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Prefetching is a potential method to reduce waiting time for retrieving data over wireless net-
work connections that commonly occur in mobile scenarios. These connections typically exhibit
low bandwidth as well as high latency. This article analyzes fundamental principles in specula-
tive prefetching. Based on a simplified system model, the influence of parameters and strategies on
prefetching performance is investigated, both analytically and in simulation. The reduction of the
mean waiting time is used as performance metric. An example is given that makes use of the Zipf dis-
tribution to demonstrate the influence of the documents’ probability distribution and its parameters.
A low-complexity algorithm that performs optimally under the given assumptions is presented.

I. Introduction

Radio spectrum is a notoriously scarce resource. As a con-
sequence connection speeds over wireless links are and
will generally be lower than in the fixed parts of the net-
work by orders of magnitude. Apart from the well es-
tablished data compression techniques and conventional
caching, prefetching of data gains interest, due to its po-
tential to improve the performance of mobile applications.
Prefetching relies on the ability to predict a future request
and to proactively retrieve the necessary data over the lim-
ited network resource before the actual request is made,
thereby reducing the waiting time for the user. A prefetch-
ing algorithm has to estimate the potential future requests
(speculative prefetching). Its performance, in terms of the
reduction in waiting time, depends on the degree of ran-
domness of the true requests and the accuracy of the es-
timation. Previous research on algorithms and architec-
tures for conventional caching [3] has been performed and
the obtained results are a valuable information source for
the investigation of prefetching. A model for speculative
prefetching has been presented by Tuah et al. in [6]. If this
model is assumed, an optimum algorithm requires solving
a stretch knapsack problem (SKP). The model presented
here is a variation of Tuah’s and results in an algorithm
with low computational complexity for achieving the theo-
retical optimum performance. In the work presented here
some underlying principles that arise in prefetching are in-
vestigated. Our aim is to gain fundamental insight in these
principles which will help to interpret and understand the
results obtained in trace-driven simulations and real sys-
tems.

II. System Model

Predominantly traces of application-layer traffic, mostly
HTTP-traffic, have been used to carry out performance
analysis and comparisons between distinct prefetching al-
gorithms and combinations of prefetching and caching
[2][4][5]. Simulations based on real traces certainly are
capable to achieve more realistic results than model-based

analysis. Yet, it is difficult to isolate the effect of individ-
ual parameters that resulted in the particular used trace. As
the character of network-traffic changes in dramatic speed
and extend, it is necessary to analyze the performance of
algorithms and strategies based on models, whose param-
eters can be arbitarily chosen to resemble potential fu-
ture circumstances. We therefore introduce a probabilis-
tic model for our analysis. The model is comprised of an
entity (client) that acts as a discrete random source issu-
ing requests, and other entities (servers) that deliver their
responses over connections with finite bandwidth. We as-
sume that the connections’ bandwidth is exclusively dedi-
cated to the transport of responses to this particular client.
This models e.g. a scenario with a mobile device using a
fixed bandwidth wireless link to connect to the conglom-
erate of servers in the internet, with the wireless link as
the dominant bottleneck and the responses representing the
dominant data volume. We assume that in a certain situa-
tion the client requests a document. The requested docu-
ment will be randomly chosen out of an ordered set of N
documents d;, ¢ = 1...N, with probability P{d;} = p;,
size V; and connection speed C'; for the retrieval of this

document. The document will be requested at previ-
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Figure 1: Document dy is chosen at request time tg

ously unknown time ¢, drawn randomly from a continu-
ous probability density function f, (tg). The connections
are available for the prefetching attempt at ¢ = ¢o. The time
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between the request generation and the moment the corre-
sponding document is completely retrieved is called wait-
ing time T,,. If a new request is generated during a specula-
tive retrieval for another document, the speculative retrieval
is immediately interrupted, whereas in [6] the speculative
prefetch completes before the actually requested document
is retrieved.

III. Analysis

In our analysis we will answer the following general ques-
tions: What criterion should we apply to determine the se-
quence of speculatively retrieved documents? Do we prefer
small documents over large documents? How does the dis-
tribution of probabilities influence the achievable reduction
in waiting time 75,?
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Figure 2: Expected value for waiting time E {T, | tg}
and arbitrary probability density function f;,(tg) of the
request time tg.

