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I. Introduction 

We continue to be concerned with interprocess communications 
systems (such as those described in references I, 2, and 3 and 
called "thin-wire" communications systems in reference 4) which 
are suitable for communication between processes that are not 
co-located in the same operating system but rather reside in 
different operating systems on different computers connected by a 
computer communications network. Further, the systems with which 
we are concerned are assumed to communicate using addressed 
messages (e.g., reference 5) which are multiplexed onto the 
logical communications channel between the source process and the 
destination process, rather than using such traditional methods as 
shared memory (an impossibility for distributed communicating 
processes) or dedicated physical communications channels between 
pairs of processes desiring to communicate (which is considered to 
be prohibitively expensive). 

2. Assumptions 

The logical communications channel over which the processes 
must communicate is assumed to have the following properties (see 
references 6 and 7 for examples of computer communication networks 
having these properties): 

a) finite, fluctuating delay (a result of the basic channel 
bandwidth, speed of light delays, possible queueing, possible 
errors and requisite recovery, etc.); 

b) finite, fluctuating bandwidth 
possible errors and bandwidth 
contention for the channel, etc.); 

(a result of overhead, 
loss due to recovery, 

J 

c) finite error rate (e.g., messages delivered with bits in 
error, messages lost entirely, and duplicate copies of 
messages received -- how the latter two types of errors can 
occur is discussed in reference 8); and 
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d) the possibility of delivery of messages to the destination 
in an order other than that with which they were transmitted 
from the source (see references 3, 7, and 8 for discussion of 
how this may happen). The source and destination are assumed 
to have, in general, finite storage and differing bandwidths. 

3. Goals 

We assume that the interprocess communication systems under 
consideration have two fundamental goals in the transmission of 
messages: low delay and high throughput. Each message should be 
handled with a minimum of waiting time, and the total flow of data 
should be as large as possible. The difference between low delay 
and high throughput is important. What the user wants is the 
completion of his data transmission in the shortest possible time. 
The time between transmission of the first bit and delivery of the 
first bit is a function of the delay in the communications system, 
while the time between delivery of the first bit and the delivery 
of the last bit is a function of the throughput of the 
communications system. For interactive users with short messages, 
low delay is more important, since there are few bits per message. 
For the transfer of long data files, high throughput is more 
important. 

There is a fundamental tradeoff between low delay and high 
throughput, as is readily apparent in considering some of the 
mechanisms used to accomplish each goal. For low delay, a small 
message size is necessary to cut transmission time, to improve the 
possibility of pipelining where possible, and to shorten possible 
queueing latencies. Likewise, short queues are desirable. For 
high throughput, a large message size is necessary to decrease the 
percentage overhead, both in the communications channel and in 
processing bandwidth. That is, long messages increase effective 
channel bandwidth and processing bandwidth. Also, long queues may 
be desirable to provide sufficient buffering for full channel 
utilization. 

To the goals of low delay and high throughput should be added 
the equally important goals of cost-effectiveness and high 
reliability. Individual messages should have a reasonable cost as 
measured in terms of utilization of network resources; further, 
the interprocess communications facility itself should be utilized 
in a cost-effective way. Messages should also be delivered with 
high probability, of success. 

How much effort the interprocess communications system has to 
put into obtaining each of these goals is a function of the 
subsystems on which the interprocess communication system is built 
and the level of performance desired. For instance, if the 
computer communications network guarantees very high reliability 
for message delivery, the interprocess communications sYstem may 
have to pay only scant attention to this issue; and what 
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mechanisms the interprocess communications systems does have to 
assure reliability can be quite crude if they do not have to be 
called into action very often. A similar argument may be made 
with regard to delivering messages in the order sent. On the 
other hand, even though the subsystems provide very good 
performance, in some cases it may be desirable for the 
interprocess communications system to utilize quite sophisticated 
mechanisms (in addition to those in the subsystems) to handle the 
same issues which also occur at the interprocess communications 
system level. Further, in some cases (e.g., when the lower levels 
have occasional errors), it may be desirable for the interprocess 
communications system level to have its own mechanisms overcome 
sublevel troubles. However, if the lower levels perform too badly 
(e.g., extreme unreliability, poor throughput, poor delay), these 
represent bottlenecks which the interprocess communications system 
cannot overcome whatever mechanisms it attempts to bring to bear 
(in other words, what is done at the interprocess communications 
level is an addition to what must be done at lower levels, not a 
substitute). 

