
TURING AWARD INTERVIEW

COMPLEXITY AND PARALLEL
PROCESSING: AN INTERVIEW
WITH RICHARD KARP

KAREN A. FRENKEL

In the following interview, which took place at ACM 85 in
Denver, Karp discusses the relation of his work to leading-
edge computing topics like parallel processing and artificial
intelligence. Tracing his experience as a pioneer in highly
theoretical computer science, Karp describes how the deci-
sion to go against established wisdom led to the work for
which he is best known and how a colleague's findings led
him to see links between two previously unrelated areas.
Throughout, he stresses the exchange of ideas with col-
leagues that helped yield fundamental insights.

KF You decided fairly early on in your career to
move from mathematics into computer science. Do
you see yourself as a theoretical mathematic ian work-
ing in the realm of computer science, or as a computer
scientist working on theoretical issues?
RK I guess I 'm somewhere in between an applied
mathematician and a computer scientist. A priori I
think the work I do could go either in a mathematics or
computer science department, but the historical trend
has been for computer science departments to take the
major initiatives in developing theoretical computer
science.

Most math departments have dropped the ball. There
are a few exceptions, but in general, they didn't realize
the potential of this field quite early enough to begin
building it up. So it tended to fall within the purview of
computer science departments. Nowadays, mathemat-
ics departments are finally becoming much more cogni-
zant of theoretical computer science.

KF Do mathematic ians think about computation dif-
ferently than computer scientists do?
RK When mathematicians use computers, they tend
to operate in a very nontheoretical manner. If a number

©1986ACM0001-0782/86/0200-0112 75¢

theorist wants to factor a number, he'll throw every-
thing at it but the kitchen sink. He wants that answer,
and he usually isn't worried about the broader compu-
tational complexity issues. It's the same with group
theorists or algebraic geometry. They're interested in
this particular group, or that particular surface, and
they want that answer-- they become just like engi-
neers. When I program, I 'm the same way. For the first
five minutes, I 'm very conscious of theoretical issues,
but then I just want to make the program work, and I
forget that I 'm a theoretician.

KF Why has the traveling sa lesman problem re-
ceived so much attention?
RK The traveling salesman problem epitomizes and is
a simplified version of the rather more complicated
problems that occur in practice. Everyone knows that
the traveling salesman problem is a metaphor or a
myth-- i t ' s obvious that no salesman is going to worry
about absolutely minimizing his mileage--but it is an
interesting and an easily defined problem. It probably
gets more attention than it deserves because of its
catchy name. There are other important prototypical
problems with less catchy names, like coloring, pack-
ing, matching, scheduling, and so forth. This is the way
theory advances--you can't do clean theoretical work
by taking on all the complications of real-world prob-
lems. So you take cleaner formulations, study them
as closely as possible, go deeply into their structure,
and hope that the results will transfer over to the real
problems.

KF It seems that you investigate metatheory- -c lasses
of problems--rather than real problems.
RK Yes, that's right. There are three levels of prob-
lems. There's the level of solving a very specific in-
stance: You want the shortest tour through the 48 con-

112 Communications of the ACM February 1986 Volume 29 Number 2

http://crossmark.crossref.org/dialog/?doi=10.1145%2F5657.6326&domain=pdf&date_stamp=1986-02-01

Turing Award Interview

t inental state capitals plus Washington, D.C. That 's the
level closest to the practitioner. Then there 's the level
of studying the problem in general, with emphasis on
methodology for solving it: You want to know what the
complexity of the traveling salesman problem, or the
marriage problem is, using the worst-case paradigm.
That 's one level up because you're not interested just
in a specific instance. Then there 's a metatheoret ic
level where you study the whole structure of a class of
problems. This is the point of view that we 've inheri ted
from logic and computabil i ty theory. The question be-
comes, "What is the whole classification scheme? Let's
look at the hierarchy of problem complexities as we
increase the bound on the allowable computation
time."

Every now and then, two levels have an interface.
Such interfaces are usually very important. A lot of
important work in science emerges when two fields
meet that had not previously been perceived to be
related. The concept of NP-completeness links the
abstract study of complexity classes to the properties of
particular problems like the traveling salesman prob-
lem or the satisfiability problem.

