
TURING AWARD LECTURE

COMBINATORICS, COMPLEXITY,
AND RANDOMNESS

The 1985 Turing Award winner presents his perspective on the development
of the field that has come to be called theoretical computer science.

RICHARD M. KARP

This lecture is dedicated to the memory of my father,
Abraham Louis Karp.

I am honored and pleased to be the recipient of this
year's Turing Award. As satisfying as it is to receive
such recognition, I find that my greatest satisfaction
as a researcher has s temmed from doing the research
itself, and from the friendships I have formed along the
way. I would like to roam with you through my 25
years as a researcher in the field of combinatorial algo-
rithms and computational complexity, and tell you
about some of the concepts that have seemed important
to me, and about some of the people who have inspired
and influenced me.

BEGINNINGS
My entry into the computer field was rather accidental.
Having graduated from Harvard College in 1955 with a
degree in mathematics, I was confronted with a deci-
sion as to what to do next. Working for a living had
little appeal, so graduate school was the obvious choice.
One possibility was to pursue a career in mathematics,
but the field was then in the heyday of its emphasis on
abstraction and generality, and the concrete and appli-
cable mathematics that I enjoyed the most seemed to
be out of fashion.

And so, almost by default, I entered the Ph.D. pro-
gram at the Harvard Computation Laboratory. Most of
the topics that were to become the bread and butter of
the computer science curr iculum had not even been
thought of then, and so I took an eclectic collection of
courses: switching theory, numerical analysis, applied
mathematics, probabili ty and statistics, operations re-
search, electronics, and mathematical linguistics. While
the curr iculum left much to be desired in depth and

©1986ACMO001-0782/86/0200-O098 75¢

coherence, there was a very special spirit in the air; we
knew that we were witnessing the birth of a new scien-
tific discipline centered on the computer. I discovered
that I found beauty and elegance in the structure of
algorithms, and that I had a knack for the discrete
mathematics that formed the basis for the study of
computers and computation. In short, I had stumbled
more or less by accident into a field that was very
much to my liking.

EASY AND HARD COMBINATORIAL PROBLEMS
Ever since those early days, I have had a special inter-
est in combinatorial search prob lems- -prob lems that
can be l ikened to jigsaw puzzles where one has to as-
semble the parts of a structure in a part icular way.
Such problems involve searching through a finite, but
extremely large, s tructured set of possible solutions,
patterns, or arrangements, in order to find one that
satisfies a stated set of conditions. Some examples of
such problems are the placement and interconnection
of components on an integrated circuit chip, the sched-
uling of the National Football League, and the routing
of a fleet of school buses.

Within any one of these combinatorial puzzles lurks
the possibility of a combinatorial explosion. Because of
the vast, furiously growing number of possibilities that
have to be searched through, a massive amount of com-
putation may be encountered unless some subtlety is
used in searching through the space of possible solu-
tions. I'd like to begin the technical part of this talk by
telling you about some of my first encounters with
combinatorial explosions.

My first defeat at the hands of this phenomenon
came soon after I joined the IBM Yorktown Heights
Research Center in 1959. I was assigned to a group
headed by J. P. Roth, a distinguished algebraic topolo-

98 Communications of the ACM February 1986 Volume 29 Number 2

http://crossmark.crossref.org/dialog/?doi=10.1145%2F5657.5658&domain=pdf&date_stamp=1986-02-01

Turing Azoard Lecture

gist who had made notable contributions to switching
theory. Our group's mission was to create a computer
program for the automatic synthesis of switching cir-
cuits. The input to the program was a set of Boolean
formulas specifying how the outputs of the circuit were
to depend on the inputs; the program was supposed to
generate a circuit to do the job using a min imum num-
ber of logic gates. Figure 1 shows a circuit for the ma-
jority function of three variables; the output is high
whenever at least two of the three variables x, y, and z
are high.

The program we designed contained many elegant
shortcuts and refinements, but its fundamental mecha-
nism was simply to enumerate the possible circuits in
order of increasing cost. The number of circuits that the
program had to comb through grew at a furious rate as
the number of input variables increased, and as a con-
sequence, we could never progress beyond the solution
of toy problems. Today, our optimism in even trying an
enumerative approach may seem utterly naive, but we
are not the only ones to have fallen into this trap; much
of the work on automatic theorem proving over the
past two decades has begun with an initial surge of
excitement as toy problems were successfully solved,
followed by disil lusionment as the full seriousness
of the combinatorial explosion phenomenon became
apparent.

Around this same time, I began working on the trav-
eling salesman problem with Michael Held of IBM. This
problem takes its name from the situation of a salesman
who wishes to visit all the cities in his territory, begin-
ning and ending at his home city, while minimizing his
total travel cost. In the special case where the cities are
points in the plane and travel cost is equated with
Euclidean distance, the problem is simply to find a
polygon of minimum perimeter passing through all
the cities (see Figure 2). A few years earlier, George
Dantzig~ Raymond Fulkerson, and Selmer Johnson at
the Rand Corporation, using a mixture of manual and
automatic computation, had succeeded in solving a 49-
city problem, and we hoped to break their record.

Despite its innocent appearance, the traveling sales-
man problem has the potential for a combinatorial ex-

x y z

ri-i7, r L.

FIGURE 1.

x y

A Circuit for the Majority Function

FIGURE 2. A Traveling Salesman Tour

plosion, since the number of possible tours through n
cities in the plane is (n - 1)!/2, a very rapidly growing
function of n. For example, when the number of cities
is only 20, the time required for a brute-force enumera-
tion of all possible tours, at the rate of a million tours
per second, would be more than a thousand years.