In summary, we believe that delay, throughput, reliability, 
and cost are the four criteria upon which message-based 
interprocess communications system designs should be evaluated and 
compared. Further, it is the combined performance in all four 
areas which counts. For instance, poor delay and throughput 
characteristics may be too big a price to pay for "perfect" 
reliability. 

The assumptions and goals stated above lead us to 
strategies discussed in the remaining sections of this paper. 

the 

4. Buffering and Pipelining 

Buffering is a technique of sending multiple messages over 
the communications channel before receiving an acknowledgment. 
Because of the finite delay of the communications channel, it may 
be desirable to have buffering for multiple messages 
simultaneously in flight between the source and destination to 
increase throughput. That is, a system without buffering may have 
unacceptable low throughput due to long delays waiting for 
acknowledgment betwen transmissions. For example, if one message 
of 2000 bits is allowed to be outstanding between the source and 
destination at a time, and the normal Cransit time through the 
communications channel including destination to source 
acknowledgment is 100 milliseconds, then the maximum throughput 
rate that can be sustained in only 20,000 bits per second. If 
poor responsiveness of the destination, great distance, etc. 
cause the normal transit time to be half a second, then the 
throughput rate is reduced to only 4,000 bits per second. 
Clearly, it is a poor design which allows performance (in this 
case throughput) to vary so greatly with the characteristics of 
the thin-wire communications medium, when such variance can be 
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avoided. 

The characteristics of the communications channel (e.g., the 
computer communications network may be a store and forward 
network) may necessitate the use of relativeIy small messages so 
that the delay lowering affects of pipelining may be obtained. 
That is, the process of collecting and forwarding relatively large 
messages at each step through the store and forward network may 
result in excessive delay. By sending smaller messages it is 
possible to forward the first messages ahead of later ones. For 
instance, a message of length L traversing H hops of a store and 
forward network has a delay proportional to L'H; by breaking the 
message into P smaller, equal size pieces, the delay is 
proportional to (L/P)+H-I. Of course, in some instances (see 
reference 6), the computer communications network breaks long 
messages into smaller messages (so they may pipeline through the 
network) and then reassembles the original messages before 
delivery to the destination, all in a manner transparent to the 
interprocess communications system; in this case, the interprocess 
communications system has the option of not concerning itself with 
pipelining. 

5. Error Control 

We consider error control to comprise three tasks: detecting 
bit errors in the delivered messages, detecting missing messages, 
and detecting duplicate messages. 

The former task is done in a straightforward manner through 
the use of checksums. A checksum is appended to the message at 
the source and checked at the destination; when the checksum does 
not check at the destination, the incorrect message is discarded, 
requiring it to be retransmitted from the source. Several points 
about the manner in which checksumming should be done are worthy 
of note: a) If possible, the checksum should check the 
correctness of the resequencing of the messages which possibly got 
out of order during their journey from the source to the 
destination, b) A powerful checksum is more efficient than 
alternate methods such as replication of a critical control field; 
it is better to extend the checksum by the number of bits that 
would have been used in the redundant field, c) Frequently people 
suggest encryption of messages to guarantee they cannot be read if 
accidentally delivered to the wrong destination; unless encryption 
is desirable for some other reason, it is simpler (and just as 
safe) to guarantee no misdelivery through the use of a powerful 
checksum (which covers the address of the message) than it is to 
use an encryption mechanism, d) The length of the checksum should 
be proportional to the log of the product of the desired time 
between undetected errors, the bit error rate, and the source to 
destination communication channel bandwidth; that is, checksum 
size does not depend on message size and it should be quite large. 

. 80- 



As stated in the section on Assumptions, the communication 
channel between the source and the destination has the 
characteristic that some messages will fail to be delivered, and 
there will be some duplicate delivery of messages. Missing 
messages can be detected at the destination through the use of one 
state bit for each message which can simultaneously be in flight 
between the source and destination. An interesting detail is that 
for the purposes of missing message detection, the state bits must 
precisely cycle through all possible states. For example, 
stamping messages with a time stamp does nothing for the process 
of missing message detection because, unless a message is sent for 
every "tick" of the time stamp, there is no way to distinguish the 
case of a missing message from the cases where no messages were 
sent for a time. 

