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1. INTRODUCTION

The need for DNA sequencing did not end with the
successful public and private projects to sequence the
human genome. Indeed, attention is shifting from de
novo sequencing of new organisms to analyzing sequence
variation for research and diagnostic purposes.

Contemporary electrophorisis-based sequencing machines
produce curves registering the amount of each of the
four nucleotide bases as a function of sequence posi-
tion (see Figure 1). For homogeneous DNA samples,
the largest peaks at each position define the underlying
sequence. However, more careful analysis of sequence
trace data holds promise for determining the presence
and frequency of mutations in inhomogeneous samples.

In this paper, we look at the problem of using sequence
trace data to identify sequence variants in mixed DNA
populations. Our work is motivated by a new line of
capillary electrophorisis sequencing machines being de-
veloped by BioPhotonics Corporation [10]. By using ad-
vanced single-photon detectors and other technologies,
BioPhotonics has the capability to not only detect but
accurately determine the relative frequency of each base
at each position to within 10%, and expects to reduce
this error rate to 1% in the near future.

This motivates a variety of questions concerning how
accurately we can sequence mixed populations from a
single sample using relative frequency information. Pos-
sible applications of this technology include:

e Frequency of Acquired Mutations — Perhaps the
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greatest promise of modern genomics is that of
individualized medicine, where an individual’s ge-
netic composition is determined and analyzed to
determine the best course of treatment. New tech-
nologies such as microarrays [5, 8] offer promise
for obtaining sequence and expression data on an
individual scale. Microarray studies of leukemia
and breast cancer [1, 9] tissues have demonstrated
that cancer subtypes can be accurately diagnosed
on the basis of genomic data, and with them the
prognosis for survival under various treatments.

Such microarray studies will continue to help de-
velop our understanding of gene expression and
disease. However, the technologies used for wide-
spread diagnostic tests may well be different, to
minimize costs and increase robustness. Indeed,
a major goal of BioPhotonics efforts is developing
smaller, cheaper DNA sequencing machines with
the vision of placing them in doctor’s offices for
diagnostic applications.

Particularly important for many medical applica-
tions is the need to analyze sequence from het-
erogeneous genomic samples. Such mixed popu-
lations naturally arise from acquired mutations,
say, in cancer, where various mutations to onco-
genes such as p53 can lead to dramatically differ-
ent disease courses. Extensive databases of p53
mutations are being constructed, including [2, 13,
14].

In this paper, we provide simulation results demon-
strating our ability to identify p53 mutations as a
function of mutation frequency and sequencing ac-
curacy.

SNP Generation and Analysis — Single-nucleotide
polymorphisms (SNPs) represent an important part
of sequence variation in humans. Cataloging SNPs
is an important problem in contemporary sequence
analysis [11]. Here we propose a potentially high-
throughput technology to catalog SNPs. A pool
of DNA from m distinct individuals is assembled,
with a region of interest amplified using PCR. Se-
quencing the resulting product and deconvolving
the results will be significantly more efficient than
individual sequencing runs for large m, provided
they can be accurately analyzed for large m.



Figure 1: Trace data from a DNA sequencing machine

In this paper, we study the potential of this ap-
proach both theoretically and through simulation.
We demonstrate that, under reasonable assump-
tions of polymorphism rates and error probabili-
ties, pool sizes of over 100 people can be analyzed
on a single sequencing run.

e Viral Population Analysis — Viruses such as HIV
evolve rapidly, and each infected patient soon comes
to host a variety of different strains. Our tech-
niques make it possible to determine the various
mutations present in a sample, as well as their rel-
ative frequencies. Obtaining accurate viral pop-
ulation frequency data will be important to de-
termine a patient’s response to a given course of
treatment, and determine which strains react best
to a given therapy.

In this paper, we demonstrate that accurate de-
termination of the relative frequencies of four dis-
tinct strains can be made even in the face of base-
frequency error rates up to 25%.

1.1 Problem Definitions

If the population is comprised of two sequences which
differ only in substituting one base position then identi-
fying the single nucleotide polymorphism (or SNP) is
in principle easy: just look for the single base posi-
tion with two peaks. But how can we deconvolve more
complicated mutation populations, with insertion and
deletion operations? In this paper, we look at the al-
gorithmic complexity of several sequence deconvolution
problems — giving efficient algorithms where they exist
and hardness proofs where they do not.