KF The step that you took toward probabilistic anal-
ysis was a departure from the worst-case analysis par-
adigm. And you pursued it despite its detractors. What
pushed your decision?
RK I don't mean to give the impression that probabi-
listic analysis had never been heard of before I thought
of it. It certainly had been applied, but mainly to prob-
lems of sorting, searching, and data structures, rather
than to combinatorial optimization problems.

The decision was part icularly difficult because, to a
certain extent, I agreed with the detractors. There is a
really fundamental methodological problem: How do
you choose the probability distributions? How can you
possibly know what the population of problem in-
stances is going to be? Nobody had ever taken careful
measurements of the characteristics of real-world prob-
lems, and even if they had, they would be measuring
just one computing environment. But I didn' t see any
way out, because, if we didn' t go the probabilistic
route, NP-completeness would just be devastating.

Now there was also a line of research on approxima-
tion algorithms that do give guarantees. If you have an
NP-complete combinatorial optimization problem, you
can relax the requirement of getting an optimal solu-
tion and try to construct a fast algorithm that 's guaran-
teed in its worst case to be not more than, say, 20
percent off. This is another very interesting paradigm
that was explored, and it gave mixed results. In some
problems, it really cleared up the di f f icul ty--you could
get a solution as close to opt imum as you liked. For
some other problems, you could guarantee being off by
22, 33, or 50 percent. Those results were very nice, but
I didn' t think they were descriptive of what happens
when you use practical heuristics. Practical heuristics
do very well most of the time, but not in the worst case.

Undecidability

Halting
problem

versus
so lv ing

Randomized
algorithm

Complexity

time
reducibility

NP-complete
problems

Probabilistic
analysis

Good algorithm

Combinatorial
explosion

Logic
design

Traveling
salesman
problem

/ Linear
programming

Heuristics

Pattern ~ Parallelism ~ Marriage
matching / problem

So it wasn' t that I relished the idea of working along
a new direction whose foundations could be called into
question. And it was also a personal risk, in that I could
have been seen as flaky. You know, "He can' t do the
real thing, so he assumes some probabili ty distribution
and makes life easier for himself." But again, I just
didn' t see any other way to proceed. The phenomenon
of NP-completeness persuaded me.

KF If you don't have the optimal solution to a prob-
lem, how can you know that your heuristic is produc-
ing something close to optimal?
RK That 's a methodological difficulty. When you run
a heuristic algorithm and it appears to be giving very
good solutions, you can't be sure, since you don't know
where the opt imum lies. You may run your program
from many different starting points and keep replicat-
ing the same solution. If nobody ever finds a better one,
you have some circumstantial evidence that your solu-
tion is best. You can also invest a very large amount of
computer time in a branch-and-bound computation and
finally get a solution that you can prove is optimal to
within half a percent. Then you run your quick heuris-
tic on the same problem for three minutes or so and see
how close it can come. Sometimes you can artificially
construct the problem so that you' l l know what the
optimal solution is. But you've pointed out a severe
methodological problem.

February 1986 Volume 29 Number 2 Communications of the ACM 113

Turing Award Interview

KF Recently you've begun work on parallelism. How
will parallel processing affect our notion of a good or
efficient algorithm?
R K I 'm extremely interested in parallel computation,
and I think it's a fascinating area. There are several
strains of research that have not yet completely come
together: There 's the study of various parallel architec-
tures; there are many questions about what the proces-
sors should look like and how they should be intercon-
nected. There are numerical analysis issues, complexity
issues, and algorithm design issues.

Much of my work over the past couple of years has
been done with two Israeli colleagues, Avi Wigderson
and Eli Upfal. We have been studying the complexity of
parallel algorithms on a fairly theoretical plane working
with rather idealized models of parallel computers.
That way we abstract away certain issues of communi-
cation and all the complications that arise because a
parallel system is really also a distr ibuted system. We
may assume, for example, that any two processors can
directly communicate, which is in fact flat wrong. But
these are useful abstractions that let us get at some of
the structural questions like, "What is it about a prob-
lem that lends itself to parallelism? Under what cir-
cumstances can we design a completely new algorithm
that will enormously reduce the amount of t ime re-
quired to solve a problem?"

These are interesting and important mental exercises
because they lead us to discover completely different
techniques for structuring algorithms. Very often the
parallel algorithms that we come up with are very dif-
ferent from the sequential algorithms that we may use
for the same problems.

