R Synchronization: is a synthesis of the problems possible ? *

Check for
Updates

Gerald Belpaire*x

Computer Sciences Department and Mathematics Research Center
University of Wisconsin-Madison

INTRODUCTION

Problems of synchronization among processes are encountered in both
centralized and distributed computer systems. Conceptually, problems of the
same nature arise in both applications (e.g. exclusive access to shared data),
but, from the standpoint of implementation, techniques used to solve the problems

are quite different.

This paper exposes an idea to define a framework within which this twofold
reality will be reflected, together with a method to define with precision the pro-
blems of synchronization at their proper level of abstraction. As such, it attempts
to give an answer to the question of understanding what characterizes a problem
of synchronization, how it is related to a programming method and what are the

aspects of its implementation.

PROCESSES AND EVENTS

In this section, we present synchronization rules at the lower level of ab-
straction as rules governing occurrences of elementary events. These rules corre-
spond to the intuitive notion of "waiting" for something to become possible and

"signalling" this possibility.

At first approximation, a process can be seen as a sequence of events de-
fined by the execution of some actions on some data. A typical problem of syn-

chronization is defined as a dependence of the occurrences of some events upon

* This work was supported in part by U.S. Army Contract DA-31-124-ARO-D-462.

*% Author's present address: Courant Institute of Mathematical Sciences, New
York University, 251 Mercer Street, New York, New York 10012.

- 3 -


http://crossmark.crossref.org/dialog/?doi=10.1145%2F563905.810893&domain=pdf&date_stamp=1975-01-01

the occurrences of some other events. These dependences are included as coor-
dination rules (e.g. the firing rule in Petri-nets) in all models of synchronization
defined in the literature. In this paper, without loss of generality, the following

representation of the coordination rules are defined.

To each event e, and at any instant t of time, we attach a binary
value called the possibility of that event. The possibility of an event can be
either possible or not-possible. If, at time t, an event is possible then it can

occur within a finite time after t. Otherwise, it cannot occur.

The possibility of an event can be defined by a time-dependent predicate

as follows:
"e 1is possible at time t" if and only if "P(e)t is true" .
For example, if we consider two processes of three events each:
Pp=(@y3,35 5 py=(by b, by
the possibility of a2 can be:
Pa,) = 8, ~ Cla,),

where:

S(a 2) "a1 has occurred"”

t

C(a,)

a2 : "none of b1 and b3 has occurred or both have occurred” .

S defines a sequencing rule (internal structure of pl) and

C defines a coordination rule. In theory, it is not necessary to make a distinction
between S and C . In practice however, the distinction is relevant and is there-

fore kept in the model.

It is possible 10 give a mathematical formulation of S and C with the
following definitions.
Let E be the set of events and T the time (an ordered set of instants). A couple

(e,t) , eeE, teT is an occurence of e attime t. A set

E,CExXT,, th{t'|t'< t, t'eT}

-4 -



is a timing of the events of E priorto t (i.e. an evolution in time of the pro-

cesses).

A synchronization problem typically defines some restrictions on the timing

E, . For example:

B, =8t'((bt) ¢ E) B, =Et'((b,,t") ¢ E)

3

Cl@y), =~ (B VB ¥ (B~ By

Since P(e)t can be an arbitrary predicate, this formulation is very general. But

from this generality comes its disadvantage: it cannot be used in practice. It is
therefore not proposed as a universal model of synchronization but rather as a
foundation for more relevant constructs (cf. next section). The advantage of a
common foundation is that it gives insight in the generality of the problem and it
enables us to evaluate what restrictions are implied by the definition of ad hoc

constructs.

There are in practice synchronization problems where the rule of coordina-
tion depends on the result of the operation performed when an event occurs (e. g.
a re-read after a parity error). These cases should be provided for in a general
model of synchronization. This aspect of the problem is not detailed in this

paper.

To summarize, the following relevant concepts should be included in a

model of synchronization:

1. A sequencing rule defining a static internal structure of the processes.
2. A coordination rule defining the dynamic interactions between processes.
3. Rules that make explicit the possible dependence of the coordination rule

upon the computed result of some operation of a process.
With these concepts and with suitable formal definitions, it is possible to define

any problem of synchronization at a very low level of abstraction.

EXCLUSIONS AND COOPERATIONS
Although the principles defined here above could be presented as a synthesis

of synchronization problems, their practical applications are somewhat limited. It

- 5 -



would imply the manipulation of a predicate calculus on the set of occurrences
of events. An improvement of this difficulty is to define, at a higher level, of
abstraction, classes of problems as particular cases of the general low level
case. Examples of these classes of problems are the problems of exclusions
(i. e. synchronization of accesses to shared data and to re-usable resources)
and the problems of cooperation (i. e. producer-consumer scheme, consumable

resources, messages transmissions).

The problems of exclusions were treated in [1, 2, 3] and are not detailed
here. The problem of cooperation can be illustrated by the following example.
Let A and B be two critical sections (i. e. parts of programs whose executions
are subject to synchronization) communicating through an infinite buffer. Typically,
if A is the producer and B the consumer, the following property must be valid:
the number of portions consumed cannot

exceed the number of portions produced.

Or:
the number of executions (past and present) of B cannot
exceed the number of executions (past and present) of A .
If ar and bi are the termination and initiation events of resp. A and B, this
becomes:
the number of occurrences of bi cannot exceed the number
of occurrences of af .
i. e.

n(af)t +4q> n(bi)t

g being a constant giving the number of initially consumable portions. This rela-

tion must be valid at any time t.

This is clearly a predicate on the occurrences of events determining the possi-

bility of bi . Predicates of this form characterize the problems of cooperation

between processes and are particular cases of the general arbitrary predicate defined

here above.