The act of deconvolving mutations from sequence trace
data can be partitioned into three distinct problems:

e Base calling — The problem of calling bases from
electrophorisis traces is complicated by a variety
of technology-dependent factors. Programs such
as Phred [6], TraceTuner [4], and LifeTrace [16]
successfully analyze trace data, and assign each
base an associated quality level or error probabil-
ity.

In this paper, we assume the trace analysis is per-
formed by an external program, which returns the
percentage of each base observed at each position
for subsequent analysis. We will assume that such
data is subject to errors, as discussed in Section 4.

o Mutation deconvolution — Given the set of observed

bases at each position, which mutations are present
in the given sample? In medical applications we
can assume that the general wildtype sequence is
known, as well as a catalog of commonly occur-
ring or previously-studied mutations. Formally,
our problem is:

Input: A wildtype sequence S, a set V of allow-
able variations on S, and an experimental profile,
consisting of an ordered sequence of n subsets on
alphabet X.

Output: The smallest subset V' C V such that
the character position subsets of V' and S yield
exactly the input profile.

Consider the following example, where wildtype
string S = ACTGTTGACTCATCC gives rise to
the following profile:

S:  ACTGTTGACTCATCC
AGTC CTCATCG C

One solution with three mutations explaining this
profile consists of a 4-base substitution starting at
position 2 with the sequence AGTC, a deletion
of a A at position 8, and an insertion of a G at
position 14.

S: ACTGTTGACTCATCC  wildtype
aAGTCtgactcatcc  Sub(2,AGTC)
actgttgCTCATCc Del(8,1)
actgttgactcatGeC Ins(14,G)

Bases in the mutations that contribute to the pro-
file are capitalized, and the portion of the muta-
tion that has changed is underlined.

Population frequency determination — Sequence trace
data provides a rough distribution of the relative
frequency of each base at a given position. The
medical implications of an acquired mutation rest
not only on which mutations are present, but how
frequent they are in the given population. In the
more general population frequency determination
problem, we are given an observed fraction of each
base at each position and have to reconstruct the
frequency of each mutation in the population. For-
mally, our problem is:



Input: A wildtype sequence S, a set V of allowable
variations on S, and an experimental profile, con-
sisting of the observed relative frequency for each
s € X at each of n positions.

Output: The population frequency of each varia-
tion v € V that best matches the observed input
profile.

1.2 Organization

Our paper is organized as follows. In Section 2, we con-
sider the computational complexity of several variants of
the sequence deconvolution problem, establishing natu-
ral classes of mutations for which reconstruction is NP-
complete. Section 3 presents the practical algorithms
which we developed for use in our implementation. This
implementation was used to generate simulation results,
described in Section 4. Analysis and experiments for the
special case of reconstructing SNPs appears in Section
5, followed by future work in Section 6.

2. MUTATION DECONVOLUTION: SPE-
CIAL CASES

Here we treat the mutation deconvolution problem from
the strict standpoint of algorithmic theory. We demon-
strate the boundary between classes of mutations are
algorithmically easy to reconstruct and more general
classes that are hard. Further, we categorize certain
classes of mutations which mask each other in trace
data, thus being inherently unreconstructable.

We consider the mutation deconvolution problem for
increasingly general sets of allowable variations of sub-
stitutions, deletions, and insertions.

2.1 Substitution Sets

The simplest class of substitutions just change single
bases. There are only (o — 1)n single-base variation
sequences. If only single character substitutions are
allowed, there is only one possible way to create each
additional profile character, and hence the algorithmic
reconstruction problem is trivial.

A more interesting and general class of mutations al-
lows larger substrings. Here, each element of the set of
allowable variations substitute one substring of length
k in S with a different k-substring. We assume all na?*
possible k-length substitutions exist in V.

THEOREM 1. Mutation deconvolution for k-length sub-
stitutions can be solved in O(an) time.

ProOF. This can be solved optimally using a left to
right greedy algorithm. Start with the leftmost uncov-
ered profile character, and select the string which covers
them and as large a set of other uncovered profile char-
acters as possible. Since all k-string replacements are
available, no decision precludes any other covering op-
tion. [

The incomplete substitution set problem is a restricted
variant of the complete substitution set problem. Here,
substitutions of k-substrings are made using only possi-
ble mutations from the set M.

THEOREM 2. The incomplete substitution set prob-
lem is NP-complete and is hard to approrimate within
a log factor.

