
MACHINE-INDEPENDENT METACODE TRANSLATION

Thomas Wright
The National Center for Atmospheric Researcht

When enormous volumes of instructions are to be
translated, an inflexible machine language program
is used to translate the metacode. The high speed
microfilm device on the 7600, for example, cur-
rently averages several hundred instructions per
second around the clock. This makes a small, fast
metacode translator very important. There is,
however, a need for another type of translator.

A portable translator makes some efficiency sacri-
fices to achieve other goals. Because it is port-
able, the translator is easily moved from one host
computer to another. Because it can reduce high
level constructs to low level ones, the least
sophisticated plotters can be supported. Because
the code has clearly marked interface points, a
new plotter can be added to the system with a small
effort.

Achieving Pottabigtty

The translator is written in PFORT [1], a portable
subset of FORTRAN. A verification program was used
to check that the translator adheres to this stand-
ard. When moving the translator to a new computer,
the implementor sets certain machine-dependent con-
stants and supplies FORTRAN-callable functions for
shifting and masking (IAND, IOR, ISHIFT). The
translator assumes that positive integers are
stored in binary and that the host's default length
integer variables have 16 or more bits.

Perhaps a word on portable FORTRAN is in order.
The syntactic constraints of PFORT tend to be an
irritant rather than an obstacle. Standards which
are little known to many FORTRAN users include:

o when initializing an array with a DATA state-
ment, each element of the array must be individ-
ually listed before the first slash (as in
DATA A(1),A(2),A(3),A(4),A(5)/5*0/).

o mixed modes of real and integer are not per-
mitted (as in A = A+I).

o if a routine references two other routines which
share a named COMMON block, the calling routine
must also share that named common block.

o DATA statements referring to named common blocks
can only appear in BLOCK DATA routines. These
and other standards are checked using the PFORT
verification program.

128

Intoduction

Device-independent computer graphics are imple-
mented at NCAR by using metacode [2]. This device-
independent instruction set is produced on each of
the computers in NCAR's network where user pro-
grams execute, such as the Cray-1, the Control
Data 7600, the general purpose satellites, or the
high performance graphics satellite (see figure l).tt
Translation of the metacode is done on the various
computers where the individual graphics devices re-
side. The general purpose satellites translate
metacode into instructions for a microfilm recorder.
The Control Data 7600 uses metacode to produce in-
structions for its microfilm recorder. The high
performance graphics satellite translates metacode
into instructions for its display. Various com-
puters can translate metacode, producing output
tapes for off-line plotters.

t The National Center for Atmospheric Research is
sponsored by the National Science Foundation.

tt At this writing, the hardware configuration is
only partially implemented, but this introduc-
tion assumes the ultimate configuration.

Abstract:

Many systems implement plotter device-independent
computer graphics by having a system plot package
which outputs a plotter-independent code (here
called metacode) and having a translating driver
for each plotter which uses this code as input.
The translator for this code can often be run with
greatest efficiency on the computer which hosts
the plotter. In NCAR's configuration, various
computers will drive different plotters, making a
portable metacode translator a desirable tool.
Constructing a metacode translator which can drive
the simplest devices and yet provide the potential
to use sophisticated plotter hardware features is
a stimulating challenge. The design and implemen-
tation of such a translator are described.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
Siggraph ’77, July 20-22 San Jose, California

http://crossmark.crossref.org/dialog/?doi=10.1145%2F563858.563881&domain=pdf&date_stamp=1977-07-20

The main program of the translator contains a lo-

cation for the implementor to set various param-

eters, checks these parameters, and repeatedly
invokes a routine which translates the metacode

for one picture until all the metacode is exhausted.
To prevent errors in transporting the translator,

the parameters which are to be established by the
implementor are originally initialized to disal-
lowed values, and a run-time check is made to see
that the implementor has set the parameters to
reasonable and consistant values.

The routine which processes a picture's worth of
metacode uses four lower level packages. Three of
these--a character generator, a dashed line package,
and the plotter interface--are discussed in later
sections. The fourth supplies the metacode in
chunks of a size which is easily digested by the

translator. For the metacode in use at NCAR,
these chunks are 16 bits long.

