distinguishedfreca normal, device (DPU) dependent pictur segnents
fnto which primitivesand their attribute-value settings are ordinarily conpifed. These
masters may be instanced subject to affine transformations (translate, rotate, and scal e)
to create a typical paster-instance hierarchy. The hierarchy may be stored in a disk
based library or conpiled into a normal picture segnent for output to a display device.

The i mages of objects stored in device dependent picture segnents may be transfornedon

the display surface by ¥ port f(image) trapsformatioms. These typical ly al | ow use of
hardware transformati on capabifities for draggi ng or tunbling object | nmages.

Host/satellitegraphics is acconmpdat ed by having the device i ndependent part of GPGS in
the host and splittingthe device drivers across host and satellite. At the source code
level it therefore makes no di fference on which.configurationa programw Il be executed.

Anong the existinginplenentationsare versions witten in assenbler for the IB 360/370
and the PDP 11, in both stand-alone and satellite nmbde, and under a variety of operating
systens. They support fplotters, storage tubes, and high performance refresh displ ays.
PORTRARMl based inplenmentations exist for the Univac 1108, the PDP 10, and a Harris
minicomputer.

Keywords and Phrases: interactive graphics, device independent graphics, graphics
subrouti ne package, satellite graphics

CR Categories: 8.2, 4.29

Permission to make digital or hard copies of part or al of this work or
persona or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citdion onthefirst page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or afee.

Siggraph 77, July 20-22 San Jose, Cdifornia

112

http://crossmark.crossref.org/dialog/?doi=10.1145%2F965141.563878&domain=pdf&date_stamp=1977-07-20

1 | NTRODUCTI ON

GPGS offers high |level graphics support
easily accessibleto high level Ianguage
pr ogr ans. The subroutinecall mechanism
has been enployed in preference to new
| anguage primitives as the easiest
ext ensi on mechani sm Thus any
(mini) conputer with FORTRAN is a possible
candi date Tor a GEGS i npl enentation. GPGS
interfaces to the operating systemand
handl es al | :cmpunications and data
conversion problems for passive and
interactive physical devices. The
resulting environment and device
i ndependent graphics application progranms
may be transported w thout change (given
identical PORTRAR®s).

The design started as a joint effcrt of
the Universities of HNijmegen and Delft,
with consulting provided by Cambridge
Uni versity. It~ was neant to supersede
such device dependent packages as IBi's
GSP [1] for 22%0's and calcomp’s Well
known plotting subroutines. At Cambridge
and several other locations in the U.%.,
experience with machine and device
i ndependent graphics had already proved
successful, wth the Canbridge 1n0=3 [2]
system Rather than reisplepment G NO for
new hardware being acquired by all three
Universities, it was decided to provide
more extensive facilities and 1mprove
GINO%s design.

Parallel isplemerntationss were begun in
1971 on an IBH 370 with a PDP-11/45
graphics satellite at Hijmegem and on a
pPDP-11,655 i n standal one mode at Delft. In
1974-75 the graphics group a the
computing center at the University of
Trondheim in Worway, made an ANS| FORTRAW
implementation fcr the Univac 1108 of a
| arge subset of GPGS. Their GPGS=F is
based on the Delft PDP inplenmentation.
Additional versions of GPGS exist in
countries as f£ar apart as Germany and
India (the latter cn a PDP 10); the
official version is now being licensed at
nom nal cost. Al t oget her the systemruns
in production in sever al dozen
installations.

2 GLOBAL DESIGE_CCHNSIDERATIORS

2,3 TH) SUBROUTIRE PACKAGE AND _BANNOVERVIERV
OF T TS PACILITIE 1 Z

A primary GPGS design

Create a s%bgogp?g packag
new graphics anguage cr graphics

extensions to an existing language. &
subrouti ne package i s easier to design and
implement than language extensions,
simpler progranmers to learn, and

decision was to
instead of a

for

113

easily ext ended by addi ng nor e
subrouti nes. The ease of inplenentation
also allowed for more efficient assembler

language implementations on different

conput er systens. The obvi ous
di sadvantage of a subroutine package is
its limted, awkward syntax.

