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Conversion of numeric data into pictures can

be a tedious trial and error process of drawing

and redrawing pictures in order to achieve a suit-

able effect. A rough picture is drawn and then

redrawn repeatedly, moving vertices and edges

until the result appears satisfactory or more of-

ten until one runs out of time, paper or patience.

Graph processing systems which allow the user to

draw and manipulate graphs on a graphic display

facilitate this process [9]. However, the user

must still draw the pictures himself. All such

systems do to aid in drawing the pictures is to

provide a very expensive eraser. What is needed

is a way to use the power of the computer to pro-

duce these pictures from a non-pictorial represen-

tation of the graph with minimal user interaction.

We have attempted to program a computer to do

just that. Some of the problems involved in com-

puter generation of pictures of graphs are discus-

sed. The implementation of a semi-automated sys-

tem for manipulating graphs which, through a com-

bination of heuristic techniques and semi-automa-

tic procedures, generates visual representations

of graphs is described. This system allows a user

to request the computer to draw pictures of a

graph. The computer can produce these pictures

without aid from the user, although in practice

the user will direct the operation of the system

as well as perform postediting of the pictures.

2. Graphics Support

An interactive graphics system called GSYM,

for Graph SYMmety, was developed to aid in invest-

igating visual representation techniques for

graphs. GSYM allows a user to create, manipulate

and display graphs using an IBM 2250 Graphic Dis-

play Unit [5]. GSYM is a special graphics display

tool designed solely for investigating the prob
L

lems involved in using a computer to generate vis-

ual representations of graphs. It should not be

confused with existing graph processing languages

[3,4] as it is not a programming language per se

although it does provide macro-like commands for

operating on graphs in certain situations. It

also contains a list processing subsystem, but is

not primarily intended to be a list processing

tool.

2.1. System Operation

GSYM was designed to be used by individuals

such as mathematicians and graph theorists that
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The development of display procedures for

drawing pictures of linear graphs is described.

The facility to model relationships pictorially

has led to the use of graph theoretic techniques

in many different applications. While computers

normally work with a numeric representation of a

graph such as its incidence matrix, manual trans-

formation of such representations into pictures is

a tedious process. An interactive graphics system

has been developed which, through a combination of

heuristic techniques and semi-automatic procedures,

creates visual representations of graphs with a

minimum of user intervention. The resultant pic-

tures display mirror-image and rotational symmet-

ries that occur within the graph. This very gen-

eral approach of displaying symmetry in graphs has

proven useful in studies of several classes of

graphs. However, the system is primarily a re-

search tool designed for use by mathematicians and

graph theorists. Difficulties entailed in adapt-

ing the display procedures to more specific appli-

cation areas are discussed.
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1. Introduction

A wide variety of application areas employ

graph theoretic techniques to model relationships

which are best represented as pictures. Electri-

cal networks, chemical structures, computational

models and communication networks are examples of

application areas where graph theoretic approaches

have been used. One reason for this is the number

of algorithms and techniques available for manipu-

lating the graph models. Equally important, how-

ever, is the fact that the structure of the graphs

can be represented pictorially.

Efficient computer manipulation of graphs re-

quires that they have a numerical data representa-

tion. However, incidence or adjacency matrices

and other numeric representations of graphs usual-

ly have little meaning for humans. Therefore, the

engineer or mathematician attempts to translate

the numeric results of his programs into pictures,

seeking to obtain a deeper insight and understand-

ing of the properties and structure of the results.
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would have little, if any, experience with compu-
ters. The goal was to create a computer tool that
could provide researchers with further insight into
the structure of their graph theoretic models.
However, we had to entice, for the most part, non-
computer users to leave their offices and journey
to the graphic display. The display, of course,
was inconveniently located in the basement of the
Mathematics and Computer building behind the closed
doors of the Computer Centre. Thus, there was con-
siderable pressure to make GSYM very easy to use.
For example, we had to avoid the usual hurdles for
a novice of learning awkward syntax rules for some
programming language and being forced to stumble
through a maze of job control language.

