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Abstract 
Applications like multimedia retrieval require efficient sup­
port for similarity search on large data collections. Yet, 
nearest neighbor search is a difficult problem in high dimen­
sional spaces, rendering efficient applications hard to realize: 
index structures degrade rapidly with increasing dimension­
ality, while sequential search is not an attractive solution for 
repositories with millions of objects. This paper approaches 
the problem from a different angle. A solution is sought 
in an unconventional storage scheme, that opens up a new 
range of techniques for processing k-NN queries, especially 
suited for high dimensional spaces. The suggested (physi­
cal) database design accommodates well a novel variant of 
branch-and-bound search, that reduces the high dimensional 
space quickly to a small candidate set. The paper provides 
insight in applying this idea to k-NN search using two simi­
larity metrics commonly encountered in image database ap­
plications, and discusses techniques for its implementation 
in relational database systems. The effectiveness of the pro­
posed method is evaluated empirically on both real and syn­
thetic data sets, reporting the significant improvements in 
response time yielded. 

1. Introduction 
Nearest neighbor search in high dimensional spaces finds 

many applications in domains such as image retrieval, mul­
timedia systems, spatial databases, and data mining. For 
example, in image retrieval [1] images are represented as 
points (called feature vectors) in a high-dimensional space 
constructed from color distribution ( color histograms), tex­
ture patterns (like grayness or smoothness), or image struc­
ture (shape). Usually, these feature vectors have high di­
mensionality; color histograms alone vary from 64 to several 
hundreds of bins. Images are considered similar if they are 
located 'close' to each other in this high-dimensional space, 
according to some distance metric. 
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The aim for image database research is to accommodate 
interactive search on millions of images, using the feature 
space as primary filter and guidance. The most typical query 
type in image databases finds the k most similar images to 
a given example. Simply comparing the query vector to all 
feature vectors, while maintaining an array with the best 
k answers so far, is too expensive for two reasons: (i) in­
specting all feature vectors infers a lot of I/O, and (ii) the 
CPU cost of comparing each pair of vectors is significant, 
even if you can quickly assess a vector is not a good candi­
date. Yet, the analysis in [22] shows that indexing methods 
based on space partitioning methods, generalized from spa­
tial databases, break down in high dimensional spaces, a 
problem that has been validated empirically. Another im­
portant drawback of these indexing methods is that they 
are based on a static feature space decomposition, where all 
dimensions are of equal importance. They are thus unable 
to support efficiently weighted k-NN queries, where dimen­
sions can have different arbitrary importance at search, and 
queries on arbitrary sub-spaces of the full-dimensional space. 

This paper considers a novel direction for improving the 
efficiency of k-NN search in high dimensional spaces, ap­
proaching it as a physical database design problem. The 
main rationale is that the development of efficient query 
processing techniques for nearest neighbor search may ben­
efit from physical data independence, i.e., on distinguishing 
between the logical and physical organization of feature vec­
tors. An unconventional physical design alternative is used, 
that maintains a separate table for each dimension, con­
taining, of all vectors in the repository, the coefficients of 
that same dimension. This physical representation accom­
modates a novel search technique called Branch-and-bound 
ON Decomposed data (BOND). 

In BOND, the distance between the query point and all 
data vectors is accumulated by scanning these dimensional 
projections one-by-one. After processing few of them, partial 
distances of each vector to the query are known; then, lower 
and upper bounds on the complete distance of the k-nearest 
neighbors are exploited to discard safely from further con­
sideration those vectors that cannot possibly participate in 
the response set. Applying this process iteratively, reduces 
the candidate set such that the last stages are performer! on 
just a small database sample. The resulting search process 
is visualized in Figure l. The first m dimension columns are 
scanned, and the best partial scores are computed. Vectors 
with a smaller best-case score than the worst-case score of 
the k-th most similar vector are pruned. This process is re­
peated until the candidate set contains exactly k objects, or 
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Figure 1: BOND visualized. 

nensions have been processed. 
1 advantages of BOND are summarized as follows: 

[t avoids a large number of computations compared to 
a full sequential scan; 

[t is conceptually simple, causes practically no storage 
overhead, and requires no preprocessing of the data; 

Its good performance is robust to increasing dimen­
sionality (assuming a meaningful search problem [3]); 

It is a novel technique, orthogonal to previous ap­
proaches based on compression of feature vectors (such 
as [22]). 

On the same data representation different variants of 
k-NN queries can be processed efficiently, including: 
(i) queries with different weights of importance on the 
various dimensions, (ii) queries in any dimensional sub­
space, (iii) queries with various (monotonic) similarity 
metrics, and (iv) multi-feature queries that combine 
similarities from various sources [7, 9]. 

3 remainder of this paper is organized as follows. First, 
d work is presented in Section 2. Section 3 summarizes 
otation used throughout the paper. We use image re­
l as an example application of k-NN search, so two 
cs frequently used in image retrieval are introduced. 
m 4 then presents BOND, and derives the necessary 
is for these two metrics. Sections 5 and 6 discuss opti­
.ion techniques for BOND and implementation details. 
>roposed methodology is evaluated empirically in See­
r and Section 8 discusses its application to two addi-
1 types of k-NN queries. Finally, Section 9 concludes 
mmarizing the contributions of this work. 

lelated Work 
rariety of techniques have been proposed previously to 
1ve upon naive k-NN search. A brute-force solution 
mputes for each vector its k nearest neighbors [7], gen­
Lg a similarity network. This method avoids expensive 
me distance computations and ranking, offering per­
the only viable solution for very large data sets. Yet, 
;es cannot be done incrementally and fixed constants 
~he number of neighbors per object and the similarity 
c used) support neither queries with arbitrary k nor 
ted ones. Also, it is impossible to query for objects 
tre not selected from the indexed collection. 
::ither line of research applied a variety of indexing 
iques to speed up the search process. If the number 
nensions is low, a spatial access method (SAM) (e.g., 

the R-tree [10]) stores the feature vectors, such that a k­
nearest neighbor search algorithm (e.g., [16]) facilitates effi­
cient search. In practice, however, the number of dimensions 
in image databases is quite large, and scanning the complete 
database can be faster [22, 3]. 

The two-step evaluation technique applied in [8, 13, 18] 
alleviates these problems. Each original feature vector is 
mapped onto a small number of dimensions (e.g., 16), such 
that a (possibly different) distance metric in the low-dimen­
sional space lower-bounds the actual distance in the high-di­
mensional space (dimensionality reduction). The resulting 
(low-dimensional) vectors are organized in a SAM, which is 
used to (i) compute a worst-case distance of the k-th near­
est neighbor from the query vector and (ii) prune objects 
with larger distances in the low-dimensional space. A dis­
advantage of this methodology is the problem of finding a 
proper mapping that preserves enough information from the 
original space, to filter as many objects as possible using the 
SAM. Another drawback is the system overhead introduced 
by the additional set of feature vectors, affecting negatively 
its space requirements and update speed. 