PROOF. A solution to the problem can clearly be ver-
ified in polynomial time. To show hardness, we reduce
the set cover problem to the incomplete substitution
sets problem; this reduction maintains hardness of ap-
proximation.

The set-cover problem is defined as follows. Given an
integer set N = {1,...,n} and a set M of m subsets of
N, find the smallest subset of M such that Upe uP =
N. Given a set-cover instance (NN, M), we introduce
a character-sequence representation for each of the el-
ements of M. For all integers ¢ from 1 to n, if ¢ € p
append ¥’ to s, otherwise append -’ to s. Thus, for
n = b the subset p = {1, 3} is represented as ‘*-*--’.

The wildtype S consists of n consecutive ‘-’s; a; = ’-’ for
all basepair positions of S. The profile consists of the
wildtype plus a ’*’ in each column. M consists of the
character-sequence representations of the subsets in M.
A mutation my, in M is constructed using a substitution
of the entire wildtype S with an n-substring in M.

There is a clear one-to-one correspondence between the
set cover instance and the encoding. Each mutation
is created using a substitution of the wildtype with a
substring in M, and each substring in M represents a
subset in M. The reduction is correct and maintains
hardness of approximation. [

We note that the greedy heuristic for set cover gives
an O(lg|V|) factor approximation for this and indeed
all variations of mutation deconvolution. The greedy
heuristic identifies all elements of V' consistent with the
profile. While there are uncovered characters in the pro-
file select the survivor which covers the most remaining
profile characters.

2.2 Deletion Sets

In single character deletion, each possible mutation dif-
fers from wildtype S in the deletion of one character
position. Thus there are n possible variation sequences.

We claim that any realizable profile can be covered using
S and at most one other sequence. Observe that any
two variants are identical to the left of the first deletion
and to the right of the second deletion. Also observe
that S is identical to both sequences to the left of their
deletion. A generalization of this argument yields:



LEMMA 1. Let V' be a minimum size solution for the
mutation deconvolution problem. Then V' does not con-
tain two deletion mutations of the same length k for any
1<k<n.

Thus to cover the rightmost uncovered character of the
profile, we can select the variant which has the leftmost
deletion which is consistent with the rest of the profile.
Note that if this does not completely cover the profile,
then the profile cannot be covered, as all other consis-
tent profiles share a prefix with S. Hence:

THEOREM 3. The mutation deconvolution problem for
k-length deletions can be solved in O(an) time.

In the single range deletion problem, each variation dif-
fers from S in the deletion of one contiguous subse-
quence, and all possible deletions are included. Thus

there are (g) possible variation sequences in V.

THEOREM 4. The single range deletion problem is NP-
complete for || =m + 2.

PrROOF. The problem is clearly in NP. Given a set-
cover instance (IV, M) we construct an instance of the
single-run-deletion problem which uses a character-al-
phabet X of size m + 2; we later show how to encode
this using only a three letter alphabet that corresponds
to the nucleotide set {A,C,T}.

‘We begin by introducing a character sequence represen-
tation for the elements of M. Given a subset p € M,
represent p with a character sequence of length n + 1.
Start with an empty character-sequence s, and con-
struct from left to right. For all integers ¢ from 1 to
n, if ¢ € p append '+’ to s, otherwise append -’ to
s. Conclude the construction by appending ’#’ to s.
Thus, for n = 3 the subset p = {1, 3} is represented as
?x—+#”. We call -’ a place holder, ’+’ a marker and "#’
a terminator.

Details of the construction appear in the full paper, but
an example is given in Figure 2.

This construction reduces the input of a set-cover prob-
lem instance (N, M) to the input of a single-run-deletion
problem instance with character alphabet m +2. Any
solution to the single-run-deletion problem instance in-
cludes m — 1 mutations that cover the elements of the
alternating sets at positions greater than n+1. All other
mutations in the solution must be used to cover the ele-
ments of the alternating sets a1 to a,. These mutations
can be distinguished by examining the terminating po-
sitions of the deletions used to create them. Mutations
created using a deletion that terminates left of position
2m(n + 1) are discarded. Each of the remaining mu-
tations corresponds to choosing a single subset in the

set-cover problem. A part of the chosen subset’s rep-
resentation must follow immediately after the deletion
terminating position, and no part of any other subset’s
representation may appear in a position r < n. [

In the full paper we show how to encode each character
of ¥ as a unique (m + 3)-long sequence of nucleotides
from {A,C,T}.