Duplicate messages can be detected with an identifying 
sequence number such that messages which arrive from a prior point 
in the sequence are recognized as duplicates. The point to note 
carefully here is that if duplicate messages can arrive at the 
destination up to some quite possibly long time after the original 
copy, then the sequence number must not complete a full cycle 
during this period. For example, if a goal is to be able to 
transmit 200 minimum length messages per second from the source to 
the destination and each needs a unique sequence number, and if it 
is possible for messages to arrive at the destination up to 15 
seconds after initial transmission from the source, then the 
sequence number must be able to uniquely identify at least 3000 
messages. It is usually no trouble to calculate the maximum 
number of messages that can be sent during some time interval. 
What is usually more difficult is to limit the time after which 
duplicate messages will no longer arrive at the destination. One 
method is to put a timer in each message which is somehow counted 
down as the message journeys from the source to the destination; 
if the timer ever counts out, the message is discarded as too old, 
thus guaranteeing that no message older than the initial setting 
of the timer will be delivered to the destination. Alternatively, 
one might be able to calculate approximately the maximum arrival 
time through study of the communications channel between the 
source and the destination. 

There must be mechanisms to resynchronize the sequence 
numbers between the source and destination at start up time, to 
recover from failures, etc. A good practice is to resynchronize 
the sequence numbers occasionally even though they are not known 
to be out of step. A good frequency with which to do redundant 
resynchronization would be every time a message has not been sent 
for longer than the maximum delivery time. In fact, this is the 
maximum frequency with which the resynchronization can be done 
(without additional mechanisms); if duplicates are to be detected 
reliably, the number at the destination must function without 
disruption for the maximum delivery interval after the "last 
message" has been sent. If it is desirable or necessary to 
resynchronize the sequence numbers more often than the maximum 
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time, an additional "use" number must be attached to the sequence 
number to uniquely identify which "instance" of this set of 
sequence numbers is in effect; and, of course, the messages must 
also carry the use number. This point is addressed in greater 
detail in references 9 and 10. 

The next point to make about error control is that any 
message going from the source to the destination can potentially 
be missing or duplicated. In fact, the very control messages used 
in error control (e.g., sequence number resynchronization 
messages) can themselves be missing or duplicated, and a proper 
message transmission system must handle these cases. 

Finally, there must be some inquiry-response system from the 
source to the destination to complete the process of detecting 
lost messages or messages discarded at the destination because of 
checksum detection of errors. When the proper reply or 
acknowledgment has not been received for too long, the source may 
inquire whether the destination has received the message in 
question. Alternatively, the source may simply retransmit the 
message in question. In any case, this source inquiry and 
retransmission system must also function in the face of duplicated 
or lost inquiries and inquiry response messages. Finally, the 
acknowledgment and retransmission system must depend on positive 
acknowledgments from the destination to the source and on explicit 
inquiries or retransmission from the source. Negative 
acknowledgments from the destination to the source are never 
sufficient (because they might get lost) and are only useful 
(albeit sometimes very useful) for increased efficiency. 

6. Storage Allocation and Flow Control 

One of the fundamental rules of communications systems is 
that the source cannot simply send data to the destination without 
some mechanism for guaranteeing storage for that data. In very 
primitive systems one can sometimes guarantee a rate of disposal 
of data, as to a synchronous line printer, and not exceed that 
rate at the data source. In more sophisticated systems there seem 
to be only two alternatives. Either one can explicitly reserve 
space at the destination for a known amount of data in advance of 
its transmission, or one can declare the transmitted copy of the 
data expendable, sending additional copies from the source until 
there is an acknowledgment from the destination. The first 
alternative is the high bandwidth solution: when there is no 
space, only tiny. control messages (for the purpose of reservation 
of destination storage) travel back and forth between the source 
and destination. The second alternative is the low delay 
solution: the text of the message propagates as fast as possible. 

Ineither case storage is tied up for an amount of time equal 
at least to one round trip time. This is a fundamental result -- 
the minimum amount of buffering required by a communications 
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system, either at the source or destination, equals the product of 
round trip time and the channel bandwidth. The only way to 
circumvent this result is to count on the destination behaving in 
some predictable fashion (an unrealistic assumption in the general 
case of autonomous communicating processes). 