Given the efficiency of sequential scan for high-dimensional 
search, the Vector Approximation File (VA-File) [22] uses 
a smaller, approximate representation of the feature vec­
tors (e.g., 8 bits per dimension instead of a double) for an 
initial filter step; an idea similar to the use of signature 
files for searching textual data. To compute the final an­
swers, a refinement step using the complete feature vectors 
is performed. The filter step is fast because it requires small 
bandwidth, and since the refinement step processes much 
less data, computing the top-k answers is cheaper than se­
quential scanning the original vectors. This approximation 
technique has also been applied to adapt R-trees for high­
dimensional problems, by compressing the leaf nodes (the 
IQ-tree [2]) or storing a compressed representation of bound­
ing boxes of child nodes in the inner nodes (the A-tree [17]). 

Summarizing, three approaches have been followed to tack­
le the curse of dimensionality: (1) indexing based on space 
partitioning, (2) dimensionality reduction, and (3) data com­
pression. This paper considers techniques from physical 
database design to represent a collection of feature vectors 
in the database system. We use the decomposition storage 
model [5] (also known as vertical fragmentation), which was 
initially proposed for the physical storage of data in rela­
tional DBMSs in order to reduce the I/O cost of frequently 
observed query patterns. It has proven its value in vari­
ous data management problems since, being applied effec­
tively in commercial products (Sybase-IQ [14]) and research 
database systems [4]. 

BOND exploits the possibility of independent access to 
each dimension provided by the vertical fragmentation. In­
stead of partitioning the space using all dimensions and 
building an index for the data, it considers a dynamic or­
der of the dimensional fragments and prunes objects while 
computing their partial distances to the query object. Fur­
thermore, BOND combines transparently with the advan­
tages of compression, resulting in additional performance 
improvements. Thus, by combining a new query process­
ing technique (BOND) with a (rather neglected) physical 
database storage schema, a novel way to solving k-NN search 
problems has been discovered. 
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3. Definitions 
In this section we introduce the notation used in this pa­

per, as well as the two image search problems used to illus­
trate the approach. 

3.1 Notation 
Let X be a collection of sequences (i.e., N-dimensional 

vectors) x ::::: x1 ... XN. Let m be an integer: 1 ~ m ~ N. 
Operators - and + on x define sequences with the first m 
and the last N - m elements, respectively. Thus, x- = 
X1 ... Xm and x+ = Xm+1 ... XN. Let T(x) be the sum of 
the elements in the sequence, and let this function apply also 
on the partial sequences x- and x+. Let S be an associative 
and monotonic aggregate function, defined for sequences x 
of any length N. Let X denote [x1, ... ,x1xiJT, a vector 
representing collection X. We assume throughout the paper 
an implicit mapping between collections X, 1-£, V, and their 
corresponding vectors X, H, V. 

Operations are often applied to each element of a col­
lection. S = S(X) denotes the result of element-wise ap­
plication of aggregate function S to each x; in X. Anal­
ogously, operators - and + apply also on X and S, e.g., 
x- = [x1,. .. ,xµ.t and s- = S(X-). 

Symbols S~in and S;!;a.x denote the minimum and maxi­
mum bounds for each element in s+. Similarly, Smin and 
Sma.x are the minimum and maximum bounds of S, pro­
vided that s- has been computed. Finally, let Kmin (11:max) 
be the k-th largest (smallest) element of Smin (Sma.x). Ta­
ble 1 summarizes the notation used throughout the paper. 
Some symbols are implicitly parameterized by an index m 
or a collection X. 1 

x 
x 
x+ 
T(x) 
T(x-), T(x+) 
x 
x 
S(x) 
s 
S~ax' S;!',in 
Smax, Smin 
X:min, l'l:ma.x 

Table 1: Notation. 
Sequence X1 .. . XN. 

Sequence x1 ... Xm. 

Sequence Xm+l ·· .XN. 

E::.1 X; 

E::1 X;, E::.m+I X; 
Collection of sequences {x}. 
Vector of sequences [x1 , ... , xixif. 
Aggregate function S : x -+ Ill. 
Vector S(X). 
Element-wise bounds for s+. 
s- + S~ax, s- + s+ .. 
The k-th element clSmin, Smax· 

3.2 Two Common Metrics 
. Applic~tions in image retrieval frequently use histogram 
intersection as a metric for image similarity [21], summing 
the o~erlap between the two histograms in each dimension. 
Two images are considered similar if their histogram inter­
se~tion is. large. Another commonly used metric is the Eu­
clidea-r: distance: images are considered similar if their dis­
tance m the feature space is small. 

Histogram Intersection 

L~t 1t ?e a collection of normalized image histograms (N­
d1mens1onal vectors h, \ih E 7-1.: T(h) = 1). 

~~f1(~)~ the readability of S;!;ax over the preciseness of 

DEFINITION 1. Given two normalized histograms h and 
q, we define histogram intersection as a measure of sim­
ilarity between them: 

N 

Sim(h,q) = L min(h;,q;) (1) 
i=l 

Using histogram intersection assumes that the different di­
mensions are uncorrelated. This metric was reported in (20] 
to be superior to Euclidean distance for color histograms, 
mainly because of its ability to reduce the contribution of 
the irrelevant vectors in the query result. The intersection 
of two histograms is approximately one if the histograms 
are much alike, because Vi, 1 $ i $ N : min(h;, qi) ~ h; and 
T(h) = 1. If the histograms differ significantly, their scalars 
differ significantly in each dimension, and their intersection 
is small. 

Euclidean distance 

Let V be a collection of N-dimensional feature vectors v in 
the unit hyper box (\iv E V : 0 ~ Vi $ 1). 

DEFINITION 2. The squared Euclidean distance between 
two vectors v and q of dimensionality N is defined as f al­
lows: 

N 

b'(v, q) = L:)vi - qi) 2 (2) 
i=l 

The actual Euclidean distance is the square root of 8 ( v, q). 
Using squared distance 8 reduces computations; obviously, 
~he relation. between. the actual Euclidean distance and c5 ( v, q) 
1s monotomc. Two images are considered similar if the dis­
tance between them is small. So, we define the following 
similarity metric: 

Sim(v, q) = 1 - J ~b'(v, q) (3) 

4. BOND: Branch-and-bound ON Decomposed data 
. This section describes the generic search strategy applied 
m BOND, followed by the derivation of algorithms for k 
nearest neighbor search using histogram intersection and 
Euclidean distance. 

