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ABSTRACT

Homogeneous coordinates have long been a

standard tool of computer graphics. They afford

a convenient representation for various geometric

quantities in two and three dimensions. The

representation of lines in three dimensions has,

however, never been fully described. This paper

presents a homogeneous formulation for lines in

3 dimensions as an anti-symmetric 4x4 matrix which

transforms as a tensor. This tensor actually

exists in both covariant and contravariant forms,

both of which are useful in different situations.

The derivation of these forms and their use in

solving various geometrical problems is described.
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INTRODUCTION

We will assume the reader is somewhat famil-

iar with the homogeneous representation of points

and planes in 3 space. A good introduction may

be found in [1]. Briefly, a point is represented

as a four component vector, usually written as

Any non-zero multiple of this row vector rep-

resents the same point. The "real" components

of the point may be discovered by dividing by

the fourth component to obtain the three compo-

nents:

A plane is represented as a four component

column vector:

Any non-zero multiple of this column vector rep-

resents the same plane. The first three compo-

nents describe a vector normal to the plane and

the fourth is related to its distance from the

origin.
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Thus the dot product of the transformed point and

plane is the same as the dot product of the orig-

inal point and plane. The relationship of a

Any combination of scaling, translation, rotation,

and perspective distortion may be represented 
by

the matrix T. To determine the coordinates of a

plane after it has undergone the same transforma-

tion we must pre-multiply by the inverse of T.

The sign of D indicates which side of the plane

the point was on. It can be ignored if only the

distance is required.

An object defined in terms of homogeneous

points may be transformed by multiplication of its

points by a 4x4 matrix.

The dot product of a point (row) vector and

a plane (column) vector is proportional to the

distance from the point to the plane.

A special case of this is the fact that, if the

dot product is zero, the point lies in the plane.

If the dot product is non-zero, we can find the

actual distance by the following means. Construct

a three dimensional vector of unit length per-

pendicular to the plane. (A B C) = (a b c)/

/a
2
+ bZ + c

2
. Scale it up by D and add it to

the position of the point. We should then have

a point on the plane.

Since this point is on the plane, its dot product

with the plane vector will be zero. We now have

an equation which can be solved for D.
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point lying on a plane is preserved.

Suppose we are given three points and we wish
to determine the components of the plane vector
through them. That is, we wish to solve for
a, b, c, d in the equation:

Consider a fourth point not in the plane of the
other three. Its dot product with the desired
plane vector will then be non-zero. We will call
it q. The resulting equation is then:

This equation may be solved by multiplying both
sides by the adjoint of M. The adjoint is the
transpose of the matrix formed from the co-factors
of the original matrix. The co-factor of an
element of a matrix is found by erasing the row
and column containing the element and computing
the determinant of the remaining smaller matrix,
finally flipping the sign if the sum of the row
and column indices of the element is odd. Thus
the co-factor of the x4 term of M is:

The product of a matrix and its adjoint is the
identity matrix times the determinant of the
original matrix. The product of the adjoint with
the right side of the equation is just q times
the right hand column. Our equation is now:

Now, since any non-zero multiple of a plane
vector represents the same plane, we can neglect
the q and det M terms above. Finally, note
that the co-factors do not contain any compo-
nents of the arbitrarily chosen fourth point.
This whole process can be represented in a short-
hand notation:

This is simply a generalization of the more famil-
iar shorthand notation of the cross product of two
vectors in ordinary three space. The only problem
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that could arise is if the matrix M were singular.
This only occurs if the three original points are
co-linear, whereupon there is no solution. In
this case, the four co-factors are all zero. We
can take the appearance of four zeros when
looking for a plane through three points as an
indication that the three points were co-linear.

There is a similar mechanism for determining
the point of intersection of three planes. That
is, the homogeneous coordinates of the point of
intersection is:

Again, the appearance of four zeros when solving
for the point of intersection indicates that the
three planes to not have a single common point.
They, in fact, intersect on a line.