Our experience and analysis convinces us that if both low 
delay and high throughput are desired, then there must be 
mechanisms to handle each, since high throughput and low delay are 
conflicting goals. This is true, in particular, for the storage 
allocation mechanism. It has occasionally been suggested (e.g., 
reference 11), mainly for the sake of simplicity, that only the 
low delay solution be used; that is, messages are transmitted from 
the source without reservation of space at the destination. Those 
people making the choice never to reserve space at the destination 
frequently assert that high bandwidth will still be possible 
through use of a mechanism whereby the source sends messages 
toward the destination, notes the arrival of acknowledgments from 
the destination, uses these acknowledgments to estimate the 
destination reception rate, and adjusts its transmissions to match 
that rate. We feel that such schemes may be quite difficult to 
parameterize for efficient control and therefore may result in 
reduced effective bandwidth and increased effective delay. If the 
source never sends to the destination so fast that the destination 
must discard anything, then the delay is very low, but the 
throughput is not as high as it might be. Further, unless the 
source pushes now and then, it will never discover that the 
destination is able to increase its throughput. On the other 
hand, when the source is pushing hard enough, the destination may 
suddenly cut back on its throughput, causing all the messages 
which will be discarded at the destination due to the sudden cut 
back to have to be retransmitted increasing effective delay. If 
the destination could be predicted to accept traffic at a steady 
rate and vary this rate only very slowly, the above sort of 
feedback system might work. In this case unacknowledged messages 
should be retransmitted from the source to the destination shortly 
after the expected time for the acknowledgment to return has 
elapsed if minimum delay and maximum throughput are to be obtained 
(this is in contrast to the often suggested practice of keying 
retransmissions to the discard rate). However, in practice, the 
time for the acknowledgment to return is likely to be very 
difficult to predict due to variations (possibly rapid) in the 
transit time of the communications channel and particularly in the 
response time of the destination. Furthermore , the greater the 
sum of transit time and response time, the looser and less 
efficient the feedback loop will be. In fact, there appear to be 
oscillatory conditions which can occur where performance degrades 
completely. (Note, if there is much possibility of message loss, 
then the acknowledgment and retransmission system should allow 
quite selective retransmission of messages rather than, for 
instance, requiring a complete window of messages to be 
retransmitted to effect retransmission of the specific messages 
requiring it; otherwise, message retransmission will use excessive 
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bandwidth.) 

The above discussion assumes that all mechanisms are 
attempting to minimize the probability of message discard. If, in 
addition to possible discards at the destination, the 
communications channel solves its internal problems (e.g., 
potential deadlocks) with cavalier discarding of messages, or if 
the destination solves its internal problems with cavalier 
discarding of messages, the detrimental effects of discarding 
(reduced effective bandwidth and increased effective delay) are 
probably drastically increased. Further, the above discussion 
assumed the destination was able to minimize the probability of 
discard. While this may be possible for a single source, we think 
it is unlikely that the destination will be able to resolve, in a 
way that does not entail excessive discards, the contention for 
destination storage from multiple uncoordinated sources. As 
reported in reference 12, detrimental contention for destination 
storage, in the absence of a storage reservation mechanism, 
happens practically continuously under even modest traffic loads, 
and in a way uncoordinated with the rates and strategies of the 
various sources. As a result, well-behaved processes may 
unavoidably be penalized for the actions of poorly-behaved 
processes. 

A subtle point is that in addition to space to hold all data, 
there must also be space to hold all control messages. In 
particular, there must be space to record what needs to be sent 
and what has been sent. If a message will result in a response, 
there must be space to hold the response; and once the response 
has been sent, the information about what kind of answer was sent 
must be kept for as long as retransmission of that response may be 
necessary. 

7. Multiplexing and Addressing 

To this point in our paper, we have not been very specific 
about whether the above mentioned flow control, sequencing, error 
control, etc. mechanisms were performed for each pair of 
communicating processes, or whether several processes 
communicating between a given pair of source and destination 
operating systems share a set of these control mechanisms. The 
tradeoff is between overhead and precision of control. If many 
conversations are multiplexed on each instance of a source to 
destination control mechanism, the control overhead is lower than 
if each conversation has its own control mechanism. On the other 
hand, if several conversations are multiplexed on the same control 
mechanism, all the conversations tend to have to be treated 
equally (e.g., if one is stopped, all are stopped); while if each 
conversation has its own control mechanism, exact decisions about 
the allocation of various resources to the various conversations 
can be made. To give some examples of the latter, conversations 
over separate control mechanisms can be given differing 
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allocations, priorities, treatments of error conditions, etc. 