GSYM operates on what has been termed 'inter-
acttion by anticipation' in that the interactive
system attempts to guide the user through the se-
quence of events that causes a particular operation
to be performed. The possible operations the user
may initiate at any given moment are displayed and
the user selects one of the current options using
a light-pen. The system is said to be in the 're-
set' state when the option list illustrated in Fig-
ure 1 is displayed. Once a basic option is select-
ed, all the possible suboptions are given. After
choosing the ADD option, for example, the user sel-
ects the element to be added to the graph from the
list in Figure 2. If a vertex was being added, the
system would request the user to position the ver-
tex on the screen using a light-pen.

A similar process is followed for all opera-
tions. That is, GSYM displays a list or menu of
the options available to the user at the moment and
awaits the user's response. This type of format
not only guides the user but also eliminates the
possibility of system error owing to invalid user
input. In order to reduce the frequency of user
error the option lists contain a brief instructive
note defining the nature of the current operation
and the user action required. Moreover, should the
user change his mind or wish to cancel an operation
in the middle of a command sequence he may return
to the reset state simply by pushing a programmed
function key. Thus, the system is very forgiving,
encouraging inexperienced users to become profi-
cient in its operation through actual 'hands-on'
experimentation. These features are especially im-
portant since as a research tool, GSYM is intended
primarily for graph theorists and mathematicians.
Such users understandably have little patience with
the rigidity and poor man-machine interfaces that
more experienced computer users seem to have accep-
ted as the norm.

The wide variety of available operations in-
cludes addition, deletion and alteration of graph
entities. The graphs are composed of vertices,
edges and arrows. An arrow is always associated
with an edge, that is, an undirected edge becomes
a directed edge when the user adds an arrow (dir-
ection) to the edge. Move, rotation and transla-
tion commands manipulate the form of the graph as
currently displayed on the screen. The user is
able to move vertices, edges and arrows about the
screen or, if he wishes, he may translate the whole
graph. The rotation command rotates a graph about
any point in the 3-dimensional cube in which it is
defined. This cube corresponds roughly to the
housing of the 2250 display screen.

2.2. GSYM Facilities

GSYM provides all of the graph manipulation
operations allowed by earlier systems [91. It al-
so allows the user to associate lists of proper-
ties with vertices and edges. This facilitates
the implementation of graph theoretic algorithms
which operate on vertex and edge properties. The
user is also able to create lists of vertices and
edges by selecting list elements with a light-pen.
This simple list-processing subsystem is adequate
for most graph theoretic routines which operate on
sets of graph elements. In anticipation of future
expansion to allow command lists to be interpreted
by the system, GSYM has a 'macro mode' whereby the
user types in macros, containing all the informa-
tion required by the system to perform the next
operation. For example, to add a vertex one wou.d
type:

ADD V,(vertex coordinates),'label',(label coordin-
ates),property list.

From an execution time standpoint macro mode
is very efficient, but it requires a more knowled-
geable user and more user time in order to type
the command. However, a user written program run-
ning under the GSYM system may control the opera-
tion of the system by directing commands in the
form of macros to the system. An ENQUIRE option
permits users to quiz the system at any time con-
cerning the current status of a graph, its proper-
ties and any graph related entities such as list
pointers. It is also possible to have this infor-
mation sent to a line printer for later reference
and examination.

The user is able to save graphs on secondary
storage and restore them later. Both the graph
and the current status of the system are stored so
that when a graph is restored the display as well
as the data base associated with the graph is re-
created. This feature allows the user to save dis-
plays created by visual representation routines
and recover them at any time.

The graphs are stored as members of a file
directory which the user creates before saving any
graphs. There is no limit to the number of direc-
tories a user may have. In order to switch from
one directory to another it is simply necessary to
reference the new directory. Each graph in a dir-
ectory is given a name when saved and may be re-
named or replaced by another graph. The user does
not become involved in the actual detailed crea-
tion and manipulation of the files containing
these graphs. In particular, it is not necessary
to know any command language statements for creat-
ing new files or referencing old files. All such
file operations are handled dynamically by GSYM
and are transparent to the user. The same stan-
dard control language is used to run GSYM regard-
less of what files will be used. The typical GYSM
user is not likely to possess this knowledge and
is unlikely to be inclined to acquire it in order
to use the system.

