
TURING AWARD LECTURE 

COMBINATORICS, COMPLEXITY, 
AND RANDOMNESS 

The 1985 Turing Award winner presents his perspective on the development 
of the field that has come to be called theoretical computer science. 

RICHARD M. KARP 

This lecture is dedicated to the memory of my father, 
Abraham Louis Karp. 

I am honored and pleased to be the recipient of this 
year's Turing Award. As satisfying as it is to receive 
such recognition, I find that my greatest satisfaction 
as a researcher has s temmed from doing the research 
itself, and from the friendships I have formed along the 
way. I would like to roam with you through my 25 
years as a researcher in the field of combinatorial  algo- 
rithms and computational  complexity, and tell you 
about some of the concepts that have seemed important  
to me, and about some of the people who have inspired 
and influenced me. 

BEGINNINGS 
My entry into the computer field was rather accidental. 
Having graduated from Harvard College in 1955 with a 
degree in mathematics,  I was confronted with a deci- 
sion as to what to do next. Working for a living had 
little appeal, so graduate school was the obvious choice. 
One possibility was to pursue a career in mathematics,  
but the field was then in the heyday of its emphasis on 
abstraction and generality, and the concrete and appli- 
cable mathematics that I enjoyed the most seemed to 
be out of fashion. 

And so, almost by default, I entered the Ph.D. pro- 
gram at the Harvard Computation Laboratory. Most of 
the topics that were to become the bread and butter  of 
the computer science curr iculum had not even been 
thought of then, and so I took an eclectic collection of 
courses: switching theory, numerical  analysis, applied 
mathematics,  probabili ty and statistics, operations re- 
search, electronics, and mathematical  linguistics. While 
the curr iculum left much to be desired in depth and 
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coherence, there was a very special spirit in the air; we 
knew that we were witnessing the birth of a new scien- 
tific discipline centered on the computer. I discovered 
that I found beauty and elegance in the structure of 
algorithms, and that I had a knack for the discrete 
mathematics that formed the basis for the study of 
computers and computation. In short, I had stumbled 
more or less by accident into a field that was very 
much to my liking. 

EASY AND HARD COMBINATORIAL PROBLEMS 
Ever since those early days, I have had a special inter- 
est in combinatorial  search prob lems- -prob lems  that 
can be l ikened to jigsaw puzzles where one has to as- 
semble the parts of a structure in a part icular  way. 
Such problems involve searching through a finite, but 
extremely large, s tructured set of possible solutions, 
patterns, or arrangements, in order to find one that 
satisfies a stated set of conditions. Some examples of 
such problems are the placement  and interconnection 
of components on an integrated circuit chip, the sched- 
uling of the National Football League, and the routing 
of a fleet of school buses. 

Within any one of these combinatorial  puzzles lurks 
the possibility of a combinatorial  explosion. Because of 
the vast, furiously growing number  of possibilities that 
have to be searched through, a massive amount  of com- 
putation may be encountered unless some subtlety is 
used in searching through the space of possible solu- 
tions. I'd like to begin the technical  part of this talk by 
telling you about some of my first encounters with 
combinatorial explosions. 

My first defeat at the hands of this phenomenon 
came soon after I joined the IBM Yorktown Heights 
Research Center in 1959. I was assigned to a group 
headed by J. P. Roth, a distinguished algebraic topolo- 
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gist who had made notable contributions to switching 
theory. Our group's mission was to create a computer 
program for the automatic synthesis of switching cir- 
cuits. The input to the program was a set of Boolean 
formulas specifying how the outputs of the circuit were 
to depend on the inputs; the program was supposed to 
generate a circuit to do the job using a min imum num- 
ber of logic gates. Figure 1 shows a circuit for the ma- 
jority function of three variables; the output is high 
whenever  at least two of the three variables x, y, and z 
are high. 

The program we designed contained many elegant 
shortcuts and refinements, but its fundamental  mecha- 
nism was simply to enumerate the possible circuits in 
order of increasing cost. The number  of circuits that the 
program had to comb through grew at a furious rate as 
the number of input variables increased, and as a con- 
sequence, we could never progress beyond the solution 
of toy problems. Today, our optimism in even trying an 
enumerative approach may seem utterly naive, but we 
are not the only ones to have fallen into this trap; much 
of the work on automatic theorem proving over the 
past two decades has begun with an initial surge of 
excitement as toy problems were successfully solved, 
followed by disil lusionment as the full seriousness 
of the combinatorial explosion phenomenon became 
apparent. 

Around this same time, I began working on the trav- 
eling salesman problem with Michael Held of IBM. This 
problem takes its name from the situation of a salesman 
who wishes to visit all the cities in his territory, begin- 
ning and ending at his home city, while minimizing his 
total travel cost. In the special case where the cities are 
points in the plane and travel cost is equated with 
Euclidean distance, the problem is simply to find a 
polygon of minimum perimeter  passing through all 
the cities (see Figure 2). A few years earlier, George 
Dantzig~ Raymond Fulkerson, and Selmer Johnson at 
the Rand Corporation, using a mixture of manual  and 
automatic computation, had succeeded in solving a 49- 
city problem, and we hoped to break their  record. 

Despite its innocent appearance, the traveling sales- 
man problem has the potential for a combinatorial  ex- 
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FIGURE 2. A Traveling Salesman Tour 

plosion, since the number  of possible tours through n 
cities in the plane is (n - 1)!/2, a very rapidly growing 
function of n. For example, when the number  of cities 
is only 20, the time required for a brute-force enumera-  
tion of all possible tours, at the rate of a million tours 
per second, would be more than a thousand years. 

Held and I tried a number  of approaches to the trav- 
eling salesman problem. We began by rediscovering a 
shortcut based on dynamic programming that had origi- 
nally been pointed out by Richard Bellman. The dy- 
namic programming method reduced the search time to 
n22 ", but this function also blows up explosively, and 
the method is l imited in practice to problems with at 
most 16 cities. For a while, we gave up on the idea of 
solving the problem exactly, and exper imented with 
local search methods that tend to yield good, but not 
optimal, tours. With these methods, one starts with a 
tour and repeatedly looks for local changes that will 
improve it. The process continues until a tour is found 
that cannot he improved by any such local change. 
Our local improvement  methods were rather clumsy, 
and much better ones were later found by Shen Lin 
and Brian Kernighan at Bell Labs. Such quick-and-dir ty 
methods are often quite useful in practice if a strictly 
optimal solution is not required, hut one can i~ever 
guarantee how well they will perform. 