THEOREM 5. The single-run deletion problem is NP-
complete even for alphabets of size 3.

2.3 Insertion Sets

The case of insertion mutations is similar to that of
deletion mutations, since the leftmost insertion masks
the shift of all insertions further right. Thus the sin-
gle base insertion problem can be solved by including
the insertion mutation defining the leftmost alternative
character to the wildtype. Each remaining uncovered
alternative character must be covered by a distinct in-
sertion of the prescribed character. This yields a mini-
mum covering if the union is consistent with the profile;
otherwise no such covering exists. An extension of this
algorithm can be used to find the minimal covering of
any realizable profile with insertions of exactly length k
in polynomial time.

THEOREM 6. The mutation deconvolution problem for
k-length insertions can be solved in O(nk) time.

In the single range insertion of mazimum size k prob-
lem, each variation differs from S in the insertion of a
single contiguous subsequence whose length is less than
or equal to k. Thus there are O(na*) possible variations
inV.

THEOREM 7. The single range insertion of mazimum
size k problem is NP-complete for |X| = 4.

ProoOF. The problem is clearly in NP. Given a set
cover instance (IV, M) we construct an instance of the
single range insertion of maximum size k problem which
uses a character-alphabet of size 4.

Introduce a character sequence representation for the
elements of M using the alphabet {*, —, #,1}. For each
p € M we construct a subsequence s, that consists of
a series of *’ and ’-’ characters. If ¢ € p then the ith
character of s, is a "*’, otherwise, it is a >-’. A place
holder subsequence s_ consists of n ’-’ characters.

The wildtype S consists of m copies of the following
string: #si1#s27 ... #HSmFS—

To create the rest of the profile, a (m + 1)st repetition
of the subset/place holder subsequences is added start-
ing at position (m + 1)(n + 1) (just off the end of the



N={1,2,3,4}

M:{{1,2}7{2,3}7{374}}

S: Rk 2k Rk Fkk——f—kk— kK
Hokkk —kk—Q——kkJkk——H—kk—f——kk
——kkJkk——H—kk—F——kxif

Figure 2: An example for the construction of a character-alphabet single-run-deletion problem in-
stance from a set-cover problem-instance (N, M). A set of alternating characters a; is composed of
the characters below the ith position of S, given that alternating character sets are not multi-sets and

may not include s(7).

N ={1,2,3,4}

M = {{1,2},{2,3},{3,4}}

S: HEkk——f— ko k—— ok —kk———— Rk —— kR —kkf————

Hrk——f—dkk—f—— ko ————

1-—kk1k——k1kk——Tokkokk1——skk k——k Lkk——Tkokokok 1 ——kk Lk——k1kk——Tskskkk 1 ——kk 1k ——k Lkok——1 kkkk

1111

1111 1111

Figure 3: An example for the construction of a character-alphabet single-run-insertion problem from
a set-cover problem-instance (N, M). See text for details.

sequence). Then, at each position, for every '*’ in the
profile, a ’-’ is added to the profile (and vice versa), and
for every ’#’ in the profile, a ’1’ is added to the pro-
file (and vice versa). Finally, n ’'1’s are added to the
profile beneath each copy of s_. Figure 3 shows this
construction for a sample set cover problem.

Note that all legal shifts must be of ¢(m + 1) characters,
and all such shifts are allowed (for ¢ <n+1). All’1’sin
the profile will have to be covered by the inserted sub-
sequence instead of by the shifted wildtype since there
are no ’1’s in the wildtype.

Since the profile is (n + 1)(m + 1) longer than the wild-
type, that is the maximum length of any insertion, mean-
ing that at least m+1 insertion mutations will be needed
to cover the ’1’s in the profile, and none of them will be
able to cover the "*’s beneath the s_. By choosing these
m+1 insertions appropriately, it is possible to cover the
rest of the profile.

A solution to the set cover problem can be made into a
solution to insertion problem. If the ith subset is in the
solution to (IV, M), then the insertion problem contains
an insertion of length (n+1)*(¢—1) starting at location
1. This insertion shifts the relevant subsequence into the
place holder subsequence.