Algorithm 1 is a brute-force approach to finding the k 
sequences with the largest value of aggregate S. Step 1 
represents a naive loop over all elements of X. In practice, 
N and. IXI are large, and sequential search becomes very 
expensive . 

ALGORITHM 1. Sequential-Search{X,k) 

1. Compute S = S(X); 

2. Rank S and return the k highest values. 

Assuming that aggregate S is monotonically increasing, 
':e pro~ose BOND; the following branch-and-bound alterna­
tive to improve efficiency: 

ALGORITHM 2. BOND{X,k,m) 

1. Computes-= S(X-); 

2. Determine Smax and Smin; 
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3. Determine 11;min from Smini 

4. Create candidate set C, by removing from X the x; for 
which Smax[i] < Kmini 

5. Apply iteratively steps 1-4 on C for a larger m until 
ICI = k, or all dimensions have been processed. 

Pruning step 4 states formally which sequences x may 
still reach the top k while aggregating their remaining val­
ues Xm+l ... XN. It is derived from the fact that each par­
tial score increases with S~in at least, but never with more 
than s;;;ax· Algorithm 2 is meant for finding the k elements 
with the largest values in S. When we are interested in 
the k smallest values of S, step 4 prunes each x, for which 
Smin[i] > Kmax· 

4.1 Pruning bounds for histogram intersection 
The remaining problem is to derive computationally inex­

pensive rules for determining s;;;ax and s~in for our similar­
ity metrics. Let aggregate S() be the histogram intersection, 
as given in Equation l. We first break the sum into partial 
sums S(h-,q-) and S(h+,q+): 

m N 

S(h, q) = L min{h;, qi} + L min{hj, qj} (4) 
j=m+l 

S(h+,q+) 

The next inequality provides a rather straightforward up­
per bound for each S(h+,q+): 

N 

S(h+,q+) :S L qj = T(q+) = 1 -T(q-) (5) 
j=m+l 

The obvious lower bound for S(h+, q+) is 0. Thus, s;;,aXl 
S~in can be considered as arrays containing these constant 
values, and Smax, Srnin can be obtained trivially from the 
already computed s-. l'i:min is then the k-th largest element 
of s-, and no histogram h, with: 

(6) 

can ever end up in the top k best vectors. We denote the 
resulting criterion with Hq, since it only depends on the 
query vector. Note that, in this special case, the derived 
bounds are the same for each image. 

Stricter upper and lower bounds for S(h+, q+) can be 
defined using information from h: 

S(h+,q+) :S min{T(h+), T(q+)} 

1- max{T(h-),T(q-)} (7) 

N 

S(h+,q+) 2: min{q,, h,} 
1==:111+1 

N 

2: 2: min { q,uin, h;} 
1:::::11i+1 

2: min{qmiu, T(h+)} 

min{qmin, 1 -T(h-)}, (8) 

where q,"' 11 is the minimum element of q+. In other words, 
as long as T(h +) is larger than qmin, the histogram intersec­
tion of the remaining values is at least qmin; otherwise, it is 
equal to T(h+). 

Table 2: Example collection 'H.. 

H 
l < ' . ' ' > 

h2 < 0.05, 0.05, 0.9, 0 > 0.1 0.15 0.25 0.2 
h3 < 0.8, 0.1, 0.05, 0.05 > 0.8 0.85 0.9 0.9 
h4 < 0.2,0.6,0.1,0.l > 0.35 0.4 0.5 0.5 
hs < o. 7, 0.15, 0.15, 0 > 0.85 0.9 1 0.95 
h6 < 0.925, 0, 0, 0.025 > 0.7 0.725 0.725 0.725 
h1 < 0.55, 0.2, 0.15, 0.1 > 0.7 0.75 0.85 0.85 
hs < 0.05, 0.1, 0.05, 0.8 > 0.15 0.2 0.3 0.25 
hg < 0.45, 0.5, 0.05, 0.05 > 0.6 0.65 0.7 0.7 

These (stricter) bounds differ for each h,. Thus, Smax and 
Smin cannot be determined only from s-; we need partial 
sum T(h-) for each image as well. Equations 7 and 8 then 
define S;t',ax and S~in, respectively. Now, if l'i:min is the k-th 
largest element of Sm in, a stricter pruning criterion H h for 
histogram intersection can be defined as follows: 

Smax[i] 

The advantage of rule Hq over Hh is that it is computa­
tionally cheaper and requires less bookkeeping information. 
Using Hq, we maintain only the essential tables- of partial 
similarities at each iteration, which accumulates to the sim­
ilarity of the final solutions. Using Hh requires also keeping 
the partial sums of the values accessed so far (i.e., T(h-) for 
each h). Nevertheless Hh is more precise, so it is expected 
to identify a larger number of disqualifying vectors. 

4.2 An Example 
A simple example illustrates how Algorithm 2 works for 

histogram intersection. Consider collection H as shown in 
Table 2, query histogram q =< 0.7,0.15,0.1,0.05 >,and a 
search problem in which we like to find the three nearest 
neighbors (k = 3). The three best matches are {h3, hs, h1}, 
which could be found by computing S(hi, q) for each h, E 
H, sorting the resulting sums, and returning the three best 
results. 

First, consider pruning rule Hq. With m = 2, our al­
gorithm first computes the partial sums for each histogram 
(columns-). The trivial lower bound equals zero, we use 
the third highest value l'i:min = 0.7 for the pruning step. His­
tograms {h1 ,h2 ,h4 ,h8 } can be removed from the candidate 
set, because S(h~, q-) < ll:min - 0.15 = 0.55; the resulting 
candidate set is printed boldface in col urnn s-. Only h6 
and h 9 take part in the next step without contributing to 
the final result set. 

Rule H h takes advantage of the information in h- as well. 
It computes columns Smin and Smax as shown in the table, 
determines a (higher) Kmin = 0.75 from Smin, and selects 
the histograms h, with Smax [i] < ll:min, which are shown in 
boldface again. Hh removes h 6 and hg from the candidate 
set as well, already identifying the three best results. Ob­
viously, in this small example, we have already seen half of 
the data, so a good reduction of the data set is not so sur­
prising. The experiments in Section 7 demonstrate that this 
branch-and-bound strategy works on real data sets indeed. 
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4.3 Pruning bounds for Euclidean distance 
Simi!& pruning rules can be derived when Euclidean dis­

tance is used as similarity metric. Assume that the aggre­
gate function S() is defined by equation 2, i.e., it is the 
squared Euclidean distance2 • Unlike histogram intersection, 
we are interested in the objects with the smallest values in 
S. A simple pruning rule Eq depends on the query vector 
q and the partially computed distances s- only. Obviously 
Smin = S, i.e., the lower bound of the distance for each 
vector is the already computed distance, since v+ may be 
equal to q+. The upper bound of S(v+,q+) is also con­
stant. Geometrically, it is the distance between q+ and the 
furthest corner in the hyperspace defined by the remaining 
dimensions: 

N 

S(v+,q+) $ I: max{qi, 1- qi}2 (10) 
i=m+i 

Now define stricter bounds for S(v+,q+), assuming that 
T(v+} is known. 