The expected waiting time without any prefetching is

W
E{TU)}noprefetch = sz ' HZZ (])
i=1

We can express any sequence of the N possible docu-
ments d; as a permutation of the initial ordered set. The
number of possible permutation of an N-element set is N!.
We write *element ; and *value to denote the i-th element
of a set or a value calculated for a particular permutation k.
The index k is used to denote the position of the particular
permutation among any defined order (e.g. lexicographic)
of all possible permutations. Hence, *p; and ¥V are the i-th
elements of the ordered set of the documents’ probabilities
and sizes after these sets have been ordered according to
the k-th permutation with permutations numbered in the
specified order.

We calculate E {*T,, | tg}, the expected value for T,
for a chosen permutation k, under the condition that the

request arrives at a certain time tg

E {k‘/I'w | tR} =F {TW}noprefetch - E {h]—‘g“m | tR} ’ (2)

with

N
E {k/‘rgain | tR} = Z (kp, - min { max 07

i=1

y
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We try to give an intuitive explanation for Eqn.3: The
total time available for prefetching is tg — tp. It is nec-
essary to distinguish between three distinct cases: a) no
attempt has been made to retrieve the chosen document
before tg. In this case no time is gained, but the re-
trieval starts immediately at tg. Hence, the minimum time
gain is 0. b) the chosen document is currently being re-
trieved. Subtracting the time invested on the other docu-
ments from the total time available for prefetching yields
the time gained. c) the document has already been com-
pletely retrieved. Then the complete time :g necessary to
retrieve it is gained, but not more. The three cases are rep-
resented by the min / max operation. Finally the expected
value is calculated by weighting with the documents’ prob-
abilities *p; and summing up overalli = 1... N.

Eqn. 3 is illustrated in Fig. 2, with ¢y = 0, for one arbi-
tray permutation k. The upper curve shows the expected
value for the waiting time. It is composed of N linear
segments. Each segment corresponds with the retrieval of
one particular document. For requests arriving as early as
tr = 0, no improvement is possible yet. The expected
value for the waiting time is then

E {kq—'w | tp = 0} =K {Tw}noprefemh’ (4)

which is the same for all permutations. Independently of
the chosen permutation the expected value for the waiting
time reaches zero when all documents have been prefetched
after

N
Ty, = ; % (5)

As tg is distributed according to fi,(tr) the expected
value of the unconditioned waiting time is

E{T.} :/Ooo fin(tr) - E{"Ty | tr} dtr. (6)

In order to minimize E {7}, } it is sufficient to choose the
permutation that minimizes the gray-shaded area in Fig. 2.
This can be proved, using the facts that E {*T,, | tr} is
monotonically decreasing for all permutations k, and that
ftn(tr) > 0V tg. With this in mind and the observation
that the slope of every segment depends only on the prob-
ability p; of its document we can derive a simple two-step
algorithm:
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1. sort the documents with respect to their
probability p;.

2. sequentially fetch all documents.

It is important to notice that the optimum sequence only
depends on the documents’ probabilities not on their size
or connection speed. With this result we are now able to
answer two of the three questions we asked when begin-
ning our analysis: The probabilities p; should be applied
as the criterion for determining the sequence. In order to
minimize waiting time, it is not necessary or beneficial to
prefer small documents over large documents.

III.A. Example

To acquire an understanding for the influence of the
probabilities and permutations we analyze an example.
The parameters in the example shall be N = 6,
C;,V;=1Vi=1...N. The probabilities p; shall be
distributed according to Zipf’s Law! [1], with a = 1
(p1 = 0.408, p» ~ 0.2041, ps =~ 0.1360, ps =~ 0.1020,
p5 ~0.0816, ps ~0.0680).

Fig. 3 shows the resulting curves for all 6! = 720 permuta-
tions, each representing a possible prefetching decision.
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Figure 3: Influence of permutations (Cp...Cs =1,
Vi ... Vg = 1, Zipf Distribution, a = 1).