Held and I tried a number of approaches to the trav-
eling salesman problem. We began by rediscovering a
shortcut based on dynamic programming that had origi-
nally been pointed out by Richard Bellman. The dy-
namic programming method reduced the search time to
n22 ", but this function also blows up explosively, and
the method is l imited in practice to problems with at
most 16 cities. For a while, we gave up on the idea of
solving the problem exactly, and exper imented with
local search methods that tend to yield good, but not
optimal, tours. With these methods, one starts with a
tour and repeatedly looks for local changes that will
improve it. The process continues until a tour is found
that cannot he improved by any such local change.
Our local improvement methods were rather clumsy,
and much better ones were later found by Shen Lin
and Brian Kernighan at Bell Labs. Such quick-and-dir ty
methods are often quite useful in practice if a strictly
optimal solution is not required, hut one can i~ever
guarantee how well they will perform.

We then began to investigate branch-and-bound
methods. Such methods are essentially enumerat ive in
nature, but they gain efficiency by pruning away large
parts of the space of possible solutions. This is done by
computing a lower bound on the cost of every tour that
includes certain links and fails to include certain oth-
ers; if the lower bound is sufficiently large, it will fol-
low that no such tour can be optimal. After a long
series of unsuccessful experiments, Held and I stum-
bled upon a powerful method of computing lower
bounds. This bounding technique allowed us to prune
the search severely, so that we were able to solve prob-
lems with as many as 65 cities. I don't think any of my
theoretical results have provided as great a thrill as the
sight of the numbers pouring out of the computer on

February 1986 Volume 29 Number 2 Communications of the ACM 90

Turing Award Lecture

THE DEVELOPMENT OF COMBINATORIAL OPTIMIZATION AND
COMPUTATIONAL COMPLEXITY THEORY

1900
Hilbert's fundamental questions:
Is mathematics complete,
consistent, and decidable?

Hilbert's 10th Problem: Are there
general decision procedures for
Diophantine equations?

1937
Turing introduces abstract model
of digital computer, and proves
nndecidability of Halting
Problem and decision problem
for first-order logic.

1947
Dantzig devises simplex method
for linear programming problem.

1900 1930

1930s
Computability pioneers.

I I I I
1940 1950

the night Held and I first tested our bounding method.
Later we found out that our method was a variant of an
old technique called Lagrangian relaxation, which is
now used routinely for the construction of lower
bounds within branch-and-bound methods.

For a brief time, our program was the world cham-
pion traveling-salesman-problem solver, but nowadays
much more impressive programs exist. They are based
on a technique called polyhedral combinatorics, which
attempts to convert instances of the traveling salesman
problem to very large l inear programming problems.
Such methods can solve problems with over 300 cities,
but the approach does not completely el iminate combi-
natorial explosions, since the time required to solve a
problem continues to grow exponential ly as a function
of the number of cities.

The traveling salesman problem has remained a fas-
cinating enigma. A book of more than 400 pages has
recently been published, covering much of what is

known about this elusive problem. Later, we, will dis-
cuss the theory of NP-completeness, which provides
evidence that the traveling salesman problem is inher-
ently intractable, so that no amount of clever algorithm
design can ever completely defeat the potential for
combinatorial explosions that lurks within this prob-
lem.

During the early 1960s, the IBM Research Laboratory
at Yorktown Heights had a superb group of combinato-
rial mathematicians, and under their tutelage, I learned
important techniques for solving certain combinatorial
problems without running into combinatorial explo-
sions. For example, I became familiar with Dantzig's
famous simplex algorithm for l inear programming. The
linear programming problem is to find the point on a
polyhedron in a high-dimensional space that is closest
to a given external hyperplane (a polyhedron is the
generalization of a polygon in two-dimensional space or
an ordinary polyhedral body in three-dimensional

100 Communications of the ACM February 1986 Volume 29 Number 2

Turing Award Lecture

1965
"Complexity" defined by
Hartmanis and Stearns--
introduce framework for
computational complexity using
abstract machines--obtain
results about structure of
complexity classes.

Edmonds defines "good"
algorithm as one with running
time bounded by polynomial
function the size of input. Found
such an algorithm for Matching
Problem.

1957
Ford and Fulkerson et al. give
efficient algorithms for solving
network flow problems.

1
1960

1959
Rabin, McNaughton, Yamada:
First glimmerings of
computational complexity
theory.

1970s
Search for near-optimal
solutions based on upper bound
on cost ratio,

1970

1971
Building on work of Davis,
Robinson, and Putman,
Matiyasevic solves HiIbert's 10th:
No general decision procedure
exists for solving Diophantine
equations.

Cook's Theorem: All NP
Problems polynomial-time
reducible to Satisfiability
Problem.

Levin also discoversthis
principle.

1980

1976
Rabin et al. launch study of
randomized algorithms.

1975
Karp departs from worst-case
paradigm and investigates
prohabilistic analysis of
combinatorial algorithms.

1973
Meyer, Stockmeyer et al. prove
intractability of certain decision
problems in logic and automata
theory.

1972
Karp uses polynomial-time
reducibility to show that 21
problems of packing, matching,
covering, etc., are NP-complete.

=1980
Borgwardt, Smale et al.
conduct probabilistic analysis
of simplex algorithm.

1984
Karmarkar devises theoretically
efficient and practical linear

mming a gorithm.

I

space, and a hyperp lane is the genera l iza t ion of a l ine
in the plane or a plane in th ree -d imens iona l space).
The closest point to the hyperp lane is a lways a corner
point, or vertex, of the po lyhedron (see Figure 3). In
practice, the s implex me thod can be depended on to
find the desired ver tex very quickly.

I also learned the beaut i ful ne twork flow theory of
Lester Ford and Fulkerson. This theory is conce rned
wi th the rate at wh ich a commodi ty , such as oil, gas,
electricity, or bits of informat ion, can be p u m p e d
through a ne twork in wh ich each l ink has a capaci ty
that l imits the rate at wh ich it can t ransmi t the com-
modity. Many combinator ia l problems that at first sight
seem to have no relat ion to commodi t i es f lowing
through ne tworks can be recast as ne twork flow prob-
lems, and the theory enables such problems to be
solved elegantly and efficiently using no a r i thmet ic
operat ions except addi t ion and subtraction.