Another issue is the management of the space available for 
control mechanisms when it is insufficient to handle the number of 
conversations competing for the communications channel. Should 
late-comers be left out until resources are available, or should 
some way be found to multiplex the available control mechanisms in 
time among the demanding conversations? We believe the latter 
should be done. The key here is to not allow users to explicitily 
acquire and hold resources (e.g., control mechanism space) needed 
for interprocess communication. Instead, the system should notice 
which users are actively communicating and dynamically gather the 
needed resources by garbage collecting the resources previously 
being used by users which appear inactive. This dynamic 
assignment of resources is obviously not fundamentally different 
from the scheduling of any other limited resource in an operating 
system (e.g., memory, CPU cycles, the I/O channel to the disk) and 
therefore has all the normal possibilities for thrashing, 
unfairness, and so on if care is not taken. 

Once decisions in all of the above areas of multiplexing are 
made, one must choose the addressing mechanism and formats to be 
used. This is usually quite straightforward. The main point here 
is that addressing comes last; but very often we see designs begun 
by choosing the addressing system and format. A similar statement 
can be made about the choice of all other message formats. 

Acknowledgments 

We are grateful for help from several of our colleagues who 
are also actively interested in the areas discussed in this 
working paper: Jerry Burchfiel, Will Crowther, Alex McKenzie, 
Randy Rettberg, Bob Thomas, and Ray Tomlinson. 

References 

I. D.C. Walden, "A System for Interprocess Communication in a 
Resource-Sharing Computer Network," Communications of the ACM, 
Vol. 15, No. 4, April 1972, pp. 221-230; also in "Advances in 
Computer Communications," W.W. Chu (ed.), Artech House Inc., 1974, 
pp. 340-349. 

2. R. Bressler, D. Murphy, and D. Walden, "A Proposed Experiment 
with a Message Switched Protocol," ARPA Network Working Group, 
Request for Comments No. 333, May 1972. 

3. V. Cerf and R. Kahn, "A Protocol for 
Intercommunication," IEEE Transactions on 
Vol. COM-22, No. 5, May 1974, pp. 637-648. 

Packet Network 
Communications, 

- 85- 



4. R.M. Metcalfe, "Strategies for Interprocess Communication in 
a Distributed Computing System," Proceedings of the Symposium on 
Computer Communications Networks and Teletraffic, Polytechnic 
Press of the Polytechnic Institute of Brooklyn, 1972. 

5. P. Brinch-Hansen, "The Nucleus of a Multiprogramming System," 
Communications of the ACM 13, 4, pp. 238-250, April 1970. 

6. F.E. Heart, R.E. Kahn, S.M. Ornstein, W.R. Crowther, and 
D.C. Walden, "The Interface Message Processor for the ARPA 
Computer Network," AFIPS Conference Proceedings, Vol. 36, June 
1970, pp. 551-567; also in "Advances in Computer Communications," 
W.W. Chu (ed.), Artech House Inc., 1974, pp. 300-316. 

7. L. Pouzin, "Presentation and Major Design Aspects of the 
Cyclades Computer Network," Proceedings of the Third ACM Data 
Communications Symposium, November 1973, pp. 80-88. 

8. W.R. Crowther, F.E. Heart, A.A. McKenzie, J.M. McQuillan, and 
D.C. Walden, "Issues in Packet Switching Network Design," AFIPS 
Conference Proceedings 44, May 1975, pp. 161-175. 

9. J.M. McQuillan, "The Evolution of Message Processing 
Techniques in the ARPA Network," July 1974, to appear in 
International Computer State of the Art Report No. 24: Network 
Systems and Software, Infotech, Maidenhead, England. 

10. R.S. Tomlinson, 
proceedings. 

"Selecting Sequence Numbers," this 

11. D. Belsnes, "Flow Control in Packet Switching Networks," INWG 
Note No. 63, October 1974. 

12. R.E. Kahn and W.R. Crowther, "Flow Control in a 
Resource-Sharing Computer Network," Proceedings of the Second 
ACM/IEEE Symposium on Problems in the Optimization of Data 
Communications Systems, Palo Alto, California, October 1971, 
pp. 108-116; also in IEEE Transactions on Communications, 
Vol. COM-20, No. 3, Part II, June 1972, pp. 539-546; also in 
"Advances in Computer Communications," W.W. Chu (ed.), Artech 
House Inc., 1974, pp. 230-237. 

- 86 - 