We then began to investigate branch-and-bound 
methods. Such methods are essentially enumerat ive in 
nature, but they gain efficiency by pruning away large 
parts of the space of possible solutions. This is done by 
computing a lower bound on the cost of every tour that 
includes certain links and fails to include certain oth- 
ers; if the lower bound is sufficiently large, it will fol- 
low that no such tour can be optimal. After a long 
series of unsuccessful experiments,  Held and I stum- 
bled upon a powerful method of computing lower 
bounds. This bounding technique allowed us to prune 
the search severely, so that we were able to solve prob- 
lems with as many as 65 cities. I don't  think any of my 
theoretical results have provided as great a thrill as the 
sight of the numbers pouring out of the computer on 
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THE DEVELOPMENT OF COMBINATORIAL OPTIMIZATION AND 
COMPUTATIONAL COMPLEXITY THEORY 

1900 
Hilbert's fundamental questions: 
Is mathematics complete, 
consistent, and decidable? 

Hilbert's 10th Problem: Are there 
general decision procedures for 
Diophantine equations? 

1937 
Turing introduces abstract model 
of digital computer, and proves 
nndecidability of Halting 
Problem and decision problem 
for first-order logic. 

1947 
Dantzig devises simplex method 
for linear programming problem. 

1900 1930 

1930s 
Computability pioneers. 

I I I I 
1940 1950 

the night Held and I first tested our bounding method. 
Later we found out that our method was a variant of an 
old technique called Lagrangian relaxation, which is 
now used routinely for the construction of lower 
bounds within branch-and-bound methods. 

For a brief time, our program was the world cham- 
pion traveling-salesman-problem solver, but nowadays 
much more impressive programs exist. They are based 
on a technique called polyhedral  combinatorics, which 
attempts to convert instances of the traveling salesman 
problem to very large l inear programming problems. 
Such methods can solve problems with over 300 cities, 
but the approach does not completely el iminate combi- 
natorial explosions, since the time required to solve a 
problem continues to grow exponential ly  as a function 
of the number  of cities. 

The traveling salesman problem has remained a fas- 
cinating enigma. A book of more than 400 pages has 
recently been published, covering much of what  is 

known about this elusive problem. Later, we, will dis- 
cuss the theory of NP-completeness, which provides 
evidence that the traveling salesman problem is inher-  
ently intractable, so that no amount  of clever algorithm 
design can ever completely defeat the potential  for 
combinatorial  explosions that lurks within this prob- 
lem. 

During the early 1960s, the IBM Research Laboratory 
at Yorktown Heights had a superb group of combinato- 
rial mathematicians,  and under  their  tutelage, I learned 
important  techniques for solving certain combinatorial  
problems without  running  into combinatorial  explo- 
sions. For example,  I became familiar with Dantzig's 
famous simplex algorithm for l inear programming. The 
linear programming problem is to find the point on a 
polyhedron in a high-dimensional  space that is closest 
to a given external  hyperplane (a polyhedron is the 
generalization of a polygon in two-dimensional  space or 
an ordinary polyhedral  body in three-dimensional  
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1965 
"Complexity" defined by 
Hartmanis and Stearns-- 
introduce framework for 
computational complexity using 
abstract machines--obtain 
results about structure of 
complexity classes. 

Edmonds defines "good" 
algorithm as one with running 
time bounded by polynomial 
function the size of input. Found 
such an algorithm for Matching 
Problem. 

1957 
Ford and Fulkerson et al. give 
efficient algorithms for solving 
network flow problems. 

1 
1960 

1959 
Rabin, McNaughton, Yamada: 
First glimmerings of 
computational complexity 
theory. 

1970s 
Search for near-optimal 
solutions based on upper bound 
on cost ratio, 

1970 

1971 
Building on work of Davis, 
Robinson, and Putman, 
Matiyasevic solves HiIbert's 10th: 
No general decision procedure 
exists for solving Diophantine 
equations. 

Cook's Theorem: All NP 
Problems polynomial-time 
reducible to Satisfiability 
Problem. 

Levin also discoversthis 
principle. 

1980 

1976 
Rabin et al. launch study of 
randomized algorithms. 

1975 
Karp departs from worst-case 
paradigm and investigates 
prohabilistic analysis of 
combinatorial algorithms. 

1973 
Meyer, Stockmeyer et al. prove 
intractability of certain decision 
problems in logic and automata 
theory. 

1972 
Karp uses polynomial-time 
reducibility to show that 21 
problems of packing, matching, 
covering, etc., are NP-complete. 

=1980 
Borgwardt, Smale et al. 
conduct probabilistic analysis 
of simplex algorithm. 

1984 
Karmarkar devises theoretically 
efficient and practical linear 

mming a gorithm. 

I 

space, and a hyperp lane  is the genera l iza t ion of a l ine 
in the plane or a plane in th ree -d imens iona l  space). 
The  closest point  to the hyperp lane  is a lways a corner  
point, or vertex,  of the po lyhedron  (see Figure 3). In 
practice,  the s implex  me thod  can be depended  on to 
find the desired ver tex  very  quickly.  

I also learned the beaut i ful  ne twork  flow theory  of 
Lester Ford and Fulkerson.  This  theory  is conce rned  
wi th  the rate at wh ich  a commodi ty ,  such as oil, gas, 
electricity,  or bits of informat ion,  can be p u m p e d  
through a ne twork  in wh ich  each l ink has a capaci ty  
that l imits the rate at wh ich  it can t ransmi t  the com- 
modity.  Many combinator ia l  problems that  at first sight 
seem to have  no relat ion to commodi t i es  f lowing 
through ne tworks  can be recast  as ne twork  flow prob- 
lems, and the theory  enables  such problems to be 
solved elegantly and efficiently using no a r i thmet ic  
operat ions except  addi t ion and subtraction.  