Let me i l lustrate this beaut i ful theory by ske tching

the so-called Hungar ian a lgor i thm for solving a combi-
natorial opt imizat ion problem k n o w n as the marr iage
problem. This problem concerns a society consist ing of
n m e n and n women. The p rob lem is to pair up the m e n
and w o m e n in a one- to-one fashion at m i n i m u m cost,
where a g iven cost is imputed to each pairing. These
costs are given by an n x n matr ix, in wh ich each row
corresponds to one of the m e n and each co lumn to one
of the women. In general, each pair ing of the n m e n
wi th the n w o m e n corresponds to a choice of n entr ies
from the matr ix, no two of wh ich are in the same row
or column; the cost of a pair ing is the sum of the n
entries that are chosen. The n u m b e r of possible pair-
ings is nt, a funct ion that grows so rapidly that brute-
force enumera t i on will be of li t t le avail. Figure 4a
shows a 3 x 3 example in wh ich we see that the cost of
pairing man 3 wi th w o m a n 2 is equal to 9, the ent ry in
the third row and second c o l u m n of the g iven matrix.

The key observat ion under ly ing the Hungar ian algo-

February 1986 Volume 29 Number 2 Communications of the ACM 101

Turing Award Lecture

/ \

FIGURE 3. The Linear Programming Problem

r i thm is that the problem remains unchanged if the
same constant is subtracted from all the entries in one
part icular row of the matrix. Using this freedom to alter
the matrix, the algorithm tries to create a matr ix in
which all the entries are nonnegative, so that every
complete pairing has a nonnegative total cost, and in
which there exists a complete pairing whose entries are
all zero. Such a pairing is clearly optimal for the cost
matrix that has been created, and it is optimal for the
original cost matrix as well. In our 3 x 3 example, the
algorithm starts by subtracting the least entry in each
row from all the entries in that row, thereby creating a
matrix in which each row contains at least one zero
(Figure 4b). Then, to create a zero in each column, the
algorithm subtracts, from all entries in each column
that does not already contain a zero, the least entry in
that column (Figure 4c}. In this example, all the zeros
in the resulting matr ix lie in the first row or the third
column; since a complete pairing contains only one en-
try from each row or column, it is not yet possible to
find a complete pairing consisting entirely of zero en-
tries. To create such a pairing, it is necessary to create a
zero in the lower left part of the matrix. In this case,
the algorithm creates such a zero by subtracting I from
the first and second columns and adding I to the first
row (Figure 4d). In the resulting nonnegative matrix,
the three circled entries give a complete pairing of cost

[342178 99 51 [12782 !14 [000] 661 2 O0 [(~15~0 ~]
(a) (b) (c) (d)

FIGURE 4. An Instance of the Marriage Problem

zero, and this pairing is therefore optimal, both in the
final matrix and in the original one.

This algorithm is far subtler and more efficient than
brute-force enumeration. The time required for it to
solve the marriage problem grows only as the third
power of n, the number of rows and columns of the
matrix, and as a consequence, it is possible to solve
examples with thousands of rows and columns.

The generation of researchers who founded linear
programming theory and network flow theory had a
pragmatic att i tude toward issues of computat ional com-
plexity: An algorithm was considered efficient if it ran
fast enough in practice, and it was not especially impor-
tant to prove it was fast in all possible cases. In 1967 I
noticed that the standard algorithm for solving certain
network flow problems had a theoretical flaw, which
caused it to run very slowly on certain contrived exam-
ples. I found that it was not difficult to correct the flaw,
and I gave a talk about my result to the combinatorics
seminar at Princeton. The Princeton people informed
me that Jack Edmonds, a researcher at the National
Bureau of Standards, had presented very similar results
at the same seminar during the previous week.

As a result of this coincidence, Edmonds and I began
to work together on the theoretical efficiency of net-
work flow algorithms, and in due course, we produced
a joint paper. But the main effect of our collaboration
was to reinforce some ideas about computat ional com-
plexity that I was already groping toward and that were
to have a powerful influence on the future course of
my research. Edmonds was a wonderful craftsman who
had used ideas related to l inear programming to de-
velop amazing algorithms for a number of combinato-
rial problems. But, in addit ion to his skill at construct-
ing algorithms, he was ahead of his contemporaries in
another important respect: He had developed a clear
and precise understanding of what it meant for an algo-
ri thm to be efficient. His papers expounded the point of
view that an algorithm should be considered "good" if
its running time is bounded by a polynomial function of
the size of the input, rather than, say, by an exponen-
tial function. For example, according to Edmonds's con-
cept, the Hungarian algorithm for the marriage problem
is a good algorithm because its running time grows as
the third power of the size of the input. But as far as we
know there may be no good algorithm for the traveling
salesman problem, because all the algorithms We have
tried experience an exponential growth in their run-
ning time as a function of problem size. Edmonds's defi-
nition gave us a clear idea of how to define the bound-
ary between easy and hard combinatorial problems and
opened up for the first time, at least in my thinking, the
possibility that we might someday come up with a
theorem that would prove or disprove the conjecture
that the traveling salesman problem is inherent ly
intractable.

THE ROAD TO NP-COMPLETENESS
Along with the developments in the field of combinato-
rial algorithms, a second major stream of research was

102 Communications of the ACM February 1986 Volume 29 Number 2

Turing Award Lecture

gathering force during the 1960s--computational com-
plexity theory. The foundations for this subject were
laid in the 1930s by a group of logicians, including
Alan Turing, who were concerned with the exis-
tence or nonexistence of automatic procedures for de-
ciding whether mathematical statements were true or
false.

Turing and the other pioneers of computability the-
ory were the first to prove that certain well-defined
mathematical problems were undecidable, that is, that,
in principle, there could not exist an algorithm capable
of solving all instances of such problems. The first ex-
ample of such a problem was the Halting Problem,
which is essentially a question about the debugging of
computer programs. The input to the Halting Problem
is a computer program, together with its input data; the
problem is to decide whether the program will even-
tually halt. How could there fail to be an algorithm for
such a well-defined problem? The difficulty arises be-
cause of the possibility of unbounded search. The ob-
vious solution is simply to run the program until it
halts. But at what point does it become logical to give
up, to decide that the program isn't going to halt? There
seems to be no way to set a limit on the amount of
search needed. Using a technique called diagonaliza-
tion, Turing constructed a proof that no algorithm ex-
ists that can successfully handle all instances of the
Halting Problem.