Since GSYM is intended for designing and test-
ing representation schemes, it has the ability to
call user programs into execution. This feature
has also been used to provide several special fun-
ctions such as reading graph descriptions from in-
put files, debug tracing of GSYM and smoothing
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edges drawn with the light-pen. Although this fea-
ture is intended for testing visual representation
routines, it is possible to incorporate any type of
graph theoretic routine. For example, a program to
calculate Hamiltonian paths could use the GSYM list
processing subsystem to create lists representing
any such paths in a graph. Space in the display
processor's memory has been reserved to allow user
programs to create their own displays if needed.
All system functions for manipulating and interro-
gating a graph or its associated data base are
available to user programs through the macro facil-
ity. The result is that it is a very simple matter
to incorporate new representation routines. The
user is isolated from the details of display file
and data base manipulation.

2.3. Picture Format

The display screen layout for graphs in GSYM
was designed in view of the effect it would have on
pictures drawn by visual representation routines
running under GSYM. Several screen layout problems
and some of the steps taken to solve or avoid them
are considered below.

Vertices and edges are displayed as points and
straight lines, their natural representation.
Arrows represent directions on directed edges and
may be positioned anywhere along a directed edge.
The positive and negative ends of an edge are indi-
cated by arrow orientation. There are eight possi-
ble orientations corresponding to the eight major
points on a compass.

The screen of a display unit is a two-dimen-
sional entity and is therefore limited to two-dim-
ensional pictures. If GSYM restricted itself to
planar graphs with all visual representations being
planar maps, such a two-dimensional display system
would be quite adequate. However, GSYM is intended
for use with both planar and non-planar graphs.
While this did not preclude the possibility of gen-
erating pictures of non-planar graphs with inter-
secting edges, a more serious problem was the ques-
tion of how to display multiple edges between ver-
tices in a two-dimensional system. Thus, restrict-
ing GSYM to a two-dimensional coordinate system
would severely constrain users' visual representa-
tions. For example, it would not be possible to
generate a picture of a graph as a three-dimension-
al object and this is a natural representation for
many graphs. For these reasons all GSYM graphs are
defined using a three-dimensional coordinate
system.

An edge is displayed as a straight line join-
ing the x and y coordinates of the Cartesian
(x,y,z) coordinates of its end-vertices. This re-
presentation implies that the user may need to ro-
tate the graph in order to see more than just one
of its faces. The GSYM rotation facility allows
the user to rotate a graph about any point in the
cube in which the graph is displayed.

There is one exception to the rule of three-
dimensional graph entities, a special two-dimen-
sional edge called a 'light-pen' edge. The user may
specify that he wishes to draw a freehand represen-
tation of an edge using the light-pen. The edge is
then displayed as a sequence of short straight line
segments tracing the path of the light-pen. Light-

pen edges solve the display problem caused by sev-
eral edges being incident to the same pair of ver-
tices since these edges may be drawn as curved
lines. However, the primary importance of this
feature is that it allows the user a wide range of
choices in altering visual representations pro-
duced by the computer. Straight line edges can be
replaced by curved edges which the user feels im-
prove the picture.

3. Visual Representation Techniques

Our initial interest in computer generated
representations of graphs was the result of an
attempt to create pictures of a class of cubic,
cyclically 4-connected graphs produced by Faulkner
[2]. For every region size n > 6 in this class of
graphs there exists a graph consisting of two pol-
ygons of n - 2 edges each such that every vertex
in one of the polygons is adjacent to exactly one
vertex in the other polygon. These graphs can be
drawn as concentric polygons or rings of quadrila-
terals as illustrated in Figure 3.

The ring structure was used as a basis for
representations of more complicated graphs in the
class. The ring structure is allowed to contain
pentagons, hexagons and larger polygons. Once the
ring structure is complete the remaining edges, if
any, can easily be added to the interior of the
ring. Figure 4 shows a 25 region graph. This
display procedure produced reasonable pictures;
however, excessive computer time was often neces-
sary to calculate the ring structures. Moreover,
the pictures could not be altered by the user.
Finally, the representation routine was suited
only to the one class of graphs. This lack of
flexibility led directly to the development of
GSYM and its use in the investigation of alterna-
tive representation techniques.