Common sense suggests that the more pronounced the
differences in the documents’ probabilities p; are, the bet-
ter the performance of pefetching can get. The distribution
according to Zipf’s Law facilitates a quantitative analysis
of this conjecture. By varying a we can adjust the dis-
tribution from being absolutely flat (« = 0) to a stronger
pronouncing of the likelier documents when « rises to 1.0
(or higher). This effect is depicted in Fig. 4. Decreasing o
reduces the distance between best and worst strategy. Fig. 5

1Zipf’s Law states that the probability of the i-th most likely event
is proportional to 1/3. This is also called the strict Zipf’s Law. Many
interesting experiments show a slight modification of this law. They can
be more adequately modelled with a probability proportional to 1/¢* for
the 2-th most likely event. The value « then typically takes a value of less
than unity. For a = 1 this modified law is equivalent to the strict Zipf’s
Law.

shows the ordered (best) and reverse ordered (worst) strate-
gies. We can see that for the case a = 0, when all N doc-
uments have the same probability p; = 1/N, no difference
between the best and the worst strategy exists.
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Figure 5: Influence of a (Cy...Cs =1, Vi ...
Zipf Distribution).

IV. Simulation

To augment and verify the analysis Monte-Carlo simula-
tions are performed. The parameters (p;, Cj, V;) are chosen
to match the example. In the first simulation the prefetching
controller (PC) has a-priori knowledge of the documents’
probabilities p;. The actual waiting times T, =1... M
are measured for M = 1000 trials. The mean value
Tw= 4 Zj\il T, is plotted in Fig. 6 for several ¢ g. Sim-
ulation results and theoretical analysis show good consen-
sus.

In the second simulation ¢g is uniformly distributed from
[0, Ty,] (This distribution simplifies interpretation of re-
sults. Other distributions e.g Poisson, Pareto are used for
more realistic scenarios). Furthermore, the PC has no
a-priori knowledge of p; and uses the relative frequency of
observed documents as estimations of p; in this simulation.
The learning behaviour and the influence of « are shown in
Fig.7. According to the theoretical analysis performance
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of the PC should increase with the value of . The PC ex-
ploits the asymmetries in the documents’ probabilities. We
can see for the particular setup of parameters the reduc-
tion of T,,. It takes approximately 10 (20, 30) visits for
a = 0.0 (o« = 0.5, a = 1.0) for the PC to gather enough
observations for a good estimation of the probabilities p;
that is necessary to reach its asymptotic performance. With
these observations and the results of the analysis depicted
in Fig. 5 we have answered the third question on the influ-
ence of the distribution of probabilities on the achievable
performance.
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Figure 6: Influence of permutations, simulation result
(Cy...C¢ =1,Vy ... Vg = 1, Zipf Distribution, a = 1).
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Figure 7: Influence of a, simulation result (C; ...Cg =1,
Vi ...V = 1, Zipf Distribution), tg equally distributed .

V. Conclusions and Further Work

The mean waiting time is minimized by prefetching with an
algorithm with low computational complexity. The perfor-
mance of a PC with a-priori knowledge of the probabilities
pi, that follows the proposed algorithm, constitutes an up-
per bound on the achievable reduction in waiting time. A
PC’s strategy, to use the relative frequencies of occurrance
as estimates for the documents’ probabilities, is optimal in
the maximum-likelihood sense.

For a typical of today’s mobile scenarios, i.e. WWW-
browsing over a circuit-switched and air-time charged per-

sonal communication system the proposed model and algo-
rithm is resembling reality fairly well.

Interesting extensions to the current model are time-
varying document probabilities p; (¢) and individual proba-
bility density functions f;, (tg | d;) of the request time tg
for each document d;.

It is also desirable to enhance the model to allow the analy-
sis of other scenarios where the bottleneck connection is
used by a multitude of users simultaneously. For minimiz-
ing the global waiting in this broader scenario it is some-
times necessary to refrain from prefetching documents with
lower probabilities p;. We further intend to improve the PC
to obtain and exploit additional information (soft informa-
tion) on the reliability of its estimation. This problem can
be treated by Bayesian inference.

Based on the extensive work on architectures and proto-
cols (for an overview and excellent starting point see [3])
the implementation and deployment of efficient systems re-
mains the utmost objective.
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