Portable extraction of 16-bit bytes from a bit

stream must be carefully handled. The routine for
this task assumes that a bit stream can be read

into and accessed from an integer array completely
filling each individual word except for possibly

the last word used. This is true on nearly all
machines (possible exceptions include 16-bit mini-

computers reading from seven-track tape drives and
long-word-length machines with short integer reg-
isters, such as a Cray-1). Further, the code as-
sumes that default length integers are some mul-

tiple of four bits in length. Four packets of
four bits each are extracted using shifts and

masks from the current word being used from the

buffer. For each packet, a test is made to see if
all the bits have been obtained from the current
word. If a new word is needed, a test is also made
to see if an end-of-file is encountered. This must

be done with compiler-dependent code. When four'
packets have been obtained, they are shifted and
OR'd together to form a 16-bit byte.

Simpti6ying High Levet ConstAuct6

The metacode used at NCAR has high level constructs
which allow the use of important hardware features
often available on sophisticated plotters. The
two most important constructs are for drawing char-
acters and for specifying dashed line patterns.
For plotters with hardware characters and hardware
dashed lines, instructions can be formed from the
metacode which uses these features. For plotters
without these capabilities, these constructs must
be reduced to lower level constructs (pen move-
ments) to emulate character generation and dashed
line formation.

The portable generation of characters on a plotter
is an interesting problem [3]. When translating
metacode, the problem is simplified because the
characters are in a known character code and are
in a known position in the input string. In NCAR's
metacode, characters are in ASCII and are stored
in order, one per 8-bit byte. Each ASCII charac-
ter is used to form an index to an array of point-
ers to the digitizations of the characters. Each
digitization is used to form the individual strokes
that make up each character. Even with only the
46 PFORT characters implemented, initializing the
pointers and digitizations with standard DATA
statements consumed about 250 statements.

The portable generation of software dashed lines
is not a complicated problem when working with
metacode because of the restricted nature of the
input. A version of NCAR's simplest software
dashed line package was easily integrated into the
portable metacode translator without any special
portability problems.

Other constructs, such as color and intensity,
cannot be reduced to simple pen movements. To take
advantage of these capabilities, extra code can be
added by the implementor at places marked in the
translation program to perform the desired function.

129

Peottet InteAdacing
All plotting is handled through one routine. When
establishing the parameters for the translator,
the implementor specifies whether the translator
should produce integer or floating point coordin-
ates and the range for these coordinates. Two
basic methods exist for interfacing to the plotter.

A small subset of the vendor-supplied software for
the plotter can often be used to form the plotter's
instructions. All scaling, labelling, and so on,
will already be resolved, so only the lowest level
line drawing routine need be referenced. This can
provide a clean, efficient interface to the plot-
ter if the vendor's software is highly modularized.
Unfortunately, this is rarely the case.

Alternatively, a description of the plotter's
hardware instruction set can be used as a basis
for writing code to directly formulate instruc-
tions for the plotter. This is generally more
work for the implementor than using vendor soft-
ware, but often results in a smaller, more effi-
cient interface.

For more sophisticated plotters, the forming of
software characters and software dashed lines can
be replaced by interfaces to hardware capabili-
ties for these functions.

Conceusion

A portable metacode translator has been implement-
ed and functions on several computers with a vari-
ety of plotters. The code is about 1100 state-
ments, of which about one-third are comments.
Various techniques for making the program easily
transportable and flexible are described. The
code has been implemented on IBM, Control Data,
and PDP computers; plotters supported include
Tektronix, CALCOMP, FR-80, and dd80.

RedeAencez

[1] Ryder, B.G. "The PFORT Verifier," Computer
Graphics, Vol. 4, No. 4 (1974), 359-377.

[2] Wright, T. "A Schizophrenic System Plot
Package," Computer Graphics, Vol. 9, No. 1
(Spring 1975), 252-255.

[3] Wright, T. "SIGCHR--A Portable Character
Generator," Computer Graphics, Vol. 10, No. 4
(Winter 1977).

130