LEMMA 1. Assume that the values of q + are in decreasing 
order, i.e., q, > q,+ 1• V'i > m. Let l = N - lT(v+)J, u1 = 
T(v+) - LT(v+)J. The upper bound of S(v+,q+) is then 
defined by: 

1-1 N 

S(v+, q+) $ L q; + (u1 - q1)2 + I: (1 - qi) 2 (11) 
i=m+l 

Proof. Lemma 1 states that the distance is maximized 
when the values of T(v+) are distributed such that the di­
mensions in increasing order of value in q+ have the largest 
possible value. Let m = N - 2 and qN _ 1 > qN. First assume 
that T(v+) $ I. According to the lemma-the additional dis­
tance is maximized if hN-1 = 0 and hN = T(v+). It suffices 
to prove that if we 'move' apart x ofT(v+) from hN to hN-l 
the distance decreases. This can be shown by evaluating 
the following inequality: (qN-l - x)2 + (qN -T(v+) + x)2 :::; 

q~-1 +(qN-T(v+))2 . The proof is similar for 1 < T(v+) $ 
2, where for any x, 0 < x $ 2 - T(v+) the following in­
equa~ty holds: (T(v2+) -1 + x - qN-i)2 + (1 - x _ qN)2:::; 
(T(v ) - 1 - qN-1} + (1 - qN) 2 . By induction, inequality 
11 is proven for every m < N - 2. D 

LEMMA 2. The lower bound of S( v+, q +) is defined by: 

S(v+,q+) 2'.: (T(v+~ -:_~q+))2 (12) 

Proof. Lemma 2 suggests that the increase of o is mini­
mized if t.h~ differences in each of the remaining dimensions 
are all mmimal and equal. This stems from the basic fact 
that w~en 2::~= 1 ~i is constant, then z::~= 1 xr is minimized 
when Vi,x, = (2:;,= 1 x;}/n. D 
. Figure _12 in :he appendix visualizes geometrically the spe­

c1al_:ase m which only ~he last two dimensions remain, i.e. 
m - N .- 2, and T(v ) $ 1. Lemmas 1 and 2 provide 
the r~mred bounds to apply Algorithm 2.a Notice that 
T(v+) IS needed for each vector in order to define the precise 

~The r~~n we do not use the metric defined by equation 3 
is that 1t 1s far more complex and gives essentially the 
result. same 
3 Let di!f = ~T(v+)-T(q+))/(N -m) and assume that the 
values m q are m decreasing order (like in the definition 

bounds. Unlike the histogram intersection case, for which 
T(v+) equals 1 - T(v-), T(v+) cannot be computed from 
T(v-) only, since T(v) differs for each vector v. A simple 
solution materializes and uses this extra table. T(v+) is 
then initially a copy of T(v) and it is updated at each step. 
In the rest of the paper, criterion E,, refers to pruning using 
the lemmas and T(v). 

5. Optimization Issues 
Algorithm 2 can be applied directly using the bounds de­

rived above. This section discusses some optimization tech­
niques that enhance its efficiency. More specifically, it in­
vestigates the importance of choosing a good ordering of di­
mensions, and discusses how to tune the frequency by which 
pruning is attempted. 

5.1 Finding a good order of the dimensions 
The aggregates used are not only associative and mono­

tonic, but also commutative: the sequence in which we pro­
cess the dimensions does not affect the final result, so it is a 
good idea to define an order that prunes a large percentage 
of the vectors early. Of course, it is not possible to know a 
priori the effectiveness of each dimension in pruning. But, 
a combination of the distribution of values in q with sta­
tistical information about 1t guides the definition of a good 
order. 

Without additional knowledge about the distribution in 
Ti, condition Hq in histogram intersection can be expected 
to prune the candidate set most succesfully if the right­
hand side of the inequality has the highest value, i.e., pro­
cessing the dimensions in decreasing order of scalars in q. 
In other words, had q in the example of Section 4.1 been 
< 0.15, 0.1, 0.7, 0.05 >, dimensions 3 and 1 should be con­
sidered to compute partial scores s-. Notice that this order­
ing is not necessarily optimal, and a better estimate could 
be obtained if more were known about 1t. 

Rules Hh and E., consider also the distribution of values 
in fi. Figure 2 shows statistics from a real dataset con­
~aining 59,619 166-dimensional vectors (color histograms of 
images from the Core! collection [6]). The upper diagram 
plots the mean value of each bin, the lower one shows the 
distribution of values in a histogram if taken in decreasing 
order. Notice that for a specific image, the histogram values 
follow a Zipfian distribution. Of course, the bins that take 
t~e highest values are not the same in every image, as in­
dicated by the leftmost plot. Given this data distribution 
processing the dimensions in decreasing order of the value~ 
maximizes the chances to find images that are part of the 
top k early for rules Hh and E., as well: the dimensions 
with high values are skewed, so most images are expected 
to have low values in these dimensions and will be pruned 
early. Of course, were the distribution of values different a 
different processing order should be considered to take the 
most skewed dimensions first. 

5.2 How many dimensions count? 
. Choosi~~ a small m prunes the candidate set sooner, pos­

sibly av~1~mg a lot of query processing. However, it adds 
a non-tnv1al overhead in computing the k-th element more 

of le~~a .1). In the special cases (i)diff < o /\ ldiffl < q 
bnd (ii) di.ff ? 0 /\ Q':"+ 1 + I diffl > 1, we use a stricter low~ 

oudndb.tl?tan mequal1ty 12. Details are omitted for sake of 
rea a 1 i y. 
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Figure 2: Statistics from a real dataset 

frequently as well as updating the candidate set. Thus, m 
should be sufficiently large for the number of pruned images 
at each step to be non-trivial, and sufficiently small to have 
impact on the search speed, compared to full-scanning the 
images of the previous step. 