Other ways to cover this profile are more expensive. De-
tails appear in the full paper. For example, it is possible
to cover one or more **’s in the place holder subsequence
by inserting them explicitly. However, since there are
m + 1 copies of the place holder subsequence, you need
m + 1 insertions to do this (in addition to the m+1 in-
sertions to cover the ’1’s), which means that any such
solution is not a minimal one. [

3. ALGORITHMS AND IMPLEMENTA-
TION

In this section, we describe the algorithms we imple-
mented for each of the three problems described in Sec-
tion 1.1. Our experiments with this implementation are
reported in Section 4.

3.1 Base Calling

The base calling problem on actual gels is complicated
by a variety of technology-dependent issues. The con-
tribution of this paper is in higher-order determination
of sequences from mixed populations, so we assume that
the sequencing machine returns an observed frequency
of each base at each position.

Here we describe how we performed base-calling in our
simulation. Given the observed frequency F'(i,j) for
base i at a given position j, we classify it based on
thresholds t;, and tp;:

Present F(i,7) > tn;
C(i,j) = NoCall  ti, < F(i,7) < ths
Absent F(i,7) < tio

Each element v of the set of candidate mutations V' can
be easily tested to see whether it is consistent with the
set of called bases. A mutation v is considered consis-
tent if for all ¢, C(4,v(i)) # Absent. In other words, a
mutation is consistent if each of its basepairs correspond
to a Present or NoCall entry.

3.2 Mutation Deconvolution
‘We solve the mutation deconvolution problem as a vari-
ant of set cover problem consists of finding a minimal set

of consistant mutations such that for every C(i, j)=‘Present’,

there is some v € V' such that v(z) = j.



Instead of using heuristics to approximately solve set
cover, we explored the power of exhaustive search, specif-
ically a DFS A* search. As each ‘Present’ value in the
called-base array is accounted for, it is marked covered.
A ‘score’ is defined that evaluates a given mutation and
returns the number of ‘Present’ values that it will con-
vert to covered if it is added to the solution set.

Mutations are added to the solution in decreasing order
of the number of remaining ‘Present’ bases they will
cover. An aggressive pruning scheme is used for early
termination: if the best solution so far covers p mu-
tations and we have already added ¢ mutations to our
solution, then score(v) must be at least score(C)/(p—q)
to be considered at this level. Below this threshold, the
search tree can be pruned.

3.3 Population Frequency Determination
The third stage of the algorithm takes the solution of the
set cover problem and the observed frequency matrix F'.
From this data it creates a system of up to 4|s| linear
equations (where |s| is the length of the wildtype). The
linear equation for basepair i, value j, is

| M|
> " wieli, 4, k) = F(, 5) (1)
k=1
where
cooy [ 1ifmg(i) =3
c(i, 5, k) = { 0 otherwise @)

Many of these equations will be degenerate, i.e. c(3, j, k)
0 for all mutations. Specifically, if C(7, j) =‘Absent’, the
equation is guaranteed to be degenerate, and if C(7, j) =
‘NoCall’, the equation may or may not be degenerate.
All degenerate equations are discarded from the solu-
tion.

The resulting system of equations will be an overcon-
strained system of linear equations. This system can
be written as Aw = ¥ and can be solved by the left-
multiplying the pseudo-inverse A* = A*(AA")™! on both
sides of the equation. The resulting weight vector w
contains the weights that minimize the squared error.

One quirk of the least squares solution is that it does
not enforce the constraint that all weights must be non-
negative. To get a least-squares solution while enforcing
the non-negativity constraint, we may reformulate our
linear system as a quadratic program with less than 4|s|
constraints and as many dummy variables. If we’re in-
terested in a least-displacement solution (i.e. minimize
lerror| instead of error?), we can make it into a lin-
ear program with less than 4|s| constraints and twice
as many dummy variables as constraints. Both of these
alternatives are more costly to solve.

4. EXPERIMENTAL RESULTS

‘We performed a series of computational experiments to
evaluate how accurately multiple mutations can identi-
fied in a mixed population subject to experimental er-

ror, and to measure the performance of our algorithms.
Below, we discuss the sources of our test data and our
results.

4.1 Test Data

To accurately simulate a real-world diagnostic applica-
tion, the library of mutations we used in our study were
derived from a large database of p53 mutations known
to cause cancers in humans. We used test data from the
World Health Organinzation’s International Agency for
Research on Cancer, Lyon, France, specifically version
R5 (June 2001) of [13], which appears to be the largest
pH3 database available.