The subroutines included in GPGS were
chosen to be just far enough removed from
t he har dwar e to provi de devi ce
i ndependence and still allow the
appl i cations progranmer to control the
hardware of an advanced crt display
reasonably efficiently. An additional

guideline for choosing which features to
include in GPGS was to make the package
general urpose and rich [3, 4]. At the

same time, e design would be modular, to
minimize the cost of learning and using a
limited subset of the full system

The features included are those required
or generally useful for implementing a
powerful graphics mcore System” (5]

Unlike the designers of the GSPC Standard,

the GPGS designers felt a basi c modelling

conponent to be generally useful as well:

Brothdsgbsysterrs are overviewed in Sections
and 5.

The graphics subsystem includes line and
text output primitives and their
attributes (line style, intensity,
character size, etc.), 2D and 3D windowing
and clipping, and perspective and
axonometric: projections. The modelling
subsystem allows specification of an
obj ect as a hi erarchy of previously
defined picture segments, with inclusion
of picture segments controlled by
placement (instancing) transformations
(translation, rotation, and scale) and a
transformation stack. The hierarchyis
always conpiled to a single device
dependent picture segnent for output
pur poses.

To aid view ng and/ or
images of oObjects may be post-transforamed
on the display surface with hardware
facilities for dragging or tumbling, using
viewport transformations.

nodel I'ina, (clipped)

Pr ovi si ons for
such as
structure

nore specialized facilities

hi dden-1ine renoval, dat a
support beyond n-level segnent
hi erar chy, and animation were not
i ncl uded. Note that GPGS is a rich,
stand-alone package with over a hundred
subroutines, which may have special
purpose packages built on top. GPGS-F,
for exanpl e, supports a high Ievel
pl otti ng package {6].

When desi gni ng the subroutines thensel ves,

the key concept was sinplicity. The
menoni ¢ nane of a subroutine indicates
what its function is, and what type of

entity it operates on; for example,
SELDEV(I) neans select device I whereas
SELLI'B(1) rmeans select library |. Each
subroutine has as few argunents as
possible. GPGS supplies reasonable
default val ues to allou t he

unsophi sticated user to have to learn only
a few calls.

2,2 _OUTPUT DEVICE INDEPENDENCE

To avoid having to write and load a
conpl et e devi ce dependent package for each
output device on which a picture is to be

di spl ayed, GPGS as a device i ndependent
package has a coammon, shared device
i ndependent part and as many device
dependent device drivegs (to be loaded at
execution time) as there are devices for
that inplenentation (see figure). To
the applications programmer this neans
portability in that he can wite his
graphics program once and wuse it with
di fferent gr aphi cs devices without
changi ng the source code or relinkinghis
progras,
'ng q
| Application |
0 Progran 0
[]—\]
1
0
T w Al
i Device f
! Independent {
t GPGS |
[N)]
O
- 1 L~ -
(0 0
| (J
Y A v
| hat— g al e
| Device} {Device| {Tevice|
| Driver| [Driver| IDriver|
L —] vIL___[F__I n._...v_..n
i U 0
J { !
v A v
r nl T v T ']
Ir ~ la s L § faal)
1 [N i ——
K| te 00 (i ol
I o =2 [
LS J [8 - | o A J
Refresh Tube Storage Tube Plotter
Fig. T GPGS Systenm diagran
The applications progranmer defi nes
objects in wuser coordinates as picture
segments conposed of printives (picture
elements) These include 1lines and text

and previously defined sub-objects pseudo

114

pictu segments). He then specifies
views of these objects (images) to be

plotted on an idealized output device. In
reality, the device independent part of
GPGS uses the setting of the ie i
transformati on parameters (including type
of projection if 3D, window, clipping
mode, viewport) to compile a (clipped)
device independent inmage of the object.
This intermediate form is then further
mapped by a specific device driver onto a
viewport of an actual output surface,
These include plotters, microfilm
recorders, storage tube displays and
steered beam CRT refresh displays. By
specifying viewportss in "normalized™ device
coordi nat es” which are fractions of act ual
physical dimensions of the display
surfaces, the applications programmer need
not be concerned about real device
dimensions and can dram device independent
pictures in user coordinates.,