Most of the work that the theoretical computer sci-
ence community has been doing on parallel computa-
tion has been concerned with making polynomial- t ime
algorithms even faster. We are asking ourselves,

• "Which problems in that class can be t remendously
parallelized? What are the conditions under which
computations can be compressed enormously?" In my
future work, I will focus more attention on applying
parallelism to NP-complete problems. Somebody with a
very severe theoretical point of view could say, "That 's
hopeless, you can never reduce the run time from ex-
ponential to polynomial by throwing processors at a
problem, unless you have an exponential number of
processors." On the other hand, even though you may
never be able to go from exponential to 'polynomial, it 's
also clear that there is t remendous scope for parallelism
on those problems, and parallelism may really help us
curb combinatorial explosions.

I intend to look at branch-and-bound, game trees,
goal-subgoal structures, prolog-like structures, back-
track search, and all of the various kinds of combinato-
rial searches, because I think that such problems are
really well suited for parallel computation. The form
that the theory will take is not yet clear.

KF What is the relationship between your interest
now in parallelism and your earlier work with
Raymond E. Miller?

R K There have been two main periods when I have
been involved in studying parallel computation. The
first was in the early to mid sixties, when I worked
with Miller on several descriptive formalisms for paral-
lel computation. In the more recent period, I 've worked
with Upfal and Wigderson on the design and analysis of
parallel algorithms. Miller and I were originally moti-
vated by considerations of whether it was feasible and
desirable to design special-purpose hardware to enable
computers to perform commonly executed iterative
computations in parallel. We came up with several for-
malisms for describing parallel computations. One was
very specific and concrete, and another was on a very
highly theoretical plane. The models and methods that
we came up with were very similar in spirit to the
systolic designs later pioneered by H. T. Kung, Charles
Leiserson, and others, although I don't mean to say that
we anticipated all their ideas. There were certainly
many insights that we did not have. But, in a sense, we
were doing it too ea r ly - - the world wasn' t quite ready
for it.

We were also interested in certain more qualitative
questions like, "What happens if you ' re running asyn-
chronously, and you don't have a master clock so there
is no way of telling whether A happens before B and B
happens before A? Can you still have a determinate
result for the whole computation even though you can' t
control the order in which these various events are
happening in parallel?"

The recent work is in a different direction. We have
been concerned with complex i ty - -wi th a g!ven num-
ber of processors, how fast can you solve a problem?
The two developments were quite distinct.

KF Do you think that perhaps your work will also
contribute to parallel-processor design a.nd help to
determine the best ways to link different processors
within a machine?
R K At the hardware level, the kind of thing I do is
highly relevant. Laying out an integrated circuit chip is
a bit like designing a city of 50,000 people. There are all
sorts of combinatorial problems having to do with plac-
ing and interconnecting the various circuit modules. At
an architectural level, the work I've been doing on par-
allel computation isn't directly relevant, because I've
been using idealized models that fail to address the
issues of communicat ion between processors. I hope
that my work will begin to move closer to the architec-
tural issues.

KF Can we learn anything exciting about distributed
communications and distributed protocols from
theoretical studies?
R K Yes. There are some very beautiful theoretical
developments having to do with how much you lose
when you have to depend on message passing in a
sparse network of processors rather than direct point-
to-point communicat ion between processors. In a realis-
tic distributed system, the processors have to not only
compute but cooperate like a post office where mes-
sages will flow between processors. There has been

114 Communications of the ACM February 1986 Volume 29 Number 2

Turing Award Interview

some very nice theoretical work on various kinds of
protocols, whe re - - a s in the so-called Byzantine Gener-
als problem, another one of those jazzy n a m e s - - a num-
ber of processors have to reach agreement through mes-
sage passing even when some are faulty and function-
ing as adversaries, trying to mess things up. It has be-
come apparent that randomization is very powerful
there. The kinds of protocols needed for these problems
of cooperation and communication in a distributed sys-
tem can be simplified if coin flipping is permitted. It's a
fundamental insight that randomized algorithms can be
applied in that setting. So there are many links between
theoretical studies and protocols for real-life distributed
systems.