Over the years, undecidable problems were found in
almost every branch of mathematics. An example from
number theory is the problem of solving Diophantine
equations: Given a polynomial equation such as

4xy 2 -I- 2xy2z 3 - llx3y2z 2 = -1164,

is there a solution in integers? The problem of finding a
general decision procedure for solving such Diophan-
tine equations was first posed by David Hilbert in 1900,
and it came to be known as Hilbert's Tenth Problem.
The problem remained open until 1971, when it was
proved that no such decision procedure can exist.

One of the fundamental tools used in demarcating
the boundary between solvable and unsolvable prob-
lems is the concept of reducibility, which was first
brought into prominence through the work of logician
Emil Post. Problem A is said to be reducible to problem
B if, given a subroutine capable of solving problem B,
one can construct an algorithm to solve problem A. As
an example, a landmark result is that the Halting Prob-
lem is reducible to Hilbert's Tenth Problem (see Figure
5). It follows that Hilbert's Tenth Problem must be un-
decidable, since otherwise we would be able to use this
reduction to derive an algorithm for the Halting Prob-
lem, which is known to be undecidable. The concept of
reducibility will come up again when we discuss NP-
completeness and the P : NP problem.

Another important theme that complexity theory
inherited from computability theory is the distinction
between the ability to solve a problem and the ability
to check a solution. Even though there is no general
method to find a solution to a Diophantine equation, it

FIGURE 5.

Halting Problem

Subroutine for
converting
problem to
Hilbert's Tenth

Hilbert's
Tenth

The Halting Problem Is Reducible to Hilbert's Tenth Problem

is easy to check a proposed solution. For example, to
check whether x = 3, y = 2, z = - 1 constitutes a solu-
tion to the Diophantine equation given above, one
merely plugs in the given values and does a little arith-
metic. As we will see later, the distinction between
solving and checking is what the P : NP problem is all
about.

Some of the most enduring branches of theoretical
computer science have their origins in the abstract ma-
chines and other formalisms of computability theory.
One of the most important of these branches is compu-
tational complexity theory. Instead of simply asking
whether a problem is decidable at all, complexity the-
ory asks how difficult it is to solve the problem. In
other words, complexity theory is concerned with the
capabilities of universal computing devices such as the
Turing machine when restrictions are placed on their
execution time or on the amount of memory they may
use. The first glimmerings of complexity theory can be
found in papers published in 1959 and 1960 by Michael
Rabin and by Robert McNaughton and Hideo Yamada,
but it is the 1965 paper by Juris Hartmanis and Richard
Stearns that marks the beginning of the modern era of
complexity theory. Using the Turing machine as their
model of an abstract computer, Hartmanis and Stearns
provided a precise definition of the "complexity class"
consisting of all problems solvable in a number of steps
bounded by some given function of the input length n.
Adapting the diagonalization technique that Turing had
used to prove the undecidability of the Halting Prob-
lem, they proved many interesting results about the
structure of complexity classes. All of us who read their
paper could not fail to realize that we now had a satis-
factory formal framework for pursuing the questions
that Edmonds had raised earlier in an intuitive fash-
ion-ques t ions about whether, for instance, the travel-
ing salesman problem is solvable in polynomial time.

In that same year, I learned computability theory
from a superb book by Hartley Rogers, who had been
my teacher at Harvard. I remember wondering at the
time whether the concept of reducibility, which was so
central in computability theory, might also have a role
to play in complexity theory, but I did not see how to
make the connection. Around the same time, Michael
Rabin, who was to receive the Turing Award in 1976,

February 1986 Volume 29 Number 2 Communications of the ACM 103

Turing Award Lecture

was a visitor at the IBM Research Laboratory at York-
town Heights, on leave from the Hebrew University in
Jerusalem. We both happened to live in the same apart-
ment building on the outskirts of New York City, and
we fell into the habit of sharing the long commute to
Yorktown Heights. Rabin is a profoundly original
thinker and one of the founders of both automata
theory and complexity theory, and through my daily
discussions with him along the Sawmill River Parkway,
I gained a much broader perspective on logic, computa-
bility theory, and the theory of abstract computing ma-
chines.

In 1968, perhaps influenced by the general social un-
rest that gripped the nation, I decided to move to the
University of California at Berkeley, where the action
was. The years at IBM had been crucial for my develop-
ment as a scientist. The opportunity to work with such
outstanding scientists as Alan Hoffman, Raymond
Miller, Arnold Rosenberg, and Shmuel Winograd was
simply priceless. My new circle of colleagues included
Michael Harrison, a distinguished language theorist
who had recruited me to Berkeley, Eugene Lawler, an
expert on combinatorial optimization, Manuel Blum, a
founder of complexity theory who has gone on to do
outstanding work at the interface between number the-
ory and cryptography, and Stephen Cook, whose work
in complexity theory was to influence me so greatly a
few years later. In the mathematics department, there
were Julia Robinson, whose work on Hilbert's Tenth
Problem was soon to bear fruit, Robert Solovay, a fa-
mous logician who later discovered an important ran-
domized algorithm for testing whether a number is
prime, and Steve Smale, whose ground-breaking work
on the probabilistic analysis of linear programming al-
gorithms was to influence me some years later. And
across the Bay at Stanford were Dantzig, the father of
linear programming, Donald Knuth, who founded the
fields of data structures and analysis of algorithms, as
well as Robert Tarjan, then a graduate student, and
John Hopcroft, a sabbatical visitor from Cornell, who
were brilliantly applying data structure techniques to
the analysis of graph algorithms.