THE HOMOGENEOUS LINE REPRESENTATION

We shall now construct a homogeneous rep-
resentation of lines in 3D taking the form of a
4x4 matrix we shall call L. It will have the
property that any scalar multiple of it represents
the same line. In addition, if a point vector is
multiplied by L, a result of four zeros indicates
that the point is on the line. The inspiration
for this formulation comes from the Grassmann
coordinate systems described in [2].

First re-consider the problem of finding the
plane through three points. If the four co-
factors in the solution are all zero then the
three points were co-linear. We can re-interpret
this as a condition upon a third point which will
make it co-linear with two others. Thus for two
given points P1 and P2, a third point is co-
linear if:



The above anti-symmetric matrix is then our

desired line representation, L. Any non-zero

multiple of L will still represent the same

line. If a point is multiplied by L and four

zeros result then the point is on the line.

Furthermore, if the point is not on the line,

the four coordinates obtained will be the same

values obtained if all three points were solved

for their common plane. That is, they will be the

components of the plane common to the point and

the line:

We need only to transpose the row vector to get

the plane vector in its more familiar column

format.

There is an analagous process for generating

the matrix representing the line formed by inter-

secting two planes. Given planes 1 and 2, the

condition that a third plane contains their line

of intersection is:

That is, the four equations must be satisfied:

The matrix K is an anti-symmetric matrix which is

a homogeneous representation of the line of inter-

section of the two planes. Any non-zero multiple

of K represents the same line. The product of K

and any other plane vector will yield four zeros

if the line is contained in the plane. If the line

is not contained in the plane then the product will

yield the homogeneous coordinates of the point of

These can be written in matrix form:
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The middle matrix is just L. The product is all

zeros either identically or by virtue of relation

Given this relation we can construct the following

matrix product:

In order to make x=y=z=w=0, as we know must be the

case, we are forced to the conclusion that either

s=q=p=0 or pu-qt+sr=0. By a similar operation on

other choices of columns of L we find that the

latter choice is correct, Thus, to reiterate, for

any matrix L constructed from two point vectors to

represent the line connecting them, the six

coordinates will always satisfy the relation:

We need only to transpose the point vector to get

it in the more familiar row form. There is one

somewhat surprising fact, however. For a given

line, the matrix L formed by two points on the

line is not the same as the matrix K formed by

two planes intersecting on the line. We will now

show this.

THE DUAL LINE REPRESENTATION

We first take note of another interpretation

of the matrix L. Since each column yields a zero

when multiplied by a point oh the line we can

think of it as a plane containing the line.

Similarly each row of K can be thought of as a

point on the line which it represents. Thus L

consists of four planes containing the line rep-

resented by L and K consists of four points on the

line represented by K. Let us take any three

planes of L and attempt to find the point common

to them. Since we know that the planes intersect,

not at a single point, but at a line we expect to

get four zeros.

intersection of the line with the plane:

we can write the four equations in matrix form:



(*). How can we interpret the left hand matrix?

Since each row multiplied by L yields four

zeros each row must be a point on the line. The

left hand matrix must then be the same as K, that

is, four points on the line stacked into a 4x4

matrix. The matrix K thus contains the same

numbers as the matrix L, they are just arranged

differently. We can now match the names of the

coordinates with their values if calculated as

the intersection of two planes:

Thus the homogeneous representation of a line

exists in two dual forms generated by joining two

points and by intersecting two planes. The six

coordinate points generated in each case satisfy

equation (*).

DISTANCE MEASUREMENTS

To further increase intuitive feel for the

meaning of these six coordinates let us see where

a given line intersects the plane at infinity.