An optimal choice of m takes into account both data 
statistics and the query vector. For instance, Hq will not 
prune any image until the right-hand side of equation 6 is 
positive. This can happen only when T( q-) > 0.5, since 
K:min :::; T(q-). Thus, attempting to reduce the data set 
is futile until this condition applies. As we will see later, 
after the number of candidates has shrunk to a small su­
perset of the final result, the effect of pruning reduces sig­
nificantly and the benefit of pruned search is negligible in 
comparison to performing a full scan on the remaining can­
didates. Therefore, the significant effects of pruning occur 
only within a range of dimensions; the optimization problem 
is reduced to estimating this range and choosing a good m 
for it. A variant that we have not studied yet is whether 
m should be adapted dynamically to the expected pruning 
effect. 

6. Implementation 
An interesting property of branch-and-bound on decom­

posed data is that it can be expressed in standard rela­
tional algebra; it does not require user-defined types or ad­
vanced indexing structures. The proposed query processing 
techniques have been implemented in Monet [4], a research 
DBMS which provides a variety of highly efficient implemen­
tations of common algebraic operators (join, select, etc.), 
using strategies such as positional lookup, hash lookup, or 
binary search. Administration of so-called 'properties' (e.g. 

m ( ~·.:::, 
M .'1v12 

i vtJ . 
.. 

... ~=: ) 
l'vNJ 

(a) stored histograms (b) step 3 of BOND 

Figure 3: Implementation in a relational database. 

sorted, keyed, dense) propagates fragmentation information 
through operators, to avoid unnecessary joins if possible. 

6.1 Basic algorithm 
We vertically fragment the collection of histograms H into 

N binary relations Hi of length IHI, storing tup!es with 
a histogram identifier and the value of the i-th histogram 
bin h., The resulting tables are shown in Figure 3, in 
which histogram h2, with histogram identifier 2, has value 
< v12, v22, ... , VN2 >,and belongs to image i2. Exploiting 
the known, densely ascending order of histograms, avoids 
materialization of the histogram identifiers; illustrated in 
Figure 3 by italic numbers. This serves two goals: it allows 
positional lookup of scalar values given a histogram identi­
fier, and, it saves storage.4 BOND with rule Hq is expressed 
in the Monet Interpreter Language (MIL) as follows: 

1. for i in 1 .. m do 
Di := [min](Hi, canst Qi); 

Smin : = [ + l (D 1 , ... , Dm) ; 

2. sumQ :=Qi+ .. + Qm; 
sk := Smin.kfetch( k ); 
maxbound := sk + sumQ - 1; 
C := Smin.uselect(maxbound, 1.0); 

3. for i in m+1 .. N do 
Hi := C.reverse.join(Hi); 

Step 1 computes partial similarity S(h-) for each his­
togram in the collection. The (f] () construct is the multi­
join map, which performs an implicit equi-join on the left­
hand attribute of multiple binary relations, and executes its 
operator (f) on the right-hand arguments of the join result. 
The const keyword denotes its parameter as a constant into 
all operator executions. Thus, the [min] takes the minimum 
of h; and q; for all histograms, whereas the [ +] joins these 
results and adds them together; because these tables are 
aligned, a positional join (with negligible cost) is chosen as 
physical operator. 

Step 2 computes the maximum bound derived in rule Hq. 
and selects the identifiers of the candidate histograms with 
partial scores that may still end up in the best k results. The 
kfetch operator selects the k-th largest element of Smin us­
ing a priority queue implemented as a heap, with worst-case 
cost 0( n log k). The us elect operator is the 'unary range 
select', which returns the left-hand values of tuples from 
Smin with right-hand values in the specified range, setting 
the right-hand side of the result to a densely ascending range 
of (virtual) oids. Finally, step 3 reduces the remaining tables 

4 A third of the tablesize, assuming that an oid value is 
represented in 4 bytes and a dbl value in 8 bytes. 
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or H+ to the candidate set (Figure 3b, assuming histograms 
2 and 8 are in the candidate set). 

Positional joins construct the results of each iteration of 
the algorithm cheaply. In early iterations, however, when 
selectivity is still rather low, copying a large proportion of 
the table into the result consumes too many resources. As a 
more efficient alternative, we initially use another physical 
implementation of uselect, creating a bitmap index on the 
histogram identifiers to represent the pruned candidate set. 
After several iterations, when the candidate set has reduced 
significantly, the query processor switches to the 'standard' 
positional joins approach, resulting in much smaller base ta­
bles for the subsequent iterations. Another advantage of the 
bitmap index is its usage to speed up complex queries in­
volving both k-NN and other predicates, by initializing the 
bitmap with the result of a prior selection predicate such 
as 'photographs taken in 1992'. CPU cost is reduced as dis­
tances only need be computed for those candidates satisfying 
the predicate. 

6.2 Updates 
By their nature, large collections of high-dimensional vec­

tors (e.g., image databases) is relatively static. Yet, in case 
of updates, or more likely when appending new images to 
extend a collection, the cost for our storage scheme are the 
'normal' cost of updating vertically fragmented collections. 
As argued already in [5], update performance will approx­
imate the efficiency of updates in a normal relational stor­
age scheme, especially when using differential files and per­
forming mainly batch updates. In our implementation, the 
same bitmap as used in step 3 marks the deleted image his­
tograms, until periodic reorganization of the collection. 

7. Experiments 
This section evaluates pruning efficiency and run-time cost 

for various instances of Algorithm 2. Experiments on a real 
dataset verify the pruning effects of the four criteria. The 
effects (on performance) of the choice of k and the ordering 
of dimensions are measured on the same data set. The next 
experiment validates BOND's robustness to dimensionality. 
A run-time cost comparison between BOND and sequential 
scan follows, with and without compression. Finally, the ef­
fectiveness of pruning is validated on synthetic datasets with 
varying data distributions. Unless otherwise stated, in all 
experimental instances k was set to 10. Experiments were 
run on a PC with an AMD Athlon MP 1500+ (1333MHz) 
processor. 5 

7 .1 Pruning effects of the criteria 
We evaluated the pruning criteria using a 166-dimensional 

dataset created from the Core! image database (59,619 im­
ages) (6]. The histograms were created using the methodol­
ogy and parameters described in [19]. The HSV values of all 
pixels were extracted and quantized to a space that consists 
of (18 hues)·(3 saturations)·(3 values) + (4 grays) == 166 
bins. The values of each histogram were then normalized to 
sum up to 1. Figure 2 provides statistical information about 
this dataset. 