In 1971 Cook, who by then had moved to the Univer-
sity of Toronto, published his historic paper "On the
Complexity of Theorem-Proving Procedures." Cook dis-
cussed the classes of problems that we now call P and
NP, and introduced the concept that we now refer to as
NP-completeness. Informally, the class P consists
of all those problems that can be solved in polynomial
time. Thus the marriage problem lies in P because
the Hungarian algorithm solves an instance of size n
in about n 3 steps, but the traveling salesman problem
appears not to lie in P, since every known method
of solving it requires exponential time. If we accept
the premise that a computational problem is not trac-
table unless there is a polynomial-time algorithm
to solve it, then all the tractable problems lie in P. The
class NP consists of all those problems for which a pro-
posed solution can be checked in polynomial time. For
example, consider a version of the traveling sales-

man problem in which the input data consist of the dis-
tances between all pairs of cities, together with a "tar-
get number" T, and the task is to determine whether
there exists a tour of length less than or equal to
T. It appears to be extremely difficult to determine
whether such a tour exists, but if a proposed tour is
given to us, we can easily check whether its length
is less than or equal to T; therefore, this version of
the traveling salesman problem lies in the class NP.
Similarly, through the device of introducing a target
number T, all the combinatorial optimization prob-
lems normally considered in the fields of commerce,
science, and engineering have versions that lie in the
class NP.

So NP is the area into which combinatorial problems
typically fall; within NP lies P, the class of problems
that have efficient solutions. A fundamental question
is, What is the relationship between the class P and the
class NP? It is clear that P is a subset of NP, and the
question that Cook drew attention to is whether P and
NP might be the same class. If P were equal to NP,
there would be astounding consequences: It would
mean that every problem for which solutions are easy
to check would also be easy to solve; it would mean
that, whenever a theorem had a short proof, a uniform
procedure would be able to find that proof quickly; it
would mean that all the usual combinatorial optimiza-
tion problems would be solvable in polynomial time. In
short, it would mean that the curse of combinatorial
explosions could be eradicated. But, despite all this
heuristic evidence that it would be too good to be true
if P and NP were equal, no proof that P ~ NP has ever
been found, and some experts even believe that no
proof will ever be found.

The most important achievement of Cook's paper was
to show that P = NP if and only if a particular compu-
tational problem called the Satisfiability Problem lies in
P. The Satisfiability Problem comes from mathematical
logic and has applications in switching theory, but it
can be stated as a simple combinatorial puzzle: Given
several sequences of upper- and lowercase letters, is it
possible to select a letter from each sequence without
selecting both the upper- and lowercase versions of any
letter? For example, if the sequences are Abc, BC, aB,
and ac it is possible to choose A from the first sequence,
B from the second and third, and c from the fourth;
note that the same letter can be chosen more than
once, provided we do not choose both its uppercase and
lowercase versions. An example where there is no way
to make the required selections is given by the four
sequences AB, Ab, aB, and ab.

The Satisfiability Problem is clearly in NP, since it is
easy to check whether a proposed selection of letters
satisfies the conditions of the problem. Cook proved
that, if the Satisfiability Problem is solvable in polyno-
mial time, then every problem in NP is solvable in
polynomial time, so that P = NP. Thus we see that this
seemingly bizarre and inconsequential problem is an
archetypal combinatorial problem; it holds the key to
the efficient solution of all problems in NP.

104 Communications of the ACM February 1986 Volume 29 Number 2

Turing Award Lecture

Cook's proof was based on the concept of reducibility
that we encountered earlier in our discussion of com-
putability theory. He showed that any instance of a
problem in NP can be transformed into a corresporiding
instance of the Satisfiability Problem in such a way that
the original has a solution if and only if the satisfiabil-
ity instance does. Moreover, this translation can be
accomplished in polynomial time. In other words,
the Satisfiability Problem is general enough to capture
the structure of any problem in NP. It follows that, if
we could solve the Satisfiability Problem in polynomial
time, then we would be able to construct a polynomial-
time algorithm to solve any problem in NP. This algo-
rithm would consist of two parts: a polynomial-time
translation procedure that converts instances of the
given problem into instances of the Satisfiability Prob-
lem, and a polynomial-time subroutine to solve the
Satisfiability Problem itself (see Figure 6).

Upon reading Cook's paper, I realized at once that his
concept of an archetypal combinatorial problem was a
formalization of an idea that had long been part of the
folklore of combinatorial optimization. Workers in that
field knew that the integer programming problem,
which is essentially the problem of deciding whether a
system of linear inequalities has a solution in integers,
was general enough to express the constraints of any of
the commonly encountered combinatorial optimization
problems. Dantzig had published a paper on that theme
in 1960. Because Cook was interested in theorem prov-
ing rather than combinatorial optimization, he had cho-
sen a different archetypal problem, but the basic idea
was the same. However, there was a key difference: By
using the apparatus of complexity theory, Cook had
created a framework within which the archetypal na-
ture of a given problem could become a theorem, rather
than an informal thesis. Interestingly, Leonid Levin,
who was then in Leningrad and is now a professor at
Boston University, independently discovered essen-
tially the same set of ideas. His archetypal problem had
to do with tilings of finite regions of the plane with
dominoes.

I decided to investigate whether certain classic com-
binatorial problems, long believed to be intractable,

Traveling salesman problem

Subroutine for
converting

" problem
to Satisfiability
Problem

i
Satisfiability

FIGURE 6. The Traveling Salesman Problem Is Polynomial-Time
Reducible to the Satisfiability Problem

were also archetypal in Cook's sense. I called such
problems "polynomial complete," but that term became
superseded by the more precise term "NP-complete." A
problem is NP-complete if it lies in the class NP, and
every problem in NP is polynomial-time reducible to it.
Thus, by Cook's theorem, the Satisfiability Problem is
NP-complete. To prove that a given problem in NP is
NP-complete, it suffices to show that some problem
already known to be NP-complete is polynomial-time
reducible to the given problem. By constructing a series
of polynomial-time reductions, I showed that most of
the classical problems of packing, covering, matching,
partitioning, routing, and scheduling that arise in com-
binatorial optimization are NP-complete. I presented
these results in 1972 in a paper called "Reducibility
among Combinatorial Problems." My early results were
quickly refined and extended by other workers, and in
the next few years, hundreds of different problems,
arising in Virtually every field where computation is
done, were shown to be NP-complete.