We limited our experiments to exon 4 mutations, since
this is the largest exon with any significant number of
mutations and in principle the most challenging com-
putationally. There are 167 distinct substitutions, 22
distinct insertions, and 76 distinct deletion mutations to
exon 4 in this database. The database entries for the in-
sert mutations contained only information about where
it occurred and how long the insertion sequence was,
but not the inserted sequence itself. So each insertion
mutation in the database was modified by inserting a
random sequence of the correct length at the correct lo-
cation. (i.e. each insert mutation had a sequence chosen
at random, but those sequences were fixed and known
before the problem was started). The vast majority of
insert/delete mutations are short (length < 5), although
the longest reported deletion has length 278.

At each noise level we considered, 50 random problems
were created. Six mutations were chosen at random
for each problem. For runs requiring £ < 6 mutations,
the first £ mutations were selected. For a noise level
n and a m mutation problem, the weight was chosen
to be between n/2 and 0.6/m The base-frequency ma-
trix F' is then generated by tabulating which sequences
contribute to which basepairs and adding uniform noise
centered around the expected frequency.

4.2 Results

We ran extensive simulations on reconstructing from 1
to 6 mutations, subject to noise levels from 1% to 30%
relative error. Each time point is represented by 50
solved problems.

Our system seeks to explain the observed data in terms
of the fewest mutations possible. There may be multiple
solutions of optimal cardinality, complicating the inter-
pretation of the quality of our results. We summarize
our results in four graphs:

e Correct Mutations Identified — Figure 4(a) reports
the likelihood that a mutation in the correct an-
swer was found by at least one of the ’optimal’
solutions found by the program. These results
demonstrate that we can identify at least 90% of
present mutations even subject to a data error rate
of 5% with up to 6 mutations.



Odds that a mutation is found in at least once solution

likelihood the correct solution is among the reported solutions
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Figure 4: The likelihood that (a) a correct mutation and (b) all correct mutations are found by one
of the reported solutions. The noise introduced into the experiments varies between 1% and 20%.

o Correct Mutation Set Identified — A stronger con-
dition requires that we identify the complete set
of mutations present. Figure 4(b) returns the like-
lihood that an optimal solution found by the pro-
gram is identical to the correct answer. Our accu-
racy degrades with observed error and the number
of mutations, but we can identify the full solution
of up to 4 mutations roughly 60% of the time given
an observed error of up to 5%.

Correlation with Observed Frequency — Figure 5(a)
measures the accuracy with which we reconstruct
the weight of the mutations and wildtype. The
weights of the correct answer and optimal solu-
tions were converted to vectors and the correlation
of these vectors computed as the cosine of the an-
gle between them. When the system reported mul-
tiple optimal solutions, each was weighted equally.

We demonstrate a high correlation for up to 4 mu-
tations even subject to an observed error of up to
30%. For error rates of 5% we can accurately re-
construct the distribution even with 6 mutations.

Correlation with Observed Frequency When Muta-
tions are Known — Figure 5(b) measures the accu-
racy with which we reconstruct the weight of the
mutations and wildtype if the set-cover problem
returns the correct mutations. Correlations were
computed as in the previous section. The correla-
tion for all cases is very high, and when the noise
is less than 0.1, the correlation is within 0.05% of
the correct solution.

5. SNP GENERATION AND ANALYSIS

A single-nucleotide polymorphism (SNP) is a mutation
that differs from a wildtype by a single substitution in
one base position. An important current problem in ge-
nomics is cataloging all SNPs in a given population. As
discussed in Section 2.1, it is easy to detect SNPs when
sequencing samples sequentially. Here, we show how to
employ a pooling strategy to detect SNPs in multiple in-
dividuals through a single sequencing run. This results

in a significant increase in sequencing throughput when
compared with sequencing each individual seperately.

In our pooling strategy, we combine equal amounts of
DNA from each of the m distinct inviduals, and amplify
the region of interest using PCR. We then sequence the
resulting mixture on a frequency-sensitive machine. Our
analysis question is determining the conditions under
which the peak resulting from an SNP is distinguishable
from the background noise of the sensor.

5.1 Analysis

If we assume that at most one SNP occurs per base loca-
tion, we can look at the odds that such a mutation will
be detected. We assume that the noise of our detector is
uniform noise U(0, €) and the number m of individuals
in the mix is known.