KF People use algorithms that seem to work per-
fectly well in practice even though they lack the theo-
retical pedigree. And they might say, "This work is
fascinating, but if we can, by trial and error, come
across algorithms that work fine, why concern our-
selves with theory?" How wil l your work be applied
in the most practical sense in the future?
R K Some of the most important combinatorial algo-
rithms could never have been invented by a trial-and-
error process; having the right theoretical framework
was absolutely necessary. Once the general shape of an
algorithm has been determined, it is often possible to
tune it empirically, but if you proceed in a purely em-
pirical way, your knowledge is l imited to the very spe-
cific circumstances in which you conduct experiments.
The results of analysis, on the other hand, tend to be
more susceptible to generalization. The justification for
theory, apart from its apparent aesthetic attractions, is
that, when you get a theoretical result, it usually ap-
plies to a range of situations. It's a bit like simulation
versus analysis. They both certainly have their place,
but most simulations only tell you about one very lim-
ited situation, whereas sometimes analysis can tell you
about a whole range of situations. But the solution of
combinatorial optimization problems is certainly as
much an art as it is a science, and there are people who
have wonderfully honed intuitions about constructing
heuristic algorithms that do the job.

K F What will be the focus of research at the Mathe-
matical Sciences Research Institute (MSRI)?
R K Well, I 'm glad that you asked me about MSRI
because that project is very close to my heart. It's a
research institute up in the hills behind the Berkeley
campus, but it's not officially connected with the uni-
versity, and it supports year-long research programs in
the mathematical sciences. In the past, these were
mostly in pure mathematics. The primary support
comes from the National Science Foundation (NSF).

About two years ago, Steven Smale, of the mathemat-
ics department at Berkeley, and I proposed a year-long
project in computational complexity, and we were very
pleased that it was accepted. ! think it's an indication
that the mathematics community, which was really
slow to involve itself in computational complexity, has
now become very receptive to the field. About 70 scien-

tists will participate in this complexity theory research.
They are evenly divided between mathematicians and
computer scientists.

I 'm very proud of the group we have assembled. Peo-
ple are pursuing a wide spectrum of topics. Some are
doing metatheory, focusing on complexity classes like
P and NP, rather than on concrete problems. Some are
working on computational number theory where the
central problem is factoring very large numbers. Others
are concentrating on combinatorial problems. We're ex-
ploring the interface between numerical computation
and complexity theory. And parallelism is a major
theme. I'm absolutely delighted with the way it's
going-- the place is really the Camelot of complexity
theory. There have already been a number of develop-
ments in parallel algorithms, just in the couple of
months we've been operational.

K F Could you be more specific?
R K It would be premature to mention specific results,
except to say that some of them make my earlier work
obsolete.

KF How much money is available for the MSRI
project?
R K The budget of the complexity project at MSRI in
round numbers is $500,000 from NSF and $140,000
from the mili tary services.

This program has been something of a windfall for
complexity theory, but I very distinctly have the feeling
that the general funding picture for computer science is
worse than it has been in years. The NSF is undertak-
ing some very worthy new initiatives, but it 's doing so
without a corresponding expansion in its funding base,
so that these initiatives are being funded at the expense
of existing programs. Although I must say that the
MSRI program is an exception, on the whole, people in
theoretical computer science are being squeezed by the
reductions in funding as a consequence of changed em-
phases at NSF, mostly in an engineering direction.

KF What might be the more practical interests on the
part of the Department of Defense and the three ser-
vices?
R K The support that 's coming from them is princi-
pally in the area of parallel and distributed computa-
tions, and we're planning to run a workshop in the
spring that would bring together mathematicians, nu-
merical analysts, and computer architects. Of course,
there are all kinds of meetings on supercomputers and
parallel computation these days, but this part icular one
will specifically explore the interface between com-
plexity theory and the more realistic concerns of com-
puter users and designers.

KF There has been much debate over the merits of
the Strategic Defense Initiative (SDI). Would you l ike
to comment on it?
R K I don't intend to make a speech about the Star
Wars initiative nor do I pretend to be an expert on
software engineering. But I have studied some of the

February 1986 Volume 29 Number 2 Communications of the ACM 115

Turing Award Interview

evidence that presses the point that it is very dangerous
to build a distributed system of unprecedented propor-
tions that cannot be operational or tested until the criti-
cal moment. I am persuaded by those arguments to the
extent that I am resolved personally not to involve m y -
self in it.