3.1. Symmetry

The most apparent and the most interesting
feature of the pictures produced by this first re-
presentation routine was the frequent repetition
of symmetry between elements of the graph. Sym-
metry, particularly mirror-image symmetry, occurs
repeatedly in nature and in man's own creations.
Weyl gives an excellent discussion of the nature
of symmetry and its use in art and architecture
through the ages [8]. The possibility of portray-
ing symmetries in graphs suggested using the auto-
morphisms of a graph as a basis for creating pic-
tures of the graph. The cycles in an automorphism
mapping of a graph can be interpreted visually as
mirror-image and rotational symmetries.

Calculation of the automorphism mappings of
most graphs is a long computational task. Heur-
istics have been used to determine whether graphs
are isomorphic [7]. Similar heuristics were
derived to calculate the automorphism mappings of
a graph. Vertex valencies define an initial par-
tition of the vertex set of a graph. Additional
tests such as the number of vertices in each
neighbourhood of a vertex and the number of poly-
gons through a vertex are then used to attempt to
refine the partition. Numerous such heuristics
were investigated before selecting a set of heur-
istics which worked well with most graphs.
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The amount of computation time required obtain
the automorphisms depended on the heuristic tests
and parameters applied to the graph. Experimenta-
tion with different tests and parameters on the
same graphs indicated that a combination could usu-
ally be found that reduced the computation consider-
ably. In order to make the calculation of the auto-
morphism mappings feasible, the heuristics were im-
plemented under GSYM. The operation of the heur-
istics could then be monitored on the display. The
user interacts with the system by dynamically ini-
tiating and halting heuristics and varying parame-
ters. Using this interactive approach it became
practical to calculate automorphisms to use in gen-
erating visual representations of a graph. Differ-
ent heuristics were easily implemented and tested
as user programs under GSYM. The vertex set parti-
tion was handled using the list processing subsystem
in GSYM.

3.2. General Representation Routine

Our first translation of the automorphisms of
a graph into pictures was a very general representa-
tion routine. This routine attempts to handle all
classes of graphs without any additional information
about the graphs beyond the symmetries in the auto-
morphism mappings.

Vertices fixed, that is, mapped onto themselves
by an automorphism, are displayed as axes of sym-
metry around which are placed mirror-image vertex
pairs, vertices interchanged by the automorphism.
Automorphisms with cycles of one or two vertices be-
come the mirror-image symmetries of Figure 5. Cy-
cles of more than two vertices are treated as rota-
tional symmetries. Each rotation is placed in a
different plane in the three-dimensional cube in
which GSYM graphs are defined. Figure 6 illustrates
an example of rotational symmetry.

This approach tends to produce rather cluttered
pictures as graphs become more complex. Poor place-
ment of the mirror-image vertices or the rotations
also has the same effect. Postediting facilities
were therefore implemented to allow the user to
modify and improve the generated pictures. The
user may stop the representation routine at any
point, modify the picture produced so far, and then
allow the routine to continue to add further mirror-
image and rotational symmetries. The user also con-
trols the placement and size of the rotational sym-
metries. Finally, the user may edit symmetries as
a unit. For example, moving a vertex in a mirror-
image symmetry causes its corresponding vertex to
move so as to maintain the original symmetry. This
semi-automated display process produces representa-
tions of comparable quality to those generated by
hand and does so in a fraction of the time and ef-
fort required to draw the same graphs manually.

The above approach has the fault that the qua-
lity of the pictures produced varies with the auto-
morphism mapping used. Automorphisms with rela-
tively few fixed vertices generally produce the
best displays. A large number of vertices on an
axis of symmetry obscures the structure of the
graph because all the edges joining these vertices
form a single line on the display. Moreover, large
graphs or graphs with a large number of symmetries
may require considerable postediting before a sat-
isfactory picture is produced. The reason is that
this representation routine uses only the symmetry

information given by the automorphism mappings of
the graph in order to display the graph. While
the routine displays all the symmetries it lacks a
frame around which to group these symmetries. The
advantage of this approach is that the routine may
be used with moderate success with many classes of
graphs. The disadvantage is that this approach
does not allow for situations where users are in-
vestigating problems where the graphs involved
share common properties and structures.