COPING WITH NP-COMPLETE PROBLEMS
I was rewarded for my research on NP-complete prob-
lems with an administrative post. From i973 to 1975, I
headed the newly formed Computer Science Division at
Berkeley, and my duties left me little time for research.
As a result, I sat on the sidelines during a very active
period, during which many examples of NP-complete
problems were found, and the first attempts to get
around the negative implications of NP-completeness
got under way.

The NP-completeness results proved in the early
1970s showed that, unless P = NP, the great majority of
the problems of combinatorial optimization that arise in
commerce, science, and engineering are intractable: No
methods for their solution can completely evade combi-
natorial explosions. How, then, are we to cope with
such problems in practice? One possible approach
stems from the fact that near-optimal solutions will
ofteri be good enough: A traveling salesman will pr0b~i-
bly be satisfied with a tour that is a few percent longer
than the optimal one. Pursuing this approach, research-
ers began to search for polynomial-time algorithms that
were guaranteed to produce near-optimal solutions to
NP-complete combinatorial optimization problems. In
most cases, the performance guarantee for the approxi-
mation algorithm was in the form of an upper bound on
the ratio between the cost of the solution produced by
the algorithm and the cost of an optimal Solution.

Some of the most interesting work On approximation
algorithms With performance guarantees concerned the
one-dimensional bin-packing problem. In this problem,
a collection of items of various sizes must be packed
into binS, all of which have the same capacity. The goal
is.to minimize the number of bins used for the packing,
subject to the constraint that the sum of the sizes of the
items packed into any bin may not exceed the bin ca-
pacity. During the mid 1970s, a series of papers on ap-
proximation algorithms for bin packing culminated in
David Johnson's analysis of the first-fit-decreasing algo-

February 1986 Volume 29 Number 2 Communications of the ACM 105

Turing Award Lecture

rithm. In this simple algorithm, the.items are consid-
ered in decreasing order of their sizes, and each item in
turn is placed in the first bin that can accept it. In the
example in Figure 7, for instance, there are four bins
each with a capacity of 10, and eight items ranging in
size from 2 to 8. Johnson showed that this simple
method was guaranteed to achieve a relative error of at
most 2/9; in other words, the number of bins required
was never more than about 22 percent greater than the
number of bins in an optimal solution. Several years
later, these results were improved still further, and it
was eventually shown that the relative error could be
made as small as one liked, although the polynomial-
time algorithms required for this purpose lacked the
simplicity of the first-fit-decreasing algorithm that
Johnson analyzed.

The research on polynomiabtime approximation
algorithms revealed interesting distinctions among the
NP-complete combinatorial optimization problems. For
some problems, the relative error can be made as small
as one likes; for others, it can be brought down to a
certain level~ but seemingly no further; other problems
have resisted all attempts to find an algorithm with
bounded rela[ive error; and finally, there are certain
problems for which the existence of a polynomial-time
approximation algorithm with bounded relative error
would imply that P = NP.

During the sabbatical year that followed my term as
an administrator, I began to reflect on the gap between
theory and practice in the field of combinatorial optimi-
zation. On the theoretical side, the news was bleak.
Nearly all the problems one wanted to solve were NP-
complete, and in most cases, polynomial-time approxi-
mation algorithms could not provide the ki, nds of per-
formance guarantees that would be useful in practice.
Nevertheless, there were many algorithms that seemed
to work perfectly well in practice, even though they
lacked a theoretical pedigree. For example, Lin and
Kernighan had developed a very successful local im-
provement strategy for the traveling salesman problem.
Their algorithm simply started with a random tour and
kept improving it by adding and deleting a few links,
until a tour was eventually created that could not be
improved by such local changes. On contrived in-

2

FIGURE 7. A Packing Created by the First-Fit Decreasing Algorithm

stances, their algorithm performed disastrously, but in
practical instances, it could be relied on to give nearly
optimal solutions. A similar situation prevailed for the
simplex algorithm, one of the most important of all
computational methods: It reliably solved the large lin-
ear programming problems that arose in applications,
despite the fact that certain artificially constructed
examples caused it to run for an exponential number of
steps.

It seemed that the success of such inexact or rule-of-
thumb algorithms was an empirical phenomenon that
needed to be explained. And it further seemed that the
explanation of this phenomenon would inevitably re-
quire a departure from the traditional paradigms of
complexity theory, which evaluate an algorithm ac-
cording to its performance on the worst possible input
that can be presented to it. The traditional worst-case
analysis--the dominant strain in complexity theory--
corresponds to a scenario in which the instances of a
problem to be solved are constructed by an infinitely
intelligent adversary who knows the structure of the
algorithm and chooses inputs that will embarrass it tO
the maximal extent. This scenario leads to the conclu-
sion that the simplex algorithm and the Lin-Kernighan
algorithm are hopelessly defective. I began to pursue
another approach, in which the inputs are assumed to
come from a user who simply draws his instances from
some reasonable probability distribution, attempting
neither to foil nor to help the algorithm.

In 1975 I decided to bite the bullet and commit my-
self to an investigation of the probabilistic analysis of
combinatorial algorithms. I must say that this decision
required some courage, since this line of research had
its detractors, who pointed out quite correctly that
there was no way to know what inputs were going to
be presented to an algorithm, and that the best kind of
guarantees, if one could get them, would be worst-case
guarantees. I felt, however, that in the case of NP-
complete problems we weren't going to get the worst-
case guarantees we wanted, and that the probabilistic
approach was the best way and perhaps the only way
to understand why heuristic combinatorial algorithms
worked so well in practice.