2.3 INPUT DEVICEF INDEPENDENCE

The idealized device concept is also
appropriate for describing the GPGS scheme

for handl i ng i nput from the console
operator. Unli ke nost other high |evel
packages which are primarily oriented
tovards plotters and storage tubes with
limited input capability, GPGS vas
designed to handte powerful refreshed
CRT’Ss with a wide variety of input tools

such as lightpens, joysticks, tablets, and
keyboards, Upvard compatibility from
sinpfe displays to pouverful ones is
achi eved automatically since GPGS handl es
the superset of facilities of the nost
power f ul conmmercially available vector
di spl ays. Dovnwardl conpatibility from
nmore conplex to sinpler graphics devices
is provided through sipwlatig of higher
level (harduvare) facilities carried out by
device drivers. For exzanple, a lightpen
may be simulated with cursor crosshairs, a

dial with a keyboarded value, etc. In
this way, an applications program nay
still run essentially unchanged on a
simple device, but with an altered

(probably Slower) operator interaction.

The GPCS idealized device includes all the
basic input devices proposedby ®Ballace
{73 It supports the follow ngsingle
input tools:. refresh clock, alphanumeric
keyboard, lightpen for picking, and
audibte alarm. It also has at [east one
tool in each of the following cl asses of
tools: function suitches, dials {1
dimension) , tracking cross and data tablet
v dinensions), and joystick 3
dipemnsions). Each single tool or class of
tools (including the simulated ones)
returns appropriate information to the
applications program in a specific forpatg;

function switches return their
identifiers, dials return fractions
betwveen O and i1, the lightpen returns a

nane stack, etc.

3_RESOURC! HANAGEMENT

As part of
i nterfacing

operating

sol vi ng
gr aphi cs

the problem of
prograns to the
envircnment, GPGS perforns
applications prcgrarw requested
manipulations of the following graphics
resources. graphics devices with their
associ ated drivers, picture buffers, and

picture libraries. The eanipulations
I ncl ude initialize, sel ect, cl ear,
rel ease, and status inquiry. CQut put
buffers and devices wmay be sequentially
selected as the current one; mul tiple

i nput tools may be sinultaneously enabl ed.

Pictures may be stored off-linein picture
libraries which are controlled by the
applications programmer much in the same
way as the device and buffer resources.
Indeed libraries can be thought cf as
extensions of buffers. Thus one can build
a picture on disk rather than using a core

buffer, and subsequently either send the
picture directly from the Ilibrary to a
storage tube, or overlay a piece of the
applications programto create a refresh
buffer. Li braries are therefore
particularly useful for making |arge
pictures on small conputers, or saving

standard menus or standard drawing symbols
(picture parts).

To allow the applications programto find
the properties and status of its currently
al | ocat ed resour ces, and to retrieve
previously established attribute settings,
GPGS has inquiry facilities for returning
execution environnment informationto the
applications program |nquiry can be used
by an optionally specified applications
program subroutine which recei ves control

on the occurrence of an error condition.

8 QUTPUT_ I CILITI S

4,1 _PICTURE: EL] E HTS,
BAND_THEIR ATIRIBUJES

PICTURE_SEGEHENTS,

Using GPGS, an applications programmer
specifies an object as a ccllection of

output primitives called pigtw e} ntugs
defined by mani pul ating an 1dealized
drawing stylus in a 2D or 3D user
coordinate system Anmong the picture

el ements are i ndividual |ines and polyline

sequences, character strings, and markers
(special characters used for point
plotting). Pictaré lesept at f'ibute
like line style and width, character size
and spacing, color, intensity, or blinking
are used to modify the output
characteristics of these basic picture
el ement s.