KF Researchers in many fields are studying com-
plexity. Can you comment on the relationship, if any,
between the study of complexity in computer science
and in other disciplines?
R K Complexity means many different th ings- - there ' s
descriptive complexity and computational complexity.
An algorithm may be quite complex in terms of the
way its pieces are put together, and yet execute very
fast, so that its computational complexity is low. So you
have all of these different notions of complexity. It's not
clear to me that electrical engineers, economists, math-
ematicians, computer scientists, and physicists are all
talki.ng about the same beast when they use the word
complexity. However, I do think there are some very
worfhwhile and interesting analogies between com-
plexity issues in computer science and in economics.
For example, economics tradit ionally assumes that the
agents within an economy have universal computing
power and instantaneous knowledge of what 's going on
throughout the rest of the economy. Computer scien-
tists deny that an algo.rithm can have infinite comput-
ing power. They're in fact studying the limitations that
have arisen because of computat ional complexity. So
there's a clear link there with economics.

Furthermore, One could say that tradit ional econom-
i c s - h e r e I 'm really going outside my specia l iza t ion--
has disregarded information lags and the fact that to
some extent we operate without full information about
the economic alternatives available to' US, much in the
same way that a node in a distr ibuted computer net-
work can onlY see its immediate environment and
whatever messages are sent to it. So the analogies are
cogen t , but one has to be careful because we're not
always talking about the same thing when we speak of
complexity.

KF Do you use th e term "heuristics" differently than
do AI researchers?
R K People in AI distinguish between algorithms and
heuristics. I think that they ' re all algorithms. To me an
a'lgorithm is just any procedure that can be expressed
within a programming language. Heuristics are merely
a!gorithms that we don't understand very well. I tend
to live in an artificially precise world where I know
exactly what my algorithm is supposed to do. Now,
when you talk about a program that 's going to play
good chess, translate Russian into English, or decide
what to order in a restaurant-Mo mention a few tasks
with an AI f lavor-- i t ' s clear that the specifications are
much looser. That is a characteristic of programs that
those in AI consider heuristic.

KF David Parnas points out in a recent article that
systems developed under the rubric of heuristic pro-

gramming, that is, programming by trial and error in
the absence of a precise specification, are inherently
less reliable than programming by more formal
methods.
R K Yes, and that brings us back to SDI. That 's one of
the reasons for being concerned about it. I think that
we have much more apparatus for debugging a program
when we can at least define what the program is sup-
posed to do.

K F Some members of the AI research community
respond to that criticism by saying that they're trying
to simulate humans and that humans have no precise
specifications. The best they can hope for is a simula-
tion of an unreliable system.
R K I really believe in trying for crisp hypotheses and
crisp conclusions. I realize that certain areas in com-
puter science have to be dominated by empirical inves-
tigations, but that doesn't relieve us of the responsibil-
ity of thinking very hard about what it is we ' re measur-
ing, what it is we ' re trying to achieve, and when we
can say that our design is a success. And I believe that
a certain measure of scientific method is called for. I
don't buy the idea that simply because you're simulat-
ing the somewhat unknowable cognitive processes of
humans you are relieved of the obligation to have pre-
cise formulations of what you ' re doing.

KF Overall, how do you think computer science is
doing as a discipline?
R K Computer science has enormous advantages be-
cause of the t remendous importance and appeal of the
field now. In some measures, we have been quite suc-
Cessful. A good portion of the young talent in the coun-
try is attracted to our field, especially in the areas of
artificial intelligence and theoretical computer science.

In terms of our progression as a science, I think that
to some extent we are victims of our own success.
There are so many ways to get money, so many things
to try, so many exciting directions, that we sometimes
forget to think about the foundations of our discipline.
We need to have a continuing interplay between giving
free re in to our urge to t inker and try all kinds of heat
things, and yet at the same time designing our experi-
ments using the scientific method, making sure that the
foundations develop well. Our tools are so powerful,
the vistas are so great, the range for applications is so
enormous, that there 's a great temptation to plow
ahead. And we should plow ahead. But we also have to
remember that we're a scientific discipline and not just
a branch of high technology.