We multiply the K form of the line with the plane

at infinity and get:

The intersection is the point at infinity

(-s -q -p 0). That means that the 3D vector

(s q p) points parallel to the line. Now let

us determine the plane containing the line and

the origin. We multiply the L form of the line

with the origin and get:

This means that the 3D vector (-r t -u) points

perpendicular to this plane. The dot product

of these two vectors is zero: this is just

relation (*). Thus (s q p) lies in the plane

containing the line and the origin. If we

compute the cross product of the two vectors

we will get a third vector which is perpendic-

ular to the line and pointing directly toward

it.

By making use of (*) it can be shown that

the length of T is

We can now compute the perpendicular distance, D,

from the origin to the line. Place the normalized

T at the origin and scale it up by the factor D.

We should now be at the point on the line which

is closest to the origin.
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This is another tensor. This time the trans-

formation matrix is the same as the point trans-

formation matrix so it is a covariant tensor.

INTERSECTING LINES

We have so far examined the problem of

whether a point is on a line and whether a line

is in a plane. There remains the question of

whether two lines intersect, and, if so, where.

Matrices which represent quantities which trans-

form in this way are called tensors. In addition,

since the transformation matrix used is the

inverse of the point transformation matrix, it

is a contra-variant tensor.

By applying the analagous process to the K

form of the line we get

Comparing this with the original point, line,

plane relation we can state that a solution is:

Combining these

We can express the primed point and plane in

terms of the unprimed by

we wish the transformed quantities to also

satisfy the relationship:

This is the perpendicular distance from the

origin to the line L.

TRANSFORMING LINES

A homogeneous point is transformed by post-

multiplying by a 4x4 matrix. A homogeneous plane

is transformed by pre-multiplying by the inverse

of the point'transformation matrix. We shall now

derive the process whereby a homogeneous line is

transformed. This procedure should preserve dot

products just as the plane transformation does.

That is, given the relationship:

Multiplying out and solving for D we get:



This can be solved by taking the point form of

one line and multiplying it by the plane form of

the other.

Each row of K1, being a point of line 1, will

generate a plane through that point and through

line 2. If the two lines intersect, each of these

will be the same plane. The plane containing

the two lines. Likewise each column of L2, being

a plane containing line 2, will generate a point

at the intersection of that plane and line 1. If

the two lines intersect, each of these will be the

same point, the point of intersection of the

lines. Thus each row of N is a plane vector for

the plane common to the lines. Each column of N

is a point vector for the intersection of the

lines. N is the outer product of the point and

the plane:

Since the point of intersection always lies in

the plane of intersection the inner product will

be zero. This can be calculated as the trace of

N. In terms of the components of K1 and L2 the

trace of N has the value

Note the similarity to relation (*).

For lines which do not intersect (skew lines)

the trace of N will be proportional to the

perpendicular distance between them. This can

be seen in the following manner. First consider

the cross product of the direction vectors of the

two lines.

This vector will be perpendicular to both lines.

A plane having (s3 q3 p3) as its (a b c) compo-

nents will be parallel to both line 1 and line 2.

We can find the particular such plane which

contains line 1 by solving for di in

This yields four equations all of which can be

shown to have the common solution

Similarly, the plane parallel to line 1 which

contains line 2 has

The perpendicular distance of each of these planes

to the origin is
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These three equations may then be solved for r3 ,

t3 , and u3.

CONCLUSION

The line representation developed here can

be used to solve many geometric problems in three

dimensions. Its form, however, does lead to much

redundant calculation for many problems of

interest. Its main use may therefore be as a

conceptual tool to generate formulas for desired

geometrical quantities which are then simplified

based on other knowledge of the problem.
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If the trace is zero, the lines intersect. If

the trace is non-zero, the perpendicular distance

is as shown.

What, then, are the six homogeneous coordinates

for the line along which this distance is

measured? We already have the direction of the

line as (S3 q3 P3). It remains to find r3, t3,

and U3. This can be accomplished by using the

three facts that line 3 intersects line 1, line 3

intersects line 2, and the coordinates of line 3

must satisfy relation (*).

The perpendicular distance between the two planes

and the perpendicular distance between the lines

is