Al picture el enent s and their
attribute-value specifications are
collected in one or nobre named picture
egqgment {s). Individual elements in the

pfcture segnment say not be altered after

115

the segment has been defined. The segnent
as a whole is t he GPGS wunit of
mani pul ati on, for purposes of del eting or
extending its set of elements as a logical
unit. To alter the contents of a segment
the progranmmer has to regenerateit.

The only other nmanipul ationof a picture
segment allowed s to change its
associ ated segnent attributes (visibility,

lightpen sensitivity (pickability), and
viewport transformations). These
attributes are global for the picture

segment and may be changed any tine after

the creation of the picture segnent has
begun and before it has been del eted.

bj ects specified to GPGS as picture
segnent s are conpi | ed by devi ce
i ndependent GPGS and the appropriate
devi ce driver into display device
dependent code. This display file (for
refreshed displays) wll typicallybe a
chain of buffers, each linearly segnented
into picture segnents. Each segnent
cont ai ns a header where the segnent
attributes are stored for subsequent

nmodi fi cati on.

4.2 VIEHING TRANSFORMATIONS

To produce one or nore "snapshots" or
views of an object on an output device(s),
the applications programer first sets the
proper viewing transformati onconditionst
and t hen defines the object as one or nore
pi cture segnents. For 3D, he specifies
the type of projection to be wused
(perspecti veor axonometric), a w ndow and
a viewport. The window is a rectanglein

2D, or a parallelepiped or rectangul ar
pyramid in 3D, determiningthe limts of
the wuser coordinate space in which the
object is defined that will be displayed
(if clippingis enabled). The yiewport is
the portion of the display surface on

whi ch the contents of the w ndow are goi ng
to be napped on. Viewport boundaries are
speci fi ed devi ce independently in
fractional normalized device coordinates.

As explainedin Section 2.2, the picture
elements in each picture segnent are
successively passed through the GPGS

vi ewi ng transformati on pi peli ne where they
are (optionally) clipped to the boundaries
of the w ndow, and then mapﬁed to the
viewport by a device driver which produces
actual device dependent coordinates.

4,3 _ IHAGE HANIPULATIOD ITH YIFWPORT
IRABSFORMATIIONS
Viewport Transformations are a facility

introduced by GPGS prinarily for refresh
displays to take advantage of hardware
facilities for translation (nost displays

iis for sost GPGS features, suitable
defaults are supplied by the systen,

even 2D or
cr digital

support relative vectors), or
3D rotation (via hybrid

transformati on har dwar e)

Si nce typi cal transformati on hardware
affects only DPC pripitives, it can be
used only after t he entire device
i ndependent vieving transformation

pi peline described above has been applied
to produce DPU code consisting of clipped
picture elements mapped to a viewport.
The picture segnent contains in its header
instructions to | oad transformation
registers. The viewport transformation
changes only these frnstructions in the
header. As an example, in the sinple case
of 2D tramslaticn (for dragging) using
relative coordinates, the picture segment
of relative pP® prinitives ould have an
initial absolute nove 4ir its header. It
shoul d be noted that even for ©DrPU’s
l'acking transformation hardware, viewport
transformati ons are a limted but
efficient facility because they affect a
clipped image of an object, with typically
many fewer picture efenents than the
original object bhad, Thus the console
operator can select a piece of his object
using the view ngtransformation pipeline
once, and thereafter manipulate it on the
screen with viewport transformations,
rat her than w'th the nore expensive
viewi ng transformation pipel i ne.