Let me i l lustrate this beaut i ful  theory  by ske tching  

the so-called Hungar ian  a lgor i thm for solving a combi-  
natorial  opt imizat ion  problem k n o w n  as the marr iage  
problem. This  problem concerns  a society consist ing of 
n m e n  and n women.  The  p rob lem is to pair up the m e n  
and w o m e n  in a one- to-one fashion at m i n i m u m  cost, 
where  a g iven cost is imputed  to each pairing. These  
costs are given by an n x n matr ix,  in wh ich  each row 
corresponds to one of the m e n  and each co lumn  to one 
of the women.  In general,  each pair ing of the n m e n  
wi th  the n w o m e n  corresponds to a choice  of n entr ies  
from the matr ix,  no two of wh ich  are in the same row 
or column;  the cost of a pair ing is the  sum of the n 
entries that  are chosen.  The  n u m b e r  of possible pair- 
ings is nt, a funct ion that  grows so rapidly that  brute-  
force enumera t i on  will  be of li t t le avail. Figure 4a 
shows a 3 x 3 example  in wh ich  we  see that the cost of 
pairing man  3 wi th  w o m a n  2 is equal  to 9, the ent ry  in 
the third row and second c o l u m n  of the g iven matrix.  

The  key observat ion under ly ing  the Hungar ian  algo- 

February 1986 Volume 29 Number 2 Communications of the ACM 101 



Turing Award Lecture 

/ \ 

FIGURE 3. The Linear Programming Problem 

r i thm is that the problem remains unchanged if the 
same constant is subtracted from all the entries in one 
part icular  row of the matrix. Using this freedom to alter 
the matrix,  the algorithm tries to create a matr ix in 
which all the entries are nonnegative, so that every 
complete pairing has a nonnegative total cost, and in 
which there exists a complete pairing whose entries are 
all zero. Such a pairing is clearly optimal for the cost 
matrix that has been created, and it is optimal for the 
original cost matrix as well. In our 3 x 3 example,  the 
algorithm starts by subtracting the least entry in each 
row from all the entries in that row, thereby creating a 
matrix in which each row contains at least one zero 
(Figure 4b). Then, to create a zero in each column, the 
algorithm subtracts, from all entries in each column 
that does not already contain a zero, the least entry in 
that column (Figure 4c}. In this example,  all the zeros 
in the resulting matr ix lie in the first row or the third 
column; since a complete pairing contains only one en- 
try from each row or column, it is not yet possible to 
find a complete pairing consisting entirely of zero en- 
tries. To create such a pairing, it is necessary to create a 
zero in the lower left part of the matrix. In this case, 
the algorithm creates such a zero by subtracting I from 
the first and second columns and adding I to the first 
row (Figure 4d). In the resulting nonnegative matrix, 
the three circled entries give a complete pairing of cost 

[342178 99 51 [12782 !14 [000] 661 2 O0 [(~15~0 ~] 
(a) (b) (c) (d) 

FIGURE 4. An Instance of the Marriage Problem 

zero, and this pairing is therefore optimal, both in the 
final matrix and in the original one. 

This algorithm is far subtler and more efficient than 
brute-force enumeration.  The time required for it to 
solve the marriage problem grows only as the third 
power of n, the number  of rows and columns of the 
matrix, and as a consequence, it is possible to solve 
examples with thousands of rows and columns. 

The generation of researchers who founded linear 
programming theory and network flow theory had a 
pragmatic att i tude toward issues of computat ional  com- 
plexity: An algorithm was considered efficient if it ran 
fast enough in practice, and it was not especially impor- 
tant to prove it was fast in all possible cases. In 1967 I 
noticed that the standard algorithm for solving certain 
network flow problems had a theoretical flaw, which 
caused it to run very slowly on certain contrived exam- 
ples. I found that it was not difficult to correct the flaw, 
and I gave a talk about my result to the combinatorics 
seminar at Princeton. The Princeton people informed 
me that Jack Edmonds, a researcher at the National 
Bureau of Standards, had presented very similar results 
at the same seminar  during the previous week. 

As a result of this coincidence, Edmonds and I began 
to work together on the theoretical efficiency of net- 
work flow algorithms, and in due course, we produced 
a joint paper. But the main effect of our collaboration 
was to reinforce some ideas about computat ional  com- 
plexity that I was already groping toward and that were 
to have a powerful influence on the future course of 
my research. Edmonds was a wonderful  craftsman who 
had used ideas related to l inear programming to de- 
velop amazing algorithms for a number  of combinato- 
rial problems. But, in addit ion to his skill at construct- 
ing algorithms, he was ahead of his contemporaries in 
another important  respect: He had developed a clear 
and precise understanding of what  it meant  for an algo- 
ri thm to be efficient. His papers expounded the point of 
view that an algorithm should be considered "good" if 
its running time is bounded by a polynomial  function of 
the size of the input, rather than, say, by an exponen- 
tial function. For example,  according to Edmonds's  con- 
cept, the Hungarian algorithm for the marriage problem 
is a good algorithm because its running time grows as 
the third power of the size of the input. But as far as we 
know there may be no good algorithm for the traveling 
salesman problem, because all the algorithms We have 
tried experience an exponential  growth in their run- 
ning time as a function of problem size. Edmonds's  defi- 
nition gave us a clear idea of how to define the bound- 
ary between easy and hard combinatorial  problems and 
opened up for the first time, at least in my thinking, the 
possibility that we might someday come up with a 
theorem that would prove or disprove the conjecture 
that the traveling salesman problem is inherent ly  
intractable. 

THE ROAD TO NP-COMPLETENESS 
Along with the developments in the field of combinato- 
rial algorithms, a second major stream of research was 
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gathering force during the 1960s--computational com- 
plexity theory. The foundations for this subject were 
laid in the 1930s by a group of logicians, including 
Alan Turing, who were concerned with the exis- 
tence or nonexistence of automatic procedures for de- 
ciding whether mathematical statements were true or 
false. 