KF You have noted the importance of a mixture of
art and science, insight and intuition, as well as the
more rigorous methods of investigation. Have there
been times when something just came to you and you
experience d the so-called eureka phenomenon that
inventors describe?
R K I think we all have experienced i t - -wak ing up in
the morning and having the solution to a problem. We
have to remember that those eureka experiences are

1!6 Communications of the ACM February 1986 Volume 29 Number 2

Turing Award Interview

usually preceded by a large amount of hard work that
may somet imes seem unproduct ive . For example , w h e n
I read Cook's 1971 paper, it d idn ' t take me very long to
see that he had found a key to someth ing phenome-
nally important , and to press on and try to demons t ra te
the scope and significance of his results. In a sense, it
was almost instantaneous, but it was prepared for by
well over a decade of work. I th ink it 's character is t ic
that these moments w h e n one makes connect ions come
after a long period of preparat ion.

K F Have you eve r been ta lk ing to somebody, and an
offhand r e m a r k they made caused someth ing to c l ick?
R K Oh, sure. I find it very helpful to expla in what I 'm
doing because my mistakes usual ly become obvious to
me m u c h quicker. And I l isten to others because I 'm
really a be l iever in bui ld ing up one 's knowledge base. It

greatly increases the probabil i ty that one will find un-
expected connect ions later.

CR Categories and Subject Descriptors: A.0 [General Literature]:
biographies/autobiographies; F.0 [Theory of Computation]: General; F.1.1
[Computation by Abstract Devices]: Models of Computation--computa-
bility theory; F.1.2 [Computation by Abstract Devices]: Modes of Com-
putation-parallelism, probabilistic computation; F.1.3 [Computation by
Abstract Devices]: Complexity Classes--reducibility and completeness,
relations among complexity classes; F.2.0 [Analysis of Algorithms And
Problem Complexity]: General; G.2.1 [Discrete Mathematics]: Combina-
torics; G.2.2 [Discrete Mathematics]: Graph Theory; K.2 [History of
Computing]: people

General Terms: Performace, Theory
Additional Key Words and Phrases: Richard Karp, Turing Award

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

ACM SPECIAL INTEREST GROUPS
ARE YOUR TECHNICAL

INTERESTS HERE?

The ACM Special Interest Groups further the ad-
vancement of computer science and practice in
many specialized areas. Members of each SIG
receive as one of their benefits a periodical ex-
clusively devoted to the special interest. The fol-
lowing are the publications that are available--
through membership or special subscription.

SIGACT NEWS (Automata and
Computability Theory)

SIGAda letters (Ada)

SIGAPL Quote Quad (APL)

SIGARCH Computer Architecture News
(Architecture of Computer Systems)

SIGART Newsletter (Artificial
Intelligence)

SIGBDP DATABASE (Business Data
Processing)

SIGBIO Newsletter (Biomedical
Computing)

SIGCAPH Newsletter (Computers and the
Physically Handicapped) Print Edition

SIGCAPH Newsletter, Cassette Edition

SIGCAPH Newsletter, Print and Cassette
Editions

SIGCAS Newsletter (Computers and
Society)

SIGCHI Bulletin (Computer and Human
Interaction)

SIGCOMM Computer Communication
Review (Data Communication)

SIGCPR Newsletter (Computer Personnel
Research)

SIGCSE Bulletin (Computer Science
Education)

SIGCUE Bulletin (Computer Uses in
Education)

SIGDA Newsletter (Design Automation)

SIGDOC Asterisk (Systems
Documentation)

SIGGRAPH Computer Graphics
(Computer Graphics)

SIGIR Forum (Information Retrieval)

SIGMETRICS Performance Evaluation
Review (Measurement and
Evaluation)

SlGMICRO Newsletter
(Microprogramming)

SIGMOD Record (Management of Data)

SIGNUM Newsletter (Numerical
Mathematics)

SIGOA Newsletter (Office Automation)

SIGOPS Operating Systems Review
(Operating Systems)

SIGPLAN Notices (Programming
Languages)

SIGPLAN FORTRAN FORUM (FORTRAN)

SIGSAC Newsletter (Security, Audit.
and Control)

SIGSAM Bulletin (Symbolic and Algebraic
Manipulation)

SIGSIM Simuletter (Simulation and
Modeling)

SIGSMALL/PC Newsletter (Small and
Personal Computing Systems and
Applications)

SIGSOFT Software Engineering Notes
(Software Engineering)

SIGUCCS Newsletter (University and
College Computing Services)

February 1986 Volume 29 Number 2 Communications of the ACM 117