3.3. Tree Representation

Trees are a class of graphs found in many app-
lications. Trees also possess a high degree of
known structure in that all vertices in a tree can
be defined in terms of their distance from the cen-
tre or bicentre of the tree. Finally, the general
symmetry routine, in ignoring the fact that a
graph was a tree, produced pictures that rarely
even hinted at the tree structure of the graph.
It was apparent that the acceptability of the pic-
tures produced by this general approach was provi-
sional on the user not having a preconditioned
idea of what the resultant picture should portray.

Not wishing to abandon the symmetry approach,
a tree representation routine was designed which,
in addition to the automorphism symmetries, consi-
dered the tree structure of the graph in the pic-
tures generated. Mirror-image and rotational sym-
metries were combined with vertex distance from
the centre or bicentre of the tree to produce pic-
tures such as the one illustrated in Figure 7.
Distance from the centre or bicentre determines
the level at which a vertex is placed. Mirror-
image and rotational symmetries are considered in
ordering vertices on each level so as to illustrate
the symmetry. The result was a representation
routine that generates excellent pictures of trees
and requires little or no postediting of the gen-
erated display.

4. Discussion

The pictures produced by the representation
routines have been encouraging, even though the
original objective of using a computer to automa-
tically produce pictures of graphs has only part-
ially been met. The representation methods tested
required user postediting of the pictures. How-
ever, the need for postediting was considerably
reduced when the representation routines consider-
ed more of the structure of the graph than the
elementary automorphism mapping symmetries.

The two representation routines discussed
above are radically different in nature. The first
is totally naive about the structure of the graph
while the other knows everything about it. Few
classes of graphs lend themselves so well to a
visual portrayal as do trees. However, just as
with the development of specialized programming
languages, we anticipate a parallel development in
the creation of visual representation routines - a
proliferation of specialized routines intended for
specific classes of graphs or particular applica-
tion areas. These routines would be based on
properties that, when interpreted visually, deter-
mined the layout of the graph.

For example, one such property is planarity.
All planar graphs can be embedded in a single
plane without intersecting edges. Tutte gives an

258



algorithm for drawing such a graph in the plane [6].
Unfortunately, Tutte's algorithm tends to produce
pictures where a large number of edges are drawn
within a very small area. As a result, for most
practical purposes, the algorithm proves to be un-
satisfactory.

The GSYM system in combination with the repre-
sentation routines is designed as a tool for graph
theorists. It provides a means whereby a graph
thoerist can easily investigate the structure of a
graph or class of graphs in which he is interested.
The representation routines should also prove use-
ful for communicating information on classes of
graphs between researchers. At present all that
could be made available is a list of the numeric
representations of the graphs. However, the repre-
sentation routines could produce, in a systematic
fashion, pictures of the graphs as well.

Applied use of automated representation proce-
dures will require the implementation of more
specialized routines than those described here.
However, applications should be possible wherever
structural symmetry in modelling relationships is
important. For example, in the area of fault
diagnosis functional simulation is one technique
for digital fault simulation C1l. With this method
a digital system compused of modules M1, M2,...,M

is to be simulated. Overall system behaviour is to
be determined using the assumption that there are
faults in only certain of the modules. The remain-
ing modules need not be simulated at the gate level.
It is only necessary to compute the output of these
modules as a function of their input. If such a
system were defined as a graph, then a representa-
tion routine could display the symmetries in the
system. These pictures would indicate which modules
should or should not be simulated in detail. For
example, if modules M. and M. form a mirror-image

pair, then if module Mi is not being simulated at

the gate level the mirror-image symmetry implies
that neither should module M. be simulated at the

gate level. That is, the symmetry in the system
could help determine how to set up the simulation
tests.
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