Turing and the other pioneers of computability the- 
ory were the first to prove that certain well-defined 
mathematical problems were undecidable, that is, that, 
in principle, there could not exist an algorithm capable 
of solving all instances of such problems. The first ex- 
ample of such a problem was the Halting Problem, 
which is essentially a question about the debugging of 
computer programs. The input to the Halting Problem 
is a computer program, together with its input data; the 
problem is to decide whether the program will even- 
tually halt. How could there fail to be an algorithm for 
such a well-defined problem? The difficulty arises be- 
cause of the possibility of unbounded search. The ob- 
vious solution is simply to run the program until it 
halts. But at what point does it become logical to give 
up, to decide that the program isn't going to halt? There 
seems to be no way to set a limit on the amount of 
search needed. Using a technique called diagonaliza- 
tion, Turing constructed a proof that no algorithm ex- 
ists that can successfully handle all instances of the 
Halting Problem. 

Over the years, undecidable problems were found in 
almost every branch of mathematics. An example from 
number theory is the problem of solving Diophantine 
equations: Given a polynomial equation such as 

4xy 2 -I- 2xy2z 3 - llx3y2z 2 = -1164, 

is there a solution in integers? The problem of finding a 
general decision procedure for solving such Diophan- 
tine equations was first posed by David Hilbert in 1900, 
and it came to be known as Hilbert's Tenth Problem. 
The problem remained open until 1971, when it was 
proved that no such decision procedure can exist. 

One of the fundamental tools used in demarcating 
the boundary between solvable and unsolvable prob- 
lems is the concept of reducibility, which was first 
brought into prominence through the work of logician 
Emil Post. Problem A is said to be reducible to problem 
B if, given a subroutine capable of solving problem B, 
one can construct an algorithm to solve problem A. As 
an example, a landmark result is that the Halting Prob- 
lem is reducible to Hilbert's Tenth Problem (see Figure 
5). It follows that Hilbert's Tenth Problem must be un- 
decidable, since otherwise we would be able to use this 
reduction to derive an algorithm for the Halting Prob- 
lem, which is known to be undecidable. The concept of 
reducibility will come up again when we discuss NP- 
completeness and the P : NP problem. 

Another important theme that complexity theory 
inherited from computability theory is the distinction 
between the ability to solve a problem and the ability 
to check a solution. Even though there is no general 
method to find a solution to a Diophantine equation, it 

FIGURE 5. 
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The Halting Problem Is Reducible to Hilbert's Tenth Problem 

is easy to check a proposed solution. For example, to 
check whether x = 3, y = 2, z = - 1  constitutes a solu- 
tion to the Diophantine equation given above, one 
merely plugs in the given values and does a little arith- 
metic. As we will see later, the distinction between 
solving and checking is what the P : NP problem is all 
about. 

Some of the most enduring branches of theoretical 
computer science have their origins in the abstract ma- 
chines and other formalisms of computability theory. 
One of the most important of these branches is compu- 
tational complexity theory. Instead of simply asking 
whether a problem is decidable at all, complexity the- 
ory asks how difficult it is to solve the problem. In 
other words, complexity theory is concerned with the 
capabilities of universal computing devices such as the 
Turing machine when restrictions are placed on their 
execution time or on the amount of memory they may 
use. The first glimmerings of complexity theory can be 
found in papers published in 1959 and 1960 by Michael 
Rabin and by Robert McNaughton and Hideo Yamada, 
but it is the 1965 paper by Juris Hartmanis and Richard 
Stearns that marks the beginning of the modern era of 
complexity theory. Using the Turing machine as their 
model of an abstract computer, Hartmanis and Stearns 
provided a precise definition of the "complexity class" 
consisting of all problems solvable in a number of steps 
bounded by some given function of the input length n. 
Adapting the diagonalization technique that Turing had 
used to prove the undecidability of the Halting Prob- 
lem, they proved many interesting results about the 
structure of complexity classes. All of us who read their 
paper could not fail to realize that we now had a satis- 
factory formal framework for pursuing the questions 
that Edmonds had raised earlier in an intuitive fash- 
ion-ques t ions  about whether, for instance, the travel- 
ing salesman problem is solvable in polynomial time. 

In that same year, I learned computability theory 
from a superb book by Hartley Rogers, who had been 
my teacher at Harvard. I remember wondering at the 
time whether the concept of reducibility, which was so 
central in computability theory, might also have a role 
to play in complexity theory, but I did not see how to 
make the connection. Around the same time, Michael 
Rabin, who was to receive the Turing Award in 1976, 
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was a visitor at the IBM Research Laboratory at York- 
town Heights, on leave from the Hebrew University in 
Jerusalem. We both happened to live in the same apart- 
ment building on the outskirts of New York City, and 
we fell into the habit of sharing the long commute to 
Yorktown Heights. Rabin is a profoundly original 
thinker and one of the founders of both automata 
theory and complexity theory, and through my daily 
discussions with him along the Sawmill River Parkway, 
I gained a much broader perspective on logic, computa- 
bility theory, and the theory of abstract computing ma- 
chines. 

In 1968, perhaps influenced by the general social un- 
rest that gripped the nation, I decided to move to the 
University of California at Berkeley, where the action 
was. The years at IBM had been crucial for my develop- 
ment as a scientist. The opportunity to work with such 
outstanding scientists as Alan Hoffman, Raymond 
Miller, Arnold Rosenberg, and Shmuel Winograd was 
simply priceless. My new circle of colleagues included 
Michael Harrison, a distinguished language theorist 
who had recruited me to Berkeley, Eugene Lawler, an 
expert on combinatorial optimization, Manuel Blum, a 
founder of complexity theory who has gone on to do 
outstanding work at the interface between number the- 
ory and cryptography, and Stephen Cook, whose work 
in complexity theory was to influence me so greatly a 
few years later. In the mathematics department, there 
were Julia Robinson, whose work on Hilbert's Tenth 
Problem was soon to bear fruit, Robert Solovay, a fa- 
mous logician who later discovered an important ran- 
domized algorithm for testing whether a number is 
prime, and Steve Smale, whose ground-breaking work 
on the probabilistic analysis of linear programming al- 
gorithms was to influence me some years later. And 
across the Bay at Stanford were Dantzig, the father of 
linear programming, Donald Knuth, who founded the 
fields of data structures and analysis of algorithms, as 
well as Robert Tarjan, then a graduate student, and 
John Hopcroft, a sabbatical visitor from Cornell, who 
were brilliantly applying data structure techniques to 
the analysis of graph algorithms. 