A_BASIC_HO

ELLING SYSTEH

8.8

It the user has a hierarchical object data
straucture, he may nirror this application
oriented hierarchy in devicei ndependent

GPGS definitions of pseudo pictugze
jegoents. These may be inserted as many
times as desired in a normal picture
segnent . Purthermorey . t hey may be
arbitrarily nested, ith a classical
mast er /i nst ance ref erence schene,

ability to use translation,
scale transformations to
a subpicture instance in a
one, High level facilities
saving, and restoring 4 z &
honbgeneous coordinate transformations
exi st, as well as for pre- and
post-oultiplying for matrix conposition
and nmatrix vector multiplicationm. Pseudo
picture segments, ouch Tike macros, nay
be copied directly (subject to the
instancing transformation) as they are
specifiedinside the higher |evel (pseudo)
pi cture segment, or this inclusion nay be
postponed wuntif an entire hierarchyis
built up and then is instanced in a real
pi cture segment. Thus an entire device
i ndependent hierarchy, with all (pointer)
ref erences and transformations may be
stored as a standard synbol in a library.

i ncl udi ng t he
rotation, and
properTy pl ace
hi gher | evel
for stacking,

4¢5_SINGF _| FFL_SEGHENTATION, HULTI_LEY

“BHING> A ORR ™

Wiile GPGS allots the
hi erarchy of objects as

definition of a
a tree of pseudo

116

picture segments, they nust ultinmately be

compiled to a linearly segmented display
file, In order © to allow mapping
(correlation) frompicture el enents on the
display surface to the original
applicationdata structure from which they
wer e derived, n-level namng for
pi cking/correlation js supported. within

named picture segments, picture el ements
may be given unique names as part of their

specification, and nmay additionally be
grouped with another unigue name using
BGNNAM, ENDRA “brackets®, These group
names may be nested to reflect the
original hierarchy, and will be returned
as a name hierarchy (stack) by the

correlation mechanism. Note that GPGS
only supports a single level of device
dependent picture segmentation for
manipulation purposes, but at least allows
hierarchical naming {8]. If the hierarchy
must be preserved for manipulation of
i ndi vi dual subobj ects, each should be
conpiledto its own picture segment, to be
individually highlighted, del eted, or
vievport transformed.

5_INTERACTION FACILITIES

The proach to provide the programmer
with ardware or simulated interaction
tools such as lightpens, keyboards,
joysticks and function keys was explained
in Section 2.3. To suPPort these tools,
the device driver wi sanple or be
interrupted by each tool to see if it has
been used by the operator. It does this
i ndependent " of (possibly asynchronous to)
the device indepentdent part of GPGS and
the applications program To communicate
this asynchronous activity (i.e., to
simulate tool interrupts) to the
appl i cations program GPGS nmi ntai ns a PIFO
interrupt queue. The device driver fills
the queue wth event reports, which the
application programcan interrogate using
the INBAIT function, at its convenience.

The applications programcalls the INBAIT
function with a list of identifiersof the
tools that it w shes to accept information
from, GPGS then |ooks at the interrupt
queue to see if the consol e operator has
used any of the specifiedtools. |f he
has, the tool identifier and the event
report for that tool is returnedto the
appl i cati ons progran,

The interrupt queue can be polled for any

past tool activity or the applications
program can go intoa wait state to be
“interrupted® by tool activity, as a
function of the time parameter. If the
time parameter is positive, GPGS will
return to the applications programeit her
when the time expires or the consol e user
uses a requested tool. If the time
paranmeter is zero, informationis returned
froma tool only if the consol e user had
used the tool prior to the call to IR®AIT,

otherwise GPGS returns immediately without
providing any tccl information. If the
tinme paraneter is negative, INWAIT returns
to the applications program only after the
consol e user uses one of the tools in the
list. Though not all isplementations
currentlty support it, IRWAIT is designed
to wait for informaticm frcm nore than one
di splay at the sane tine.