Combinations of such rules can lead to arbitrary complex problems of
cooperation. For instance adding the following predicate for the possibility of
a,

n(ai)t < n(bf)t +p
defines a finite buffer problem of length p + q . The practical character of such
constructs is evident and has been emphasized (e.g. [12]) by the use of "invariants".
These definitions are consistent with this other approach and therefore exhibit the

same advantages.

PROGRAMMING TOOLS
It is beyond the scope of this paper to study in a comparative way all the
programming primitives introduced to "solve" particular problems of synchroniza-

tion.

Primitives are frequently defined by their implementation rather than by a
suitable model expressing the intended synchronization effects. For this reason,
different language constructs may appear fundamentally different although they
actually describe the same effects and are therefore applicable to the same pro-

blems.

By using a system of definitions as presented in this paper, it is possible
to draw a comparison between the different primitives and between their powers of
expression. It is important to notice that synchronizing primitives are not defini-
tions of synchronizing problems but only descriptions of the problems in some

programming language.

The formal model must be considered as the semantics of the synchronization,
and therefore of the primitives. The linguistic aspects of the primitives (e.g. ease
of use, elegance, error-catching properties etc. ) depend on language design deci-

sions and cannot be evaluated by the tools defined here.

Examples of primitives are given in e.g. [1,2,3,4,5,6,11, 12]. Methods
similar to the one defined in this paper were used to analyze synchronizing primi-

tives in 3,7, 9]



IMPLEMENTATION

The means of analysis defined in the three preceding sections are defined
at a given level of abstraction where the issues of implementation are not repre-
sented. No conceptual differences are presented between synchronization among
internal processes (belonging to the same computer system) or among external

processes (belonging to different nodes of a network).

At the level of the implementation, however, operating systems synchroniza-
tion and network synchronization will differ drastically. Assumptions about the
hardware structure will require different approaches to the problem. Two classes
of systems can be distinguished. First centralized computer systems where there
is either a general interrupt facility and/or a general interlock mechanism for the
memory (e.g. test-and-set instruction) . These cases are frequent in single pro-
cessor operating systems. Second, networks where there are communications
facilities and local interlock mechanisms. In the latter case, synchronization
will be implemented by means of communication mechanisms that will be assumed
to work properly. This means that synchronization and interprocess communication
are at two different levels of abstraction: interprocess communications establish

the media upon which synchronization is constructed.

Implementation of particular primitives can be based on decisions regarding
the kind of problems to solve, the requirements of efficiency and the physical con-
straints of the system. It seems hopeless to try to design an implementation for
the general arbitrary predicates on the possibility of events. It would certainly be
unefficient, if ever possible. Until recently, it was believed that only very ele-
mentary synchronizing primitives could be implemented efficiently and this was
presented as an argument against the definition of any new synchronizing tool.
New researches [3,7] show that efficient implementation can be devised for more

complex primitives.

CONCLUSION
The preceding considerations are showing that a synthesis of the current
problems of synchronization is possible. The method suggested is based upon a

definition of elementary coordination rules upon which higher level constructs are

-8 -



defined. These definitions are not presented as a universal model of synchroniza-
tion. On the contrary, they characterize a variety of problems connected to a
common root of elementary concepts. A strict separation is maintained between
abstract concepts and the practical problems of defining synchronizing primitives

and of designing implementations.

The method is of a semantic nature, i.e. it attempts to represent intuitive
concepts and to fit practical situations and it is not confined to a mere definition

of formal objects.

The results obtained so far are promising and there is, as far as we know,

no problem of synchronization that cannot be analyzed by this kind of approach.



REFERENCES

1. Belpaire, G. & Wilmotte, J. P. Semantic Aspects of Concurrent Processes.
ACM SIGPLAN-SIGOPS Interface Meeting, SIGPLAN Notices 8,9, pp 42-45,
Sept. 73.

2. Belpaire, G. & Wilmotte, J. P. A Semantic Approach to the Theory of
Parallel Processes. Proceedings of the International Computing Symposium
73, North Holland Pub. Co., pp 159-164, 1974.

3. Belpaire, G. On Programming Dependences between Parallel Processes.
Technical Report #244, Department of Computer Sciences, University of
Wisconsin-Madison, 1975. (D. Sc Thesis).

4. Dijkstra, E. W. Cooperating Sequential Processes. In Programming

Languages. F. Genuys Ed., Academic Press, New York, 1968, pp. 43-112.
5. Brinch Hansen, P. A Comparison of two Synchronizing Concepts. Acta
Informatica 1, 3 (1972), 190-199.
6. Vantilborgh, H., & van Lamsweerde, A. On an extension of Dijkstra's
Semaphore Primitives. Information Processing Letters 1, 5 (October 72),

181-186.

7. Sintzoff, M. & van Lamsweerde, A. Constructing Correct and Efficient
Concurrent Programs. MBLE Research Lab. Report R266. September 1974.
8. Lamport, L. A New Solution to Dijkstra's Concurrent Programming Problem.

Comm. ACM 17, 8 (August 74), 453-455.

9. Lipton, R. J. On Sychronization Primitive Systems. Report of the Department
of Computer Science, Carnegie-Mellon University, Pittsburgh, Pa. (1973).
10. Lipton, R. J. Schedulers as Enforces in Synchronization Processes. In

Operating Systems, Proc. of an Int'l. Symposium, Rocquencourt, April 23-25,

1974, E. Gelenbe and C. Kaiser Ed., Lecture Notes in Computer Science 16,

Springer-Verlag, Berlin-Heidelberg (1974).

11. Campbell, R. -H. The Specification of Process Synchronization by Path Ex-
pressions. Ibidem.

12. Brinch Hansen P. Operating Systems Principles. Prentice-Hall, Englewood
Cliffs, New Jersey (1973).

- 10 -