In 1971 Cook, who by then had moved to the Univer- 
sity of Toronto, published his historic paper "On the 
Complexity of Theorem-Proving Procedures." Cook dis- 
cussed the classes of problems that we now call P and 
NP, and introduced the concept that we now refer to as 
NP-completeness. Informally, the class P consists 
of all those problems that can be solved in polynomial 
time. Thus the marriage problem lies in P because 
the Hungarian algorithm solves an instance of size n 
in about n 3 steps, but the traveling salesman problem 
appears not to lie in P, since every known method 
of solving it requires exponential time. If we accept 
the premise that a computational problem is not trac- 
table unless there is a polynomial-time algorithm 
to solve it, then all the tractable problems lie in P. The 
class NP consists of all those problems for which a pro- 
posed solution can be checked in polynomial time. For 
example, consider a version of the traveling sales- 

man problem in which the input data consist of the dis- 
tances between all pairs of cities, together with a "tar- 
get number" T, and the task is to determine whether 
there exists a tour of length less than or equal to 
T. It appears to be extremely difficult to determine 
whether such a tour exists, but if a proposed tour is 
given to us, we can easily check whether its length 
is less than or equal to T; therefore, this version of 
the traveling salesman problem lies in the class NP. 
Similarly, through the device of introducing a target 
number T, all the combinatorial optimization prob- 
lems normally considered in the  fields of commerce, 
science, and engineering have versions that lie in the 
class NP. 

So NP is the area into which combinatorial problems 
typically fall; within NP lies P, the class of problems 
that have efficient solutions. A fundamental question 
is, What is the relationship between the class P and the 
class NP? It is clear that P is a subset of NP, and the 
question that Cook drew attention to is whether P and 
NP might be the same class. If P were equal to NP, 
there would be astounding consequences: It would 
mean that every problem for which solutions are easy 
to check would also be easy to solve; it would mean 
that, whenever a theorem had a short proof, a uniform 
procedure would be able to find that proof quickly; it 
would mean that all the usual combinatorial optimiza- 
tion problems would be solvable in polynomial time. In 
short, it would mean that the curse of combinatorial 
explosions could be eradicated. But, despite all this 
heuristic evidence that it would be too good to be true 
if P and NP were equal, no proof that P ~ NP has ever 
been found, and some experts even believe that no 
proof will ever be found. 

The most important achievement of Cook's paper was 
to show that P = NP if and only if a particular compu- 
tational problem called the Satisfiability Problem lies in 
P. The Satisfiability Problem comes from mathematical 
logic and has applications in switching theory, but it 
can be stated as a simple combinatorial puzzle: Given 
several sequences of upper- and lowercase letters, is it 
possible to select a letter from each sequence without 
selecting both the upper- and lowercase versions of any 
letter? For example, if the sequences are Abc, BC, aB, 
and ac it is possible to choose A from the first sequence, 
B from the second and third, and c from the fourth; 
note that the same letter can be chosen more than 
once, provided we do not choose both its uppercase and 
lowercase versions. An example where there is no way 
to make the required selections is given by the four 
sequences AB, Ab, aB, and ab. 

The Satisfiability Problem is clearly in NP, since it is 
easy to check whether a proposed selection of letters 
satisfies the conditions of the problem. Cook proved 
that, if the Satisfiability Problem is solvable in polyno- 
mial time, then every problem in NP is solvable in 
polynomial time, so that P = NP. Thus we see that this 
seemingly bizarre and inconsequential problem is an 
archetypal combinatorial problem; it holds the key to 
the efficient solution of all problems in NP. 
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Cook's proof was based on the concept of reducibility 
that we encountered earlier in our discussion of com- 
putability theory. He showed that any instance of a 
problem in NP can be transformed into a corresporiding 
instance of the Satisfiability Problem in such a way that 
the original has a solution if and only if the satisfiabil- 
ity instance does. Moreover, this translation can be 
accomplished in polynomial time. In other words, 
the Satisfiability Problem is general enough to capture 
the structure of any problem in NP. It follows that, if 
we could solve the Satisfiability Problem in polynomial 
time, then we would be able to construct a polynomial- 
time algorithm to solve any problem in NP. This algo- 
rithm would consist of two parts: a polynomial-time 
translation procedure that converts instances of the 
given problem into instances of the Satisfiability Prob- 
lem, and a polynomial-time subroutine to solve the 
Satisfiability Problem itself (see Figure 6). 

Upon reading Cook's paper, I realized at once that his 
concept of an archetypal combinatorial problem was a 
formalization of an idea that had long been part of the 
folklore of combinatorial optimization. Workers in that 
field knew that the integer programming problem, 
which is essentially the problem of deciding whether a 
system of linear inequalities has a solution in integers, 
was general enough to express the constraints of any of 
the commonly encountered combinatorial optimization 
problems. Dantzig had published a paper on that theme 
in 1960. Because Cook was interested in theorem prov- 
ing rather than combinatorial optimization, he had cho- 
sen a different archetypal problem, but the basic idea 
was the same. However, there was a key difference: By 
using the apparatus of complexity theory, Cook had 
created a framework within which the archetypal na- 
ture of a given problem could become a theorem, rather 
than an informal thesis. Interestingly, Leonid Levin, 
who was then in Leningrad and is now a professor at 
Boston University, independently discovered essen- 
tially the same set of ideas. His archetypal problem had 
to do with tilings of finite regions of the plane with 
dominoes. 