The queueing di scipline used by GPGSis to
al | ow each tool of each initialized device

to make at nost one entry at a tine in the
interrupt queue common to all GPGS
devices. Thus the first interrupt froma

tool stays in the queue until it Is either

passed to the applications grcgraon or
flushed by 1IEWAIT because it was not
requested by the applications program
The entire interrupt queue may also be
cl eared (flushed) by the applications
program

when INWAIT returns to the applications

programit gives tack the information from
only one tool. 1o allowthe applications
program to sanple tcol values W thout
using the nore expensive IRWAIT interrupt
gueue mechani sm GPGS has the REATOL
subroutine which has a tool identifier as
parameter and returns information in the
sane format as INGAIT,

6 SATELLI PL RENTATION _QUESTIONS
Standard inplenentations of GPGS were
visualized either fcr a host
(sulti-programmed or dedicated)

suffi- cltentty powerful to run the entire
applications ~ procrae and its environment,

or for a host/satellitesystemwhere the
application would run on the host and the
satellite would need to be only
sufficiently powerful implement an
%jntelligent™ terminal capable of
supporting tocal graphics housekeeping.

Ro . gamime ¥ mse distiilauted
processi ng" between co-egual host and
satellite proessors was visualizedl.2

tc

The satellite processor in GPGS therefore
only holds the part of a device driver
that deals directly with the physical
device (e.g., -datal ccnversion, tool
sanopling, interrupt handling, and
viewport transforsaticns). The
communication between the host and the
satellite is in the fcxm of nessages
between two parts of a driver. The
primary consideration in designing the
satellite support was to get the best
response tine pecssible for the console
user. Typically, the determining factor

2The full pover of a PDP 1i/45 is
therefore not utilized in satellite node;
the 11/85 runs stand-alone GPGS except for
the largest applicatione better done on
the 370 mainframe,

117

on response time is the opportunity for
executicn (di spat chi ng) of t he
appticati ons program on t he mul ti-

pr og;r ammed host processor. with this in
mn it is clear that the response tine
(and link traffic) is optimzed by
mninmzing the total number of nmessages
between the: host and the satellite, i.e.
havi ng as smal | a nunber of
as possi bl e.

’

| arge nmessages

Each picture segnent that is created nust

be sent to the satellite for display. To
mnimze the nunber of nessages it is
better to send the whole picture segnent
after it has been closed rather than

sendi ng each picture el ement in a separate
message to the satellite. The situation
for interaction is less advantageous than
for sending picture segments because each
INWAIT and REATOL request nust be sent to
the satelliteas a separate nessage, and
the reply from the satellite is, of
course, another message. Each message
requires operating system intervention for
1/0, and potential loss of execution
control, with the need for subseguent
redi spatching. Interaction is therefore
likely to be slow on a busy host.

Anot her question in designing satellite
support is why the division between host
and satellite’ code was put inside the
driver. This leaves the whol e work of the
device independent picture processing

pi pel i ne to be done by the host processor.
Al thoughit would be possibleto put some
part of the pipeline (say, clipping) on he
satellite, it would probably violate the

goal of mnininmizing nessage traffic. For
exanple, if a small w ndow would result in
very few lines to be displayed, it would
be " very inefficient to send the entire
(set of) segment(s) to the satellitefor
I ocal clipping. Splitting the pipeline
between any of the other stages of

processing simply adds additional overhead
to the total jr i by gathering the
hal f-processed picture efenents into a
m e on the host which must be split
apart again for further processingon the
satellite. Gven our assunptions about the
limited power of the satellite, the best
strategy is thus to create conplete device
dependent (clipped) picture segments on
the host and send them to the satllite
for display and |ocal manipulation (e.g.,
changes in segnent attributes or viewport
transformations).

7 CONCLUSIONS
7,1_DEVICE INDEPENDEHT YERSIONS

Transportability of highly interactive
programs through device independence has
been achieved with ¢pP6s. Plotter programs
can make the sane picture on a storage
tube and on a refresh CRT, with only minor
variation due to character font, etc.

Programs which wuse all the interaction

tool's of a 3D Vector General display can
be debugged (with sonewhat pai nf ul
simulation) on a sinple storage tube with
only cursor crosshairs and a keyboard.