For each pruning metric, we ran 100 queries randomly 
selected from the collection. The dimensions are ordered 
5The experiments have been repeated on a SGI Origin 2000 
~or.kstation with a MIPS Rl2000 300MHz processor, with 
similar results. 

by decreasing values in q and m = 8. Figure 4 plots the 
best, average, and worst pruning efficiency using Hq and 
Hh. Our technique manages to shrink fast the search space; 
more than 983 of the images are discarded after on average 
just 1/5 of the dimensions. Observe, that the 8:verage prun­
ing efficiency of Hq is close to the one of Hh, which has larger 
overhead (due to the maintenance of T(h-)). T~e best c~e 
is a 'perfect one'; every false hit is pruned after JUSt one it­
eration (8 dimensions). Another interesting statistic is tha;t 
on the average the top-k images are identified after 64 di­
mensions which means that 102 tables need not be accessed 
at all. This shows another advantage of BOND; even if the 
worst memory settings apply, dimension-wise pruned search 
would do much better than sequential scan. 

Figure 5 plots the pruning efficiency of BOND with prun­
ing criteria Eq and Ev and Euclidean distance as metric. 
Since we know for this specific dataset that T(v) = 1 for 
each v we replaced the upper bound in Eq (defined by in-

. ' . 2 )2} equality 10) by the stricter bound max{qmaxi (1 - qmin · 
We again ordered the dimensions in decreasing value in q, 
because this ordering considers the most skewed dimensions 
first. In contrast to the small difference between Hq and 
Hh, Eq prunes hardly any image. This can be explained 
by the large upper bound of S(v+,q+), which cannot be 
practical without knowledge about T(v+). On the other 
hand, Ev manages to prune well, but not as fast as the 
histogram intersection methods. In the rest of the paper, 
we will not consider criterion Eq again. Notice that, al­
though we performed the Euclidean distance experiments 
on the same dataset for comparability, the actual distance 
distribution between points in the dataset suggests that his­
togram intersection is a more appropriate metric for image 
similarity. 

7.2 Effects of k and ordering of dimensions 
We tested the effect of k in the pruning of Hq by running 

the sample queries and averaging the number of pruned im­
ages per dimension (Figure 6). Observe that even with as 
large values as 1000, BOND manages to prune the space 
early. The large difference between k=I and k=lO is due to 
the fact that the queries are taken from the dataset, thus for 
k==l the top-k element is a perfect match with high pruning 
efficiency. Recall that no images are pruned until the 15-th 
dimension, where T(q-) becomes larger than 0.5. 

The nature of skew in the dataset (few dimensions with 
large values in q and many with values close to zero) favors 
considering the dimensions in decreasing order of value in q 
for both similarity metrics. Figure 7 verifies this reasoning. 
The three lines show the pruning effect of Hq when dimen­
sions are taken (i) in decreasing value in q, (ii) at random, 
and (iii) in increasing value (worst setting). The fact that 
the best ordering depends on q (so it is not static) favors 
the application of BOND in comparison to sequential scan 
and other methods, because of its flexibility to consider the 
dimensions in any order without penalty in access cost. 

7.3 Effects of dimensionality 

The next experiment validates the robustness of our method 
to the dimensionality of the dataset. From the Corel image 
database, we generated four HSV histogram datasets of di­
~ensionality 26, 52, 166 and 260. Figure 8 shows the pruned 
~mages as a percentage of processed dimensions, when E.,, 
is used. Observe that the effectiveness decreases with di-
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mensionality, although not dramatically. With the increase 
of dimensionality the search space becomes less appropri­
ate for nearest neighbor search: the distance ratio between 
the nearest and the furthest vector from a random point in 
space drops [3]. In our case, the scores of the best-k matches 
become lower and more indistinguishable as dimensionality 
increases. Nevertheless, experiments on synthetic datasets 
with well-defined clusters (see also Section 7.5) have shown 
that the pruning efficiency of the proposed method does not 
degrade with dimensionality. 

7.4 Search performance improvement 
The practical value of BOND is evaluated by measuring 

the response time of the implementation described before. 
The measurements reported have been acquired from exe­
cuting 100 sample queries on the dataset with 166-dimen­
sional HSY histograms, using both similarity metrics with 
pruning criteria Hq, Hh, and Ev. These response times are 
compared to the times measured with an optimized imple­
mentation of sequentially scanning a single table with all 
vectors. For each vector v, sequential scan computes its sim­
ilarity with q and adds it to a heap of the k-best matches 
so far. 6 The two versions of this method for histogram in­
tersection and Euclidean distance are denoted as SSH and 
SSE, respectively. 

Table 3 presents statistics for the measured response times; 
all reported times are in milliseconds. Hq is the best prun­
ing heuristic for histogram intersection due to its simplicity 
and very good pruning efficiency. Although Hh prunes more 
effectively than Hq, the difference is not large enough for 
the additional bookkeeping to pay off. Both criteria reduce 
significantly the cost of sequential scan, up to an order of 
magnitude. Ev is not that efficient in terms of CPU-cost, 
mainly due to the relatively complex bounds of S(v+, q+), 
which add computational overhead. In addition, it prunes 
less space on the average as shown in Figure 5. However, 
this method is still much faster than sequential scan. 

Table 3: BOND vs. sequential scan; times in msec. 
met o 

181 190 183 184 

As discussed before, related research has shown perfor­
mance improvements using compressed approximations of 
the feature vectors, for both sequential search (VA-File) as 
well as space partitioning methods. A similar improvement 
can be expected using this approximation technique in com­
bination with BOND. Figure 9 plots the average pruning 
of Hq on exact and compressed dimensional fragments (an 
8-bit approximation of each double coefficient is used per 
dimension). Pruning on the compressed fragments finishes 

6 We also tried a more sophisticated approach, where the 
partial score of v was regularly compared to the top-k score 
found so far and search was abandoned for v if it was found 
impossible to reach that score. However, this version of 
sequential scan was slower on the average (due to the over­
head of comparisons, and its incapability to consider first 
the most promising dimensions). 

with 1000 candidates after processing 72 dimensions and fol­
lows a similar trend as using the original fragments. Table 4 
shows the cost of applying Hq on the compressed fragments, 
compared to sequentially scanning the equivalent VA-File 
[22]. Essentially, both approaches return the same sets of 
candidates, that need to be checked in the additional refine­
ment step. A runtime comparison between BOND applied 
to approximations (using H q) and a sequential scan of the 
equivalent VA-file [22] results in an overall improvement of 
a factor 3-5 in favour of BOND (on the 166-dimensional 
dataset). This experiment demonstrates further that the 
benefit obtained by compressing the feature vectors is or­
thogonal to our technique: in both cases, the results using 
approximate feature vectors are roughly two to three times 
better than the results without compression. 