I decided to investigate whether certain classic com- 
binatorial problems, long believed to be intractable, 

Traveling salesman problem 

Subroutine for 
converting 

" problem 
to Satisfiability 
Problem 

i 
Satisfiability 

FIGURE 6. The Traveling Salesman Problem Is Polynomial-Time 
Reducible to the Satisfiability Problem 

were also archetypal in Cook's sense. I called such 
problems "polynomial complete," but that term became 
superseded by the more precise term "NP-complete." A 
problem is NP-complete if it lies in the class NP, and 
every problem in NP is polynomial-time reducible to it. 
Thus, by Cook's theorem, the Satisfiability Problem is 
NP-complete. To prove that a given problem in NP is 
NP-complete, it suffices to show that some problem 
already known to be NP-complete is polynomial-time 
reducible to the given problem. By constructing a series 
of polynomial-time reductions, I showed that most of 
the classical problems of packing, covering, matching, 
partitioning, routing, and scheduling that arise in com- 
binatorial optimization are NP-complete. I presented 
these results in 1972 in a paper called "Reducibility 
among Combinatorial Problems." My early results were 
quickly refined and extended by other workers, and in 
the next few years, hundreds of different problems, 
arising in Virtually every field where computation is 
done, were shown to be NP-complete. 

COPING WITH NP-COMPLETE PROBLEMS 
I was rewarded for my research on NP-complete prob- 
lems with an administrative post. From i973 to 1975, I 
headed the newly formed Computer Science Division at 
Berkeley, and my duties left me little time for research. 
As a result, I sat on the sidelines during a very active 
period, during which many examples of NP-complete 
problems were found, and the first attempts to get 
around the negative implications of NP-completeness 
got under way. 

The NP-completeness results proved in the early 
1970s showed that, unless P = NP, the great majority of 
the problems of combinatorial optimization that arise in 
commerce, science, and engineering are intractable: No 
methods for their solution can completely evade combi- 
natorial explosions. How, then, are we to cope with 
such problems in practice? One possible approach 
stems from the fact that near-optimal solutions will 
ofteri be good enough: A traveling salesman will pr0b~i- 
bly be satisfied with a tour that is a few percent longer 
than the optimal one. Pursuing this approach, research- 
ers began to search for polynomial-time algorithms that 
were guaranteed to produce near-optimal solutions to 
NP-complete combinatorial optimization problems. In 
most cases, the performance guarantee for the approxi- 
mation algorithm was in the form of an upper bound on 
the ratio between the cost of the solution produced by 
the algorithm and the cost of an optimal Solution. 

Some of the most interesting work On approximation 
algorithms With performance guarantees concerned the 
one-dimensional bin-packing problem. In this problem, 
a collection of items of various sizes must be packed 
into binS, all of which have the same capacity. The goal 
is.to minimize the number of bins used for the packing, 
subject to the constraint that the sum of the sizes of the 
items packed into any bin may not exceed the bin ca- 
pacity. During the mid 1970s, a series of papers on ap- 
proximation algorithms for bin packing culminated in 
David Johnson's analysis of the first-fit-decreasing algo- 
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rithm. In this simple algorithm, the.items are consid- 
ered in decreasing order of their sizes, and each item in 
turn is placed in the first bin that can accept it. In the 
example in Figure 7, for instance, there are four bins 
each with a capacity of 10, and eight items ranging in 
size from 2 to 8. Johnson showed that this simple 
method was guaranteed to achieve a relative error of at 
most 2/9; in other words, the number of bins required 
was never more than about 22 percent greater than the 
number of bins in an optimal solution. Several years 
later, these results were improved still further, and it 
was eventually shown that the relative error could be 
made as small as one liked, although the polynomial- 
time algorithms required for this purpose lacked the 
simplicity of the first-fit-decreasing algorithm that 
Johnson analyzed. 

The research on polynomiabtime approximation 
algorithms revealed interesting distinctions among the 
NP-complete combinatorial optimization problems. For 
some problems, the relative error can be made as small 
as one likes; for others, it can be brought down to a 
certain level~ but seemingly no further; other problems 
have resisted all attempts to find an algorithm with 
bounded rela[ive error; and finally, there are certain 
problems for which the existence of a polynomial-time 
approximation algorithm with bounded relative error 
would imply that P = NP. 

During the sabbatical year that followed my term as 
an administrator, I began to reflect on the gap between 
theory and practice in the field of combinatorial optimi- 
zation. On the theoretical side, the news was bleak. 
Nearly all the problems one wanted to solve were NP- 
complete, and in most cases, polynomial-time approxi- 
mation algorithms could not provide the ki, nds of per- 
formance guarantees that would be useful in practice. 
Nevertheless, there were many algorithms that seemed 
to work perfectly well in practice, even though they 
lacked a theoretical pedigree. For example, Lin and 
Kernighan had developed a very successful local im- 
provement strategy for the traveling salesman problem. 
Their algorithm simply started with a random tour and 
kept improving it by adding and deleting a few links, 
until a tour was eventually created that could not be 
improved by such local changes. On contrived in- 

2 

FIGURE 7. A Packing Created by the First-Fit Decreasing Algorithm 

stances, their algorithm performed disastrously, but in 
practical instances, it could be relied on to give nearly 
optimal solutions. A similar situation prevailed for the 
simplex algorithm, one of the most important of all 
computational methods: It reliably solved the large lin- 
ear programming problems that arose in applications, 
despite the fact that certain artificially constructed 
examples caused it to run for an exponential number of 
steps. 

It seemed that the success of such inexact or rule-of- 
thumb algorithms was an empirical phenomenon that 
needed to be explained. And it further seemed that the 
explanation of this phenomenon would inevitably re- 
quire a departure from the traditional paradigms of 
complexity theory, which evaluate an algorithm ac- 
cording to its performance on the worst possible input 
that can be presented to it. The traditional worst-case 
analysis--the dominant strain in complexity theory-- 
corresponds to a scenario in which the instances of a 
problem to be solved are constructed by an infinitely 
intelligent adversary who knows the structure of the 
algorithm and chooses inputs that will embarrass it tO 
the maximal extent. This scenario leads to the conclu- 
sion that the simplex algorithm and the Lin-Kernighan 
algorithm are hopelessly defective. I began to pursue 
another approach, in which the inputs are assumed to 
come from a user who simply draws his instances from 
some reasonable probability distribution, attempting 
neither to foil nor to help the algorithm. 