But in order to allow this, the plotter or
storage tube prograns have been forced to
abide by the sane picturecreaticn and
mani pul ation rules as a refresh cCRT
pr ogr am

witing device

adriver for a
device like a plotter or
line printer is very easy to wite, while
the driver for an interactive device,
t hough much nore work, is certainly
sinpler than creating a whcle new package
and conversion interfaces for other
devices. Sinulating interacticntools and
vi ewport transfcrmaticns for devi ces
l'acking adequate hardware is the hardest
j ob. Making a new driver is usually a
matter of nodifying the |owest |evel of
sonme existing driver.

In our
drivers we
si npl e out put

experience in
have seen that

Ful | assenbly |anguage inplenentations
exist for PDP 11 (under ros, RSX, RT-11,
and Unix operating systems) and for IBM
360/ 370 - PDP 11 (RT-111 and Unix)
satellite systens. The GPGS-F amsI
FORTRAMl subset inplenentation supports

Tektroni x 4010- 4015 and Ki ngmatic plotters
[91l. Currently the follow ng graphics
devices are supported by the assenbly
| anguage ver si ons:

st and- al one:

IBM: Tektronix ¢C€10,4092,4014,4015 (batch
apd TSO),
Calcoap plotter

PDP: Vector General,
Tektronix 4010,4012/4018/4015,
Tektronix plotter,
DEC line printer,
Versatec plotter printer

satellite systen:

Vect or General on PDP 11

GPGS was designed without general data
structure support and as a hi ghldy nodul ar
package in which sophisticatedfeatures
such as input tool sinulation, viewport
transformations, and device independent
pi cture hierarchies are optional code
segnents, |oaded only when needed. This
has resulted in basic packages which take
little memory space and run quickly. with

a basic driver (no tool simulaticn) for
t he Tektroni x 4016 (4015), the RT=11
version of device f[ndepentdent GPGS and
device driver takes a total of only 5.5k
words of PDP 11 storage, |ess than the
BP-11 batch systemnucleus. & 370 system
with PDP 11 satellite and full 3¢ Vector

General display takes 32k bytes for device
i ndependent GPGS, the 370 portion of the

118

device driver, and a picture segnent
buffer. As far as performance is
concerned, for highly interactive (not

mich conputation) applications prograns on

t he IBHE i npl ement ati on, t he CPU
utilization and response tinme are
comparable to t hat of text editing
progr ans.

7.2 SUITABILITY FOB APPLICATIONS

The following comments pertain to how
"general purpose’ GPGS has proven to be,
that is, how easy it Is to write

applications programs. For conputer-ai ded
design programs, where a fairly |ow |evel

interface is needed along with nultiple
devices (interactive CRT and plotter),
GPGS has proven to be very effective.

GPGS has the primitives needed for making
static data plots but it does not have any
utilities to draw graphs. Therefore, a
set of graphing routines to go on top of

GPGS has been designed [6].

Applications that have proven to be
unreasonableto attenpt with GPGS have had
to do with a picture which oust be
structurally changed in real time in
response to console operator input. Due
to the requirenent that a picture segnent
must be completely rebuilt each time it is
changed, even if the building of the next
version of the picture is overlapped with
the displaying of the previous version, it

is difficult to achieve real time changes
with anything but t he si npl est of
pi ctures. Wher e a devi ce has
transformation har dwar e, however, a
program accessing this hardware through
GPGS can produce real tine notion of

arbitrarily conpl ex picture parts.

2,3 USING_ GPGS FOR SATELLITE GRAPHICS

From our experience to date we can
concludethat for satellite use with GPGS,
a fairly sinple satellite processor is
sufficient. A PDP-11/10 is probably
sufficient for all satellite work required
by the current design. The anount of
memory required by the satellite is
determ ned by the ampunt of picture that
can be refreshed flicker-free by the
graphics device. A very high speed
communications link (600K baud) is
certainly nice for GPGS because it means
that picture ment (message) length
really isn't nmuc of a factor in the
response tine. Even with a slower
communi cations |ink, say 9600 baud, GPGS
satellite support would still be useable.
Because all decision making nmust be done
by the applications program as to how to

interactive tools, the

respond to the
for the response of GPGS

limting factors

satellite graphics are the speed with
which the applications program can be
dispatched on the multiprogrammed host

computer, and t he speed of
transni ssi on.