Table 4: Experiments with approximations of the 
original feature vectors; times in milliseconds. 

met o mm max average me ian 
ter step 9-. 

filter step S8H 
re nement step 

The improvement of BOND over the VA-file is expected to 
decrease with dimensionality on the same image set, because 
the k-NN search becomes less meaningful (as commented in 
Section 7.3). Experimental results using the A-tree access 
structure given in [17] show an improvement of factor 4 on 
a very similar dataset, also decreasing with higher dimen­
sionality. This indicates that BOND offers competitive per­
formance improvements when compared to advanced tree­
based indexing structures, while being much simpler to im­
plement. Additional advantages of the proposed technique 
include the ability to process other variants of k-NN queries 
efficiently, like weighted and multi-feature queries (as dis­
cussed in Section 8). 

7 .5 Effects of data skew 
While BOND seems effective for content-based image re­

trieval, a natural question arises: is it good for generic k-NN 
search, and if so, under which conditions? Notice that in the 
color histogram datasets examined so far the values of a ran­
dom vector follow a skewed Zipfian distribution (see Figure 
2). In such cases, an ordering that considers the most skewed 
dimensions in the query first, is expected to have nice prun­
ing effect. We also expect our approach to do well when the 
data are clustered in the high-dimensional space, and k-NN 
search is meaningful [3]. On the other hand, if there is no 
skew in the vector values, the best partial solutions after 
less than half of the dimensions may still turn out to be the 
worst solutions overall. So, we do not expect the pruning 
effect to be significant when the average values of a vector 
follow a uniform distribution, i.e., they have equal 'weight' 
for the specific vector. 

We generated synthetic datasets in order to evaluate the 
assertion that skew favors pruning. All datasets contain 
100,000 128-dimensional vectors, defined in a unit hyper­
cube. In this hypercube, 1000 points define the centers of 
the clusters; 95% of the generated vectors belong to some 
random cluster, whereas 5% of them take random values 
(noise). The distance from each vector to the cluster where 
it belongs to is defined by a Gaussian distribution around 
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the cluster's center. This dataset has the nice properties 
that make NN-search meaningful [3]; the k-nearest neigh­
bo~ of a point that falls into a cluster is close compared to 
pmnts from other clusters, and there is a small percentage of 
outliers that do not fall into a cluster and essentially do not 
have 'meaningful' nearest neighbors. The coordinates of the 
clusters' centers follow a Zipfian distribution. If the skew 
parameter 0 is 0 the centers follow a uniform distribution. 
The larger 0 is the more skewed the cluster centers are. 

Figure 10 shows the average pruning efficiency of E,, for 
various values of the skew parameter 0. As expected, the 
efficiency of BOND depends on the skew in the data set: 
data skew favors pruning, but the technique is not efficient 
when the centers of the clusters are uniform. In real-life 
applications however, where datasets are skewed (like the 
color histograms), we can expect good results from the pro­
posed method. Also, weighted search puts implicit skew in 
data and therefore increases the value of our approach, as is 
discussed in the next section. 

8. Weighted Search and Multi-Feature Queries 
We have already seen how BOND evaluates efficiently the 

basic type of k-NN queries: given a collection of high dimen­
sional vectors X and a query vector q, find the k most similar 
vectors x E X with respect to a similarity metric Sim(x, q). 
This section demonstrates how the proposed storage scheme 
and query processing techniques are also suitable for two 
common extensions of this basic query type, often found in 
practical applications. In the first extension, called weighted 
k-NN query, weights are assigned on the dimensions of the 
query vector. Queries of second extension, called complex or 
multi-feature queries, have multiple components, whose sim­
ilarity is tested against various feature sets, possibly using 
a different metric for each component. 

8.1 Weighted Queries 
So far, all dimensions of the query vector have been as­

sumed equally important. In many applications, however, 
users may assign different weights to the query features. 
This is especially true if the dimensions in the feature space 
can be interpreted as concepts which are clear in the user's 
mind. Even when this case does not apply, relevance feed­
back mechanisms often put weights at dimensions, in order 
to refine the query results according to what seems to be the 
user's request [12]. 

The Appendix describes how to derive the required bounds 
for weighted Euclidean search. A non-uniform distribution 
of weights introduces skew in the transformed space, so 
BOND is expected to perform well. The following exper­
iment validates its efficiency on weighted queries. We used 
the synthetic dataset described in Section 7.5 with 0=0, 
which yields the worst-case pruning of E,, (the cluster cen­
ters are uniformly distributed). Figure 11 shows the pruning 
efficiency for various values of the skew on weights. Observe 
that efficiency improves only if the skew in the weights is 
large: 10% of the dimensions should get more than 903 of 
the weights. In real-life situations we believe skewed weight­
ing occurs frequently, a fact that makes our approach espe­
cially useful. 

An inherent advantage of vertical fragmentation not dis­
cussed so far is that having stored independently the vector 
coordinates, we can process seamlessly k-NN queries in any 
dimensional subspace. For example, if the user or the query 

processor decides to consider any arbitrary set of color bins 
BOND avoids accessing information irrelevant to those di~ 
mensions. This flexibility cannot be achieved in tree struc­
tures that index the space using all dimensions. As stated 
in [11 ], it is typical for queries in high dimensional spaces to 
be mean~ngful only for a subset of dimensions, which may 
well be different for each query. Notice that k-NN search in 
a dimensional subspace is a special case of weighted search, 
where all weights in the search dimensions are positive and 
equal, and all weights in irrelevant dimensions are zero. 

8.2 Multi-feature Queries 
In image database systems it is common for a user to 

ask queries related to more than one visual attribute of the 
image. For instance, a query may ask for images that are 
similar to image A in color and to image B in texture. The 
similarity between two images with respect to multiple at­
tributes is defined as an aggregate of the individual similar­
ities for each attribute. 

Previous work in this area [7, 9] has focused on the effi­
cient merging of multiple streams that contain the most sim­
ilar results with respect to each query component. Stream 
merging, although generic enough to be used for any search 
problem, has certain disadvantages. While k defines the 
number of desired global results and not the output of each 
stream, it is difficult to determine a priori how many ob­
jects are required from each stream in order to identify the 
k most similar objects. Therefore, the search algorithm re­
quests incrementally nearest neighbors from each stream, 
until the global stopping condition has been satisfied. The 
number of candidates selected from each stream affects how­
ever the performance of the search algorithm used within 
that stream; the larger the number of retrieved objects, the 
higher the retrieval cost (cf. Figure 6). Furthermore, com­
bining different streams requires random accesses in order 
to compute the global similarity of the best objects in one 
stream, which are not present in the other(s). 