In 1975 I decided to bite the bullet and commit my- 
self to an investigation of the probabilistic analysis of 
combinatorial algorithms. I must say that this decision 
required some courage, since this line of research had 
its detractors, who pointed out quite correctly that 
there was no way to know what inputs were going to 
be presented to an algorithm, and that the best kind of 
guarantees, if one could get them, would be worst-case 
guarantees. I felt, however, that in the case of NP- 
complete problems we weren't going to get the worst- 
case guarantees we wanted, and that the probabilistic 
approach was the best way and perhaps the only way 
to understand why heuristic combinatorial algorithms 
worked so well in practice. 

Probabilistic analysi s starts from the assumption that 
the instances of a problem are drawn from a specified 
probability distribution. In the case of the traveling 
salesman problem, for example, one possible assump- 
tion is that the locations of the n cities are drawn inde- 
pendently from the uniform distribution over the unit 
square. Subject to this assumption, we can study the 
probability distribution of the length of the optimal tour 
or the length of the tour produced by a particular algo- 
rithm. Ideally, the goal is to prove that some simple 
algorithm produces optimal or near-optimal solutions 
with high probability. Of course, such a result is mean- 
ingful only if the assumed probability distribution of 
problem instances bears some resemblance to the popu- 
lation of instances that arise in real life, or if the proba- 
bilistic analysis is robust enough to be valid for a wide 
range of probability distributions. 
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Among the mos t striking phenomena of probability 
theory are the laws of large numbers, which tell us that 
the cumulative effect of a large number of random 
events is highly predictable, even though the outcomes 
of the individual events are highly unpredictable. For 
example, we can confidently predict that, in a long 
series of flips of a fair coin, about half the outcomes 
will be heads. Probabilistic analysis has revealed that 
the same phenomenon governs the behavior of many 
combinatorial optimization algorithms when the input 
data are drawn from a simple probability distribution: 
With very high probability, the execution of the algo- 
rithm evolves in a highly predictable fashion, and the 
solution produced is nearly optimal. For example, a 

!960 paper by Beardwood, Halton, and Hammersley 
shows that, if the n cities in a traveling salesman prob- 
lem are drawn independently from the uniform distri- 
bution over the unit square, then, wher~ n is very large, 
the length of the optimal tour will almost surely be 
very close to a certain absolute constant times the 
square root of the number of cities. Motivated by their 
result, I showed that, when the number of cities i s  
extremely large, a simple divide-and-conquer algorithm 
will almost surely produce a tour whose length is very 
close to the length of an optimal tour (see Figure 81 . 
The algorithm starts byparti t ioning the region where 
the cities lie into rectangles, each of which contains a 
small number of cities. It then constructs an optimal 

I i 

(a) (b) 

(c) (d) 

FIGURE 8. A Divide-and-Conquer Algorithm for the Traveling Salesman Problem in the Plane 
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tour through the cities in each rectangle. The union of 
all these little tours closely resembles an overall travel- 
ing salesman tour, but differs from it because of extra 
visits to those cities that lie on the boundaries of the 
rectangles. Finally, the algorithm performs a kind of 
local surgery to eliminate these redundant visits and 
produce a tour. 

Many further examples can be cited in which simple 
approximation algorithms almost surely give near- 
optimal solutions to random large instances of NP- 
complete optimization problems. For example, my stu- 
dent Sally Floyd, building on earlier work on bin pack- 
ing by Bentley, Johnson, Leighton, McGeoch, and 
McGeoch, recently showed that, if the items to be 
packed are drawn independently from the uniform dis- 
tribution over the interval (0, 1/2), then, no matter how 
many items there are, the first-fit decreasing algorithm 
will almost surely produce a packing with less than 10 
bins worth of wasted space. 

Some of the most notable applications of probabilistic 
analysis have been to the linear programming problem. 
Geometrically, this problem amounts to finding the ver- 
tex of a polyhedron closest to some external hyper- 
plane. Algebraically, it is equivalent to m!nimizing a 
linear function subject to linear inequality constraints. 
The linear function measures the distance to the hyper- 
plane, and the linear inequality constraints correspond 
to the hyperplanes that bound the polyhedron. 

The simplex algorithm for the linear programming 
problem is a hill-climbing method. It repeatedly slides 
from vertex to neighboring vertex, always moving 
closer to the external hyperplane. The algorithm termi- 
nates when it reaches a vertex closer to this hyperplane 
than any neighboring vertex; such a vertex is guaran- 
teed to be an optimal solution. In the worst case, the 
simplex algorithm requires a number of iterations that 
grow exponentially with the number of linear inequali- 
ties needed to describe the polyhedron, but in practice, 
the number of iterations is seldom greater than three or 
four times the number of linear inequalities. 

Karl-Heinz Borgwardt of West Germany and Steve 
Smale of Berkeley were the first researchers to use 
probabilistic analysis to explain the unreasonable suc- 
cess of the simplex algorithm and its variants. Their 
analyses hinged on the evaluation of certain multidi- 
mensional integrals. With my limited background in 
mathematical analysis, I found their methods impene- 
trable. Fortunately, one of my colleagues at Berkeley, 
Ilan Adler, suggested an approach that promised to lead 
to a probabilistic analysis in which there would be ~¢ir- 
tually no calculation; one would use certain symmetry 
principles to do the required averaging and magically 
come up with the answer. 

Pursuing this line of research, Adler, Ron Shamir, 
and I showed in 1983 that, under a reasonably wide 
range of probabilistic assumptions, the expected num- 
ber of iterations executed by a certain version of the 
simplex algorithm grows only as the square of the num- 
ber of linear inequalities. The same result was also 

obtained via multidimensional integrals by Michael 
Todd and by Adler and Nimrod Megiddo. I believe that 
these results contribute significantly to our understand- 
ing of why the simplex method performs so well. 