Probabilistic analysi s starts from the assumption that
the instances of a problem are drawn from a specified
probability distribution. In the case of the traveling
salesman problem, for example, one possible assump-
tion is that the locations of the n cities are drawn inde-
pendently from the uniform distribution over the unit
square. Subject to this assumption, we can study the
probability distribution of the length of the optimal tour
or the length of the tour produced by a particular algo-
rithm. Ideally, the goal is to prove that some simple
algorithm produces optimal or near-optimal solutions
with high probability. Of course, such a result is mean-
ingful only if the assumed probability distribution of
problem instances bears some resemblance to the popu-
lation of instances that arise in real life, or if the proba-
bilistic analysis is robust enough to be valid for a wide
range of probability distributions.

106 Communications of the ACM February 1986 Volume 29 Number 2

Turing Award Lecture

Among the mos t striking phenomena of probability
theory are the laws of large numbers, which tell us that
the cumulative effect of a large number of random
events is highly predictable, even though the outcomes
of the individual events are highly unpredictable. For
example, we can confidently predict that, in a long
series of flips of a fair coin, about half the outcomes
will be heads. Probabilistic analysis has revealed that
the same phenomenon governs the behavior of many
combinatorial optimization algorithms when the input
data are drawn from a simple probability distribution:
With very high probability, the execution of the algo-
rithm evolves in a highly predictable fashion, and the
solution produced is nearly optimal. For example, a

!960 paper by Beardwood, Halton, and Hammersley
shows that, if the n cities in a traveling salesman prob-
lem are drawn independently from the uniform distri-
bution over the unit square, then, wher~ n is very large,
the length of the optimal tour will almost surely be
very close to a certain absolute constant times the
square root of the number of cities. Motivated by their
result, I showed that, when the number of cities i s
extremely large, a simple divide-and-conquer algorithm
will almost surely produce a tour whose length is very
close to the length of an optimal tour (see Figure 81 .
The algorithm starts byparti t ioning the region where
the cities lie into rectangles, each of which contains a
small number of cities. It then constructs an optimal

I i

(a) (b)

(c) (d)

FIGURE 8. A Divide-and-Conquer Algorithm for the Traveling Salesman Problem in the Plane

February 1986 Volume 29 Number 2 Communications of the ACM 107

Turing Award Lecture

tour through the cities in each rectangle. The union of
all these little tours closely resembles an overall travel-
ing salesman tour, but differs from it because of extra
visits to those cities that lie on the boundaries of the
rectangles. Finally, the algorithm performs a kind of
local surgery to eliminate these redundant visits and
produce a tour.

Many further examples can be cited in which simple
approximation algorithms almost surely give near-
optimal solutions to random large instances of NP-
complete optimization problems. For example, my stu-
dent Sally Floyd, building on earlier work on bin pack-
ing by Bentley, Johnson, Leighton, McGeoch, and
McGeoch, recently showed that, if the items to be
packed are drawn independently from the uniform dis-
tribution over the interval (0, 1/2), then, no matter how
many items there are, the first-fit decreasing algorithm
will almost surely produce a packing with less than 10
bins worth of wasted space.

Some of the most notable applications of probabilistic
analysis have been to the linear programming problem.
Geometrically, this problem amounts to finding the ver-
tex of a polyhedron closest to some external hyper-
plane. Algebraically, it is equivalent to m!nimizing a
linear function subject to linear inequality constraints.
The linear function measures the distance to the hyper-
plane, and the linear inequality constraints correspond
to the hyperplanes that bound the polyhedron.

The simplex algorithm for the linear programming
problem is a hill-climbing method. It repeatedly slides
from vertex to neighboring vertex, always moving
closer to the external hyperplane. The algorithm termi-
nates when it reaches a vertex closer to this hyperplane
than any neighboring vertex; such a vertex is guaran-
teed to be an optimal solution. In the worst case, the
simplex algorithm requires a number of iterations that
grow exponentially with the number of linear inequali-
ties needed to describe the polyhedron, but in practice,
the number of iterations is seldom greater than three or
four times the number of linear inequalities.

Karl-Heinz Borgwardt of West Germany and Steve
Smale of Berkeley were the first researchers to use
probabilistic analysis to explain the unreasonable suc-
cess of the simplex algorithm and its variants. Their
analyses hinged on the evaluation of certain multidi-
mensional integrals. With my limited background in
mathematical analysis, I found their methods impene-
trable. Fortunately, one of my colleagues at Berkeley,
Ilan Adler, suggested an approach that promised to lead
to a probabilistic analysis in which there would be ~¢ir-
tually no calculation; one would use certain symmetry
principles to do the required averaging and magically
come up with the answer.

Pursuing this line of research, Adler, Ron Shamir,
and I showed in 1983 that, under a reasonably wide
range of probabilistic assumptions, the expected num-
ber of iterations executed by a certain version of the
simplex algorithm grows only as the square of the num-
ber of linear inequalities. The same result was also

obtained via multidimensional integrals by Michael
Todd and by Adler and Nimrod Megiddo. I believe that
these results contribute significantly to our understand-
ing of why the simplex method performs so well.

The probabilistic analysis of combinatorial optimiza-
tion algorithms has been a major theme in my research
over the past decade. In 1975, when I first committed
myself to this research direction, there were very few
examples of this type of analysis. By now there are
hundreds of papers on the subject, and all of the classic
combinatorial optimization problems have been sub-
jected to probabilistic analysis. The results have pro-
vided a considerable understanding of the extent to
which these problems can be tamed in practice. Never-
theless, I consider the venture to be only partially suc-
cessful. Because of the limitations of our techniques,
we continue to work with the most simplistic of proba-
bilistic models, and even 'then, many of the most inter-
esting and successful algorithms are beyond the scope
of our analysis. When all is said and done, the design of
practical combinatorial optimization algorithms re-
mains as much an art as it is a science.

RANDOMIZED ALGORITHMS
Algorithms that toss coins in the course of their execu-
tion have been proposed from time to time since the
earliest days of computers, but the systematic study of
such randomized algorithms only began around 1976.
Interest in the subject was sparked by two surprisingly
efficient randomized algorithms for testing whether a
number n is prime; one of these algorithms was pro-
posed by Solovay and Volker Strassen, and the other by
Rabin. A subsequent paPer by Rabin gave further ex-
amples and motivation for the systematic study of ran-
domized algorithms, and the doctoral thesis of John
Gill, under the direction of my colleague Blum, laid the
foundations for a general theory of randomized algo-
rithms.