If the dimensional data are fragmented vertically in each 
feature collection, the separate ranking and merging steps 
can be integrated. BOND can compute the best global k­
matches in one step by simultaneously applying dimension­
wise search in all relevant feature collections. This demon­
strates another powerful feature of vertical fragmentation; 
BOND can be applied for numerous types of complex queries 
including, (i) queries with weights assigned to the various 
components, (ii) queries having different similarity metrics 
for each component, provided that the global similarity is 
well defined from the merging of the individual ones, and (iii) 
queries with various aggregate functions, including arith­
metic ones [9] like average and fuzzy logic [7, 15], like min 
and max. 

As an example, consider a complex query where we are 
looking for k images with the best weighted average color 
similarity with A and texture similarity with B. We con­
sider the union of color and texture dimensions as one large 
set of dimensions. For such dimension, the partial similarity 
of a candidate object with the query object is defined by the 
actual partial similarity (using the corresponding metric, de­
pending on which feature set this dimension belongs) mul­
tiplied by the corresponding weight. The worst/best case 
pruning bounds are calculated using the global partial sim­
ilarities and the query values in the remaining dimensions. 
The optimization methods for ordering of dimensions and 
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choice of m are also applicable here: the most skewed query 
dimensions (after normalization using the weights) are cho­
sen first. Fuzzy logic aggregates can be handled in a similar 
way. The pruning bounds are calculated using the partial 
similarities and the query values in the remaining dimen­
sions in each component and the aggregate function. For 
instance, the worst case global similarity using the min ag­
gregate can be computed by its worst case similarities at 
each component (with potentially different similarity func­
tions). 

Optimizing multi-feature queries using BOND is an in­
teresting research topic. Preliminary experimental results 
have shown that synchronized search in multiple feature col­
lections is a promising technique for multi-feature queries. 
For Hq, we compared this method with one that uses Hq 
in each individual dataset and merges the results using the 
algorithm of [9]. The experiment was performed on two 
synthetic datasets, representing different feature collections 
with 100,000 objects and having dimensionality 64 and 128, 
respectively. The datasets were generated using the method­
ology described in Section 7.5, i.e., they contain clusters of 
points, and the query instances were taken from the datasets. 
On the average, the synchronized search method was found 
20% faster than stream merging when the aggregate func­
tion is average and 70% faster when the aggregate function 
is min. Given the fact that the k used to search each individ­
ual stream was the optimal (which is unknown in reality), 
the performance improvement of synchronized search over 
stream merging can only be larger in practice. 

9. Conclusions 
This paper provides insight into the potential benefits of 

a different storage scheme for high-dimensional data, that 
supports efficient k-NN search. By fragmenting a collection 
of 166-dimensional image histograms vertically into 166 dis­
tinct tables, significant performance gains have been demon­
strated using the proposed query processing techniques. Even 
more performance gains are achieved if some dimensions are 
more important than others, making the approach particu­
larly suited for interactive image retrieval applications. 

BOND is simple and introduces negligible storage over­
head. It is a novel application of the well-known 'push­
select-down' heuristic, turning a selection predicate captured 
by a complex mathematical formula (the metric) into se­
lection predicates on the individual dimensions. The ap­
proach is easily integrated in a relational database system, 
without interfering with the database optimizer. Like most 
high-dimensional k-NN search methods, BOND is efficient 
on skewed data where search is meaningful. Unlike tree­
based indexing methods, its efficiency is versatile to various 
types of k-NN queries, including weighted and multi-feature 
queries, and to different similarity metrics, while it can be 
applied on a single, non-redundant data representation. 

Indeed, the vertical fragmentation of high dimensional 
data opens the road to novel processing techniques of queries 
on high dimensional data. A promising direction of future 
work is to develop new techniques for other search problems 
in high dimensional spaces (e.g., clustering), when applied 
to dimension-wise decomposed data. Another extension of 
this work is the application of the same method to searching 
large audio and video databases, especially for the combina­
tion of various search strategies. Using branch-and-bound 
over different feature spaces simultaneously allows for ad-

vanced query optimization techniques. 
The quality of a k-NN query is defined in [11] to be para­

metric to subsets of the full dimensional space. In our frame­
work, queries with significant skew seem to correspond to 
useful queries, a property that may be exploited as a mea­
sure of the quality of a query vector to describe information 
needs. In other words, the search quality may not be simply 
a parameter of a dimensional subset, but depend on a distri­
bution of weights on all dimensions. As already pointed out 
in Section 8, subspace search is a special case of weighted 
search, and the definition of [11] becomes a special case of 
our concept of usefulness. We intend to investigate the the­
oretical soundness of this generic definition, as well as its 
practical value in problems like clustering. 
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APPENDIX 

A. Pruning Rules for Weighted Search 
The simple and adaptive nature of branch-and-bound makes 

the definition of pruning rules for weighted search straight­
forward. Definition 2 becomes: 

DEFINITION 3. The weighted squared Euclidean dis­
tance between two vectors v and q of dimensionality N is 
defined as fallows: 

N 

'""' 2 8,,, ( V, q) = L_., W, (Vi - q,) ( 13) 

Each dimension is assigned a weight w, which reflects its 
importance in the query. If 2=;: 1 w, = N, equation 3 defines 
the similarity of the two vectors. Figure 13 visualizes the 
special case where m = N - 2; basically, each dimension is 
stretched or shrinked with a different factor. In the presence 
of weights, the upper bound of S(v+, q+) becomes: 

l-1 N 

++ """"'2 2""""' 2 S(v , q ) ::::; L., w,q; + w1(u1 - qi) + L., w;(l - q;) 
i=m+l i=l+l 

(14) 
Equation 14 assumes that the values of q+ are ordered 

such that WiqT ;::: w,.+ 1q'f+ 1, Vi > m. Values l and u1 are 
defined as in Lemma 1. The lower bound is similarly defined 

Figure 12: The lower- and upper bound on the Eu­
clidean distance between q and any possible v visualized 
for m = N - 2 and T(v+) -::; 1. 

,/WY· T(v+ 

- v'j 

Vj 

-Scaling by w 

Figure 13: The lower- and upper bound on the Eu­
clidean distance with weighting vector w, visualized for 
m = N-2. 

by extending equation 12 as follows: 

S(v+ ,q+) 2: N n::mN+l Wi (T(v+) -T(q+))2 
2:j=m+1 ni=m+1.itj w, 

(15) 
The proofs of equations 14 and 15 can be derived after 

squaring the maximum and minimum distance of the trans­
formed vector q'+, q't = yW;.qi, Vm < i :S: N from the 
hyperplane defined by all possible distributions of T( v+) to 
the dimensions after m. 
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