The probabilistic analysis of combinatorial optimiza- 
tion algorithms has been a major theme in my research 
over the past decade. In 1975, when I first committed 
myself to this research direction, there were very few 
examples of this type of analysis. By now there are 
hundreds of papers on the subject, and all of the classic 
combinatorial optimization problems have been sub- 
jected to probabilistic analysis. The results have pro- 
vided a considerable understanding of the extent to 
which these problems can be tamed in practice. Never- 
theless, I consider the venture to be only partially suc- 
cessful. Because of the limitations of our techniques, 
we continue to work with the most simplistic of proba- 
bilistic models, and even 'then, many of the most inter- 
esting and successful algorithms are beyond the scope 
of our analysis. When all is said and done, the design of 
practical combinatorial optimization algorithms re- 
mains as much an art as it is a science. 

RANDOMIZED ALGORITHMS 
Algorithms that toss coins in the course of their execu- 
tion have been proposed from time to time since the 
earliest days of computers, but the systematic study of 
such randomized algorithms only began around 1976. 
Interest in the subject was sparked by two surprisingly 
efficient randomized algorithms for testing whether a 
number n is prime; one of these algorithms was pro- 
posed by Solovay and Volker Strassen, and the other by 
Rabin. A subsequent paPer by Rabin gave further ex- 
amples and motivation for the systematic study of ran- 
domized algorithms, and the doctoral thesis of John 
Gill, under the direction of my colleague Blum, laid the 
foundations for a general theory of randomized algo- 
rithms. 

To understand the advantages of coin tossing, let us 
turn again to the scenario associated with worst-case 
analysis, in which an all-knowing adversary selects the 
instances that will tax a given algorithm most severely. 
Randomization makes the behavior of an algorithm 
unpredictable even when the instance is fixed, and 
thus can make it difficult, or even impossible, for the 
adversary to select an instance that is likely to cause 
trouble. There is a useful analogy with football, in 
which the algorithm corresponds to the offensive team 
and the adversary to the defense. A deterministic algo- 
rithm is like a team that is completely predictable in its 
play calling, permitting the other team to stack its de- 
fenses. As any quarterback knows, a little diversifica- 
tion in the play calling is essential for keeping the de- 
fensive team honest. 

As a concrete illustration of the advantages of 
coin tossing, I present a simple randomized pattern- 
matching algorithm invented by Rabin and myself in 
1980. The pattern-matching problem is a fundamental 
one in text processing. Given a string of n bits called 
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Pattern 11001 

Text 011011101 [I"T~ 11"100 

FIGURE 9. A Pattern-Matching Problem 

the pattern, and a much longer bit string called the 
text, the problem is to determine whether the pattern 
occurs as a consecutive block within the text (see Fig- 
ure 9). A brute-force method of solving this problem is 
to compare the pattern directly with every n-bit block 
within the text. In the worst case, the execution time of 
this method is proportional to the product of the length 
of the pattern and the length of the text. In many text 
processing applications, this method is unacceptably 
slow unless the pattern is very short. 

Our method gets around the difficulty by a simple 
hashing trick. We define a "fingerprinting function" 
that associates with each string of n bits a much shorter 
string called its fingerprint. The fingerprinting function 
is chosen so that it is possible to march through the 
text, rapidly computing the fingerprint of every n-bit- 
long block. Then, instead of comparing the pattern with 
each such block of text, we compare the fingerprint of 
the pattern with the fingerprint of every such block. If 
the fingerprint of the pattern differs from the finger- 
print of each block, then we know that the pattern does 
not occur as a block within the text. 

The method of comparing short fingerprints instead 
of long strings greatly reduces the running time, but it 
leads to the possibility of false matches, which occur 
when some block of text has the same fingerprint as the 
pattern, even though the pattern and the block of text 
are unequal. False matches are a serious problem; in 
fact, for any particular choice of fingerprinting func- 
tion it is possible for an adversary to construct an ex- 
ample of a pattern and a text such that a false match 
occurs at every position of the text. Thus, some backup 
method is needed to defend against false matches, and 
the advantages of the fingerprinting method seem 
to be lost. 

Fortunately, the advantages of fingerprinting can be 
restored through randomization. Instead of working 
with a single fingerprinting function, the randomized 
method has at its disposal a large family of different 
easy-to-compute fingerprinting functions. Whenever a 
problem instance, consisting of a pattern and a text, is 
presented, the algorithm selects a fingerprinting func- 
tion at random from this large family, and uses that 
function to test for matches between the pattern and 
the text. Because the fingerprinting function is not 
known in advance, it is impossible for an adversary to 
construct a problem instance that is likely to lead to 
false matches; it can be shown that, no matter how the 
pattern and the text are selected, the probability of a 
false match is very small. For example, if the pattern is 
250 bits long and the text is 4000 bits long, one can 

work with easy-to-compute 32-bit fingerprints and still 
guarantee that the probability of a false match is less 
than one in a thousand in every possible instance. In 
many text processing applications, this probabilistic 
guarantee is good enough to eliminate the need for a 
backup routine, and thus the advantages of the finger- 
printing approach are regained. 

Randomized algorithms and probabilistic analysis of 
algorithms are two contrasting ways to depart from the 
worst-case analysis of deterministic algorithms. In the 
former case, randomness is injected into the behavior 
of the algorithm itself, and in the latter case, random- 
ness is assumed to be present in the choice of problem 
instances. The approach based on randomized algo- 
rithms is, of course, the more appealing of the two, 
since it avoids assumptions about the environment in 
which the algorithm will be used. However, random- 
ized algorithms have not yet proved effective in com- 
bating the combinatorial explosions characteristic of 
NP-complete problems, and so it appears that both of 
these approaches will continue to have their uses. 

CONCLUSION 
This brings me to the end of my story, and I would like 
to conclude with a brief remark about what it's like to 
be working in theoretical computer science today. 
Whenever I participate in the annual ACM Theory of 
Computing Symposium, or attend the monthly Bay 
Area Theory Seminar, or go up the hill behind the 
Berkeley campus to the Mathematical Sciences Re- 
search Institute, where a year-long program in compu- 
tational complexitY is taking place, I am struck by the 
caliber of the work that is being done in this field. I am 
proud to be associated with a field of research in which 
so much excellent work is being done, and pleased 
that I 'm in a position, from time to time, to help prodi- 
giously talented young researchers get their bearings in 
this field. Thank you for giving me the opportunity to 
serve as a representative of my field on this occasion. 
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