To understand the advantages of coin tossing, let us
turn again to the scenario associated with worst-case
analysis, in which an all-knowing adversary selects the
instances that will tax a given algorithm most severely.
Randomization makes the behavior of an algorithm
unpredictable even when the instance is fixed, and
thus can make it difficult, or even impossible, for the
adversary to select an instance that is likely to cause
trouble. There is a useful analogy with football, in
which the algorithm corresponds to the offensive team
and the adversary to the defense. A deterministic algo-
rithm is like a team that is completely predictable in its
play calling, permitting the other team to stack its de-
fenses. As any quarterback knows, a little diversifica-
tion in the play calling is essential for keeping the de-
fensive team honest.

As a concrete illustration of the advantages of
coin tossing, I present a simple randomized pattern-
matching algorithm invented by Rabin and myself in
1980. The pattern-matching problem is a fundamental
one in text processing. Given a string of n bits called

108 Communications of the ACM February 1986 Volume 29 Number 2

Turing Award Lecture

Pattern 11001

Text 011011101 [I"T~ 11"100

FIGURE 9. A Pattern-Matching Problem

the pattern, and a much longer bit string called the
text, the problem is to determine whether the pattern
occurs as a consecutive block within the text (see Fig-
ure 9). A brute-force method of solving this problem is
to compare the pattern directly with every n-bit block
within the text. In the worst case, the execution time of
this method is proportional to the product of the length
of the pattern and the length of the text. In many text
processing applications, this method is unacceptably
slow unless the pattern is very short.

Our method gets around the difficulty by a simple
hashing trick. We define a "fingerprinting function"
that associates with each string of n bits a much shorter
string called its fingerprint. The fingerprinting function
is chosen so that it is possible to march through the
text, rapidly computing the fingerprint of every n-bit-
long block. Then, instead of comparing the pattern with
each such block of text, we compare the fingerprint of
the pattern with the fingerprint of every such block. If
the fingerprint of the pattern differs from the finger-
print of each block, then we know that the pattern does
not occur as a block within the text.

The method of comparing short fingerprints instead
of long strings greatly reduces the running time, but it
leads to the possibility of false matches, which occur
when some block of text has the same fingerprint as the
pattern, even though the pattern and the block of text
are unequal. False matches are a serious problem; in
fact, for any particular choice of fingerprinting func-
tion it is possible for an adversary to construct an ex-
ample of a pattern and a text such that a false match
occurs at every position of the text. Thus, some backup
method is needed to defend against false matches, and
the advantages of the fingerprinting method seem
to be lost.

Fortunately, the advantages of fingerprinting can be
restored through randomization. Instead of working
with a single fingerprinting function, the randomized
method has at its disposal a large family of different
easy-to-compute fingerprinting functions. Whenever a
problem instance, consisting of a pattern and a text, is
presented, the algorithm selects a fingerprinting func-
tion at random from this large family, and uses that
function to test for matches between the pattern and
the text. Because the fingerprinting function is not
known in advance, it is impossible for an adversary to
construct a problem instance that is likely to lead to
false matches; it can be shown that, no matter how the
pattern and the text are selected, the probability of a
false match is very small. For example, if the pattern is
250 bits long and the text is 4000 bits long, one can

work with easy-to-compute 32-bit fingerprints and still
guarantee that the probability of a false match is less
than one in a thousand in every possible instance. In
many text processing applications, this probabilistic
guarantee is good enough to eliminate the need for a
backup routine, and thus the advantages of the finger-
printing approach are regained.

Randomized algorithms and probabilistic analysis of
algorithms are two contrasting ways to depart from the
worst-case analysis of deterministic algorithms. In the
former case, randomness is injected into the behavior
of the algorithm itself, and in the latter case, random-
ness is assumed to be present in the choice of problem
instances. The approach based on randomized algo-
rithms is, of course, the more appealing of the two,
since it avoids assumptions about the environment in
which the algorithm will be used. However, random-
ized algorithms have not yet proved effective in com-
bating the combinatorial explosions characteristic of
NP-complete problems, and so it appears that both of
these approaches will continue to have their uses.

CONCLUSION
This brings me to the end of my story, and I would like
to conclude with a brief remark about what it's like to
be working in theoretical computer science today.
Whenever I participate in the annual ACM Theory of
Computing Symposium, or attend the monthly Bay
Area Theory Seminar, or go up the hill behind the
Berkeley campus to the Mathematical Sciences Re-
search Institute, where a year-long program in compu-
tational complexitY is taking place, I am struck by the
caliber of the work that is being done in this field. I am
proud to be associated with a field of research in which
so much excellent work is being done, and pleased
that I 'm in a position, from time to time, to help prodi-
giously talented young researchers get their bearings in
this field. Thank you for giving me the opportunity to
serve as a representative of my field on this occasion.

CR Categories and Subject Descriptors: A.O [General Literature]:
biographies~autobiographies; F. 0 [Theory of Computation]: General;
F.1.1 [Computation by Abstract Devices]: Models of Computation--com-
putability theory; F.1.2 [Computation by Abstract Devices]: Modes of
Computation--parallelism, probabilistic computation; F.1.3 [Computation
by Abstract Devices]: Complexity Classes--reducibility and completeness,
relations among complexity classes; F.2.0 [Analysis of Algorithms and
Problem Complexity]: General; G.2.1 [Discrete Mathematics]: Combina-
torics; G.2.2 [Discrete Mathematics]: Graph Theory; K.2 [History of
Computing]: people

General Terms: Performance, Theory
Additional Key Words and Phrases: Richard Karp, Turing Award

Author's Present Address: Richard Karp, 571 Evans Hall, University of
California, Berkeley, CA 94720.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

February 1986 Volume 29 Number 2 Communications of the ACM 109