7.4 SUNHARY

GPGS has largely achieved its original
desi gn goal s of bei ng a device
i ndependent, easy to use subroutine
package to allcw program portability.
GPGS provides applications programs wth
access to nmul tiple, diverse graphics
devi ces through the sanme subroutine calls.

The GPGS design has been shcwn to be
i npl enent abl e on small and | arge conputers
alike, wth ap inplenentation effort
required from one to four or five
man-years as a function of the |anguage
coded in, operating system support, number
and sophi sticationof device drivers, etc.

nessage

The FORTRAN i npl enent ati on t ook
approxi mately one mpan-year for device
i ndependent GPGS and sinmple device

drivers.

GPGS is the only generally available
graphics systemthat grevides high |evel
support for the whole range of devices
from plottersto high perfcrmance vector
di splays, wth device independence for
both output and input facilities. Because
of this, GPGS has had a significant
i nfl uence on the design of the GSPC Core
System

ACKNOYLEDGEHENTS

Many peopl e have contributedtheir efforts

to the design, i npl enent ati on, and
critique of GPGS. "e list themhere with
their present and/ or forner
affiliations: Ed Anson, tam Bergercn, Jan
van den Bos, Steve Carmcdy, Larry

Carut hers, #Marty Michel, Martin Nueller,
John Patberg, Dave Rice, Julie Schwartz of
Nijmegem University; Andy van Dam of
fijmegen and Brown Universities {(0.S.A.);
Dik Goot, Lex Hensels, Edwin Hermans,
Kees Thijs, Guus van der W®wal, Peter
veenram of Delft University; Charles Lang
and Pet er Wcodsford of Canbri dge

University; Dick Newell, #artin Newell,
and Tom Sancha of the Canbri dge Conputer
Ai ded Design Center. The hel pful reviews
of this paper by Ingrid carlbos, Dan
Bergeron, and Jim Foley are also nuch
appr eci at ed.

REFERENCES

1. 1BM - Gaphics Subroutine Package
(GSP) for FORTRAN IV, COBOL, and PL/I;
form GC27-6932.

2. Hoodsford, P.A., The Design and
Implementation of the GINO 3-D
Graphics Software Package, Software -
Practice and Experiemce, Vol. 1
(October 1971) , p. 335

3. Caruthers, L.C., and van Dam A, GPGS
User's Tutorial, Informatica, Faculty
of Science, University of N jnegen,
The Net herl ands, Cct ober 197S.

4, Goot, D, Her mans, E, Car ut hers,
L.C., and Schwartz, J., GPGS Reference
Manual, Rekencentrum T.H Delft and
Informatica, Faculty of Sci ence,
University of Nijmegen, The
Netherlands, Hay 1977.

5. SIGGRAPH GSPC, First Report on
Graphics Standards, Proceedings of
SI GGRAPH 77, San Jose, July 1977.

6. Skal and, #., Zachrisen, #., H gh-Level
Graph-Plotting Routines for GPGS-F,
Prelimnary Specifications, RUNIT
Report, University of Trondhei m
Nor way, 1976.

7. Wll ace, V. L., The Semantics of
Graphi ¢ I nput Devi ces, Proceedi ngs ACH
Synposi um on Graphi c Languages, 26-27
April 1976, #miami Beach, Florida, pp.
61-65.

8. Fol ey, J.D., Picture ©®aming and
Mbdi fication: An Overview, Proceedings
AcK® Synposium on G aphi cs Languages,
26-27 April 1976, Hiami Beach,
Florida, pp. 49-53.

9. GPGS-F uUser's Guide, RUNIT Conputer
Centre, University of Trondhein,
Nor way, Septenber, 1975.

119