A SNP can be detected in two different ways: by a
larger than normal measurement off the wildtype (v), or
by a smaller than normal measurement on the wildtype
(w). If v > ¢, then the only way that such a reading
could occur is if there is a SNP. If we assume the total
weight of the mixture is normalized to 1.0, a SNP in
one individual will have a measurement of 1/n before
the sensor error is added, and weight 1/n <v < 1/n+e
afterwards. If 1/n > €, the measurements from SNPs
will be measureably different than those resulting from
noise, and all SNPs will be detected correctly.

In the case that 1/n < ¢, there is a chance that a SNP

will have a measurement that is less than ¢, just as there

is a chance that the background noise will exceed 1/n.

The odds of such an occurrence are

e—1/n _ 1
€

=1-— (3)

Plv<e) = o

However, even if v < ¢, it still may be possible to detect

the presence of a mutation because of the lower w value.

Specifically, w = 1.0 — 1/n + U(0, €), so

e—1/n _ 1
€

=1-— (4)

Plw>1)= o
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This means that the odds of missing a SNP completely
is
lp_ 2 1

P(v<e)'P(w>1)=(1_en en

(5)

However, w being too small isn’t enough information
to identify which of the three off-wildtype SNPs has
occurred.

e?n?

The process for detecting multiple SNPs in a single base-
pair is basically the same as detecting a single SNP.
An elevated v value means a SNP is present, as does
a depressed w value. However depressed w will be less
likely to disambiguate the results. As shown in Figure
6, a system with two or more SNPs is more likely to be
ambiguous because the noise is more likely to interfere
than with a single SNP.

5.2 Simulation Results

‘We performed a set of experiments to confirm the math-
ematical analysis, as well try to understand how the sys-
tem behaves in unusual cases, such as multiple strains
of data having the same mutation.

For the simulations below the all candidates considered
were single-base mutations. A mixture of m different
strains was created where strains were likely to be mu-
tated with both probability 0.01 and 0.001. Noise drawn
from U(0,€) was added to the measurements to simu-
late sensor error. The measurement was then checked
to see if it was consistent with more than one set of
mutations. In that case, the measurement was declared
’ambiguous’. For example, an ambiguous measurement
might be one where the original mixture contained 1 a-
¢ mutation and 2 a-g mutations, but the measurement
was also consistent with 1 a-c and 3 a-g mutations.

Figure 7 shows that even in the case of large amounts
of sensor error, it is possible to reliably simultaneously
detect SNP variations in multiple sequences. When the
sensor noise is reduced, it may be possible to test more
than 100 sequences while detecting all SNP mutations.

6. FUTURE WORK

The most obvious future work is measuring how well
the set-cover and SNP algorithms work on real data
instead of synthetic data. Probably the most difficult
part of this will be working with a more realistic noise
model. Uniform noise models are good for analysis, but
are probably not representative of the noise in real sys-
tems. While we expect our techniques to work for other
noise models, they have yet to be tested.

One area that is gaining importance is the detection of
haplotypes instead of SNPs. Haplotypes are a combina-
tion of alleles of closely linked loci that are found in a
single chromosome, tend to be inherited together, and
in some cases can be used to determine genetic traits.
Current research suggests that haplotypes may be more
important than SNPs in determining genetic predispo-
sition, and suggest creating a map of all human haplo-
types [3].

The techniques in section 5 do not maintain any corre-
lation information between SNPs, so it is not possible
to directly obtain haplotypes in the same way. Also,
all the results are based on single runs of a sequencer.
Since the loci for haplotypes is typically larger than the
run length of a sequencer (10k+ basepairs vs. 1k base-
pairs), it is often not possible to get information about
a haplotype from a single run. To deal with this, the
haplotyping community has developed many techniques
to detect haplotypes without having to do multiple-run
sequencing [12, 7, 15]. It is not clear whether section 5
could be used in conjuction with these techniques.

However, a modification of our method can be used to
identify multiple SNPs occurring in the same individ-
ual. By combining differing amounts of DNA from each
individual, it may be possible to use the frequency out-
put of the machine to correlate SNPs. However, since
the noise of this output is high, it would mean that only
smaller pools can be simultaneously sequenced. A sec-
ond alternative would be to create multiple, redundant
pools of DNA so that each piece of DNA is sequenced
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more than once, and correlate the output between to
determine likely haplotypes. However, this would also
reduce the gains in throughput, and relies on the as-
sumption that SNPs are very rare which is not always
the case.
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