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The two-node tandem Jackson network serves as a convenient reference model for the analysis
and testing of different methodologies and techniques in rare event simulation. In this paper we
consider a new approach to efficiently estimate the probability that the content of the second buffer
exceeds some high level L before it becomes empty, starting from a given state. The approach is
based on a Markov additive process representation of the buffer processes, leading to an exponential
change of measure to be used in an importance sampling procedure. Unlike changes of measures
proposed and studied in recent literature, the one derived here is a function of the content of the
first buffer. We prove that when the first buffer is finite, this method yields asymptotically efficient
simulation for any set of arrival and service rates. In fact, the relative error is bounded independent
of the level L; a new result which is not established for any other known method. When the first
buffer is infinite, we propose a natural extension of the exponential change of measure for the finite
buffer case. In this case, the relative error is shown to be bounded (independent of L) only when
the second server is the bottleneck; a result which is known to hold for some other methods derived
through large deviations analysis. When the first server is the bottleneck, experimental results
using our method seem to suggest that the relative error is bounded linearly in L.

Categories and Subject Descriptors: I.6.1 [Simulation and Modeling]: Simulation Theory—
Systems theory; G.3 [Probability and Statistics]—Queueing theory, stochastic processes

General Terms: Algorithms, Experimentation, Performance, Theory

Additional Key Words and Phrases: Bounded relative error, importance sampling, Markov additive
processes, orthogonal polynomials, rare event simulation, tandem Jackson network

1. INTRODUCTION

The tandem Jackson network has received considerable attention as a reference
example for the analysis and testing of different methodologies and various

Author’s addresses: D. P. Kroese, Department of Mathematics, The University of Queensland,
Brisbane 4072, Australia; email: kroese@maths.uq.edu.au; V. F. Nicola, Department of Electrical
Engineering, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; email:
nicola@cs.utwente.nl.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2002 ACM 1049-3301/02/0400-0119 $5.00

ACM Transactions on Modeling and Computer Simulation, Vol. 12, No. 2, April 2002, Pages 119–141.



120 • D. P. Kroese and V. F. Nicola

techniques to speed up simulations involving rare events. The particular inter-
est in this system stems from the fact that in spite of its (apparent) simplicity,
its large deviations behaviour is not yet fully understood. The main difficul-
ties are its multi-dimensional state space and the complicated large deviations
behaviour along its boundaries.

Among rare events of interest in the tandem Jackson network, the most
studied is the overflow of the total network population (see, e.g., Parekh
and Walrand [1989], Anantharam et al. [1990], Frater and Anderson [1989],
Frater et al. [1991], Tsoucas [1992], Glasserman and Kou [1995]). Exact
large deviations analysis leading to an asymptotically efficient change of mea-
sure is quite difficult. Instead, a heuristic change of measure is suggested
in Parekh and Walrand [1989], which interchanges the arrival rate (to the
first queue) and the slowest service rate. The same change of measure is
suggested based on time reversal arguments (see, e.g., Anantharam et al.
[1990], Frater et al. [1991]). However, analysis in Glasserman and Kou [1995]
and counter examples in Glasserman and Wang [1997] show that the impor-
tance sampling estimator based on this change of measure is not necessarily
asymptotically efficient; in fact, it has an infinite variance in some parameter
regions.

Other rare events of interest are the buffer overflow at the individual network
nodes. If the node of interest is the bottleneck (relative to all preceding nodes),
then an asymptotically efficient exponential change of measure is obtained by
interchanging the arrival rate and the service rate at this (bottleneck) node;
the service rates at all other nodes are kept unchanged (see, e.g., Parekh and
Walrand [1989], Anantharam et al. [1990] and Frater and Anderson [1989]).
However, this change of measure is not asymptotically efficient if we are inter-
ested in the buffer overflow at a node after the bottleneck.

The theory of effective bandwidth has been used to derive heuristics for the
efficient simulation of a class of feed-forward discrete-time queueing networks,
see, for example, Chang et al. [1994] and Veciana et al. [1994]. (This class
essentially resembles a feed-forward fluid-flow network.) To the best of our
knowledge, an analogous approach for application to continuous-time queueing
networks has not yet been introduced; not even for a simple tandem Jackson
network.

In this paper we consider a two-node tandem Jackson network, and study
the buffer overflow event at the second node. We present a new formulation
of the problem using the theory of Markov additive processes (MAP) (see,
e.g., Asmussen and Rubinstein [1995], Ney and Nummelin [1987a, 1987b]).
By exponentially tilting an appropriate MAP representation of the system,
we find and implement an importance sampling procedure to estimate the
probability of buffer overflow in the second node. Unlike changes of measure
considered in the literature, the one we derive here depends on the contents
of the first buffer. When the first buffer is finite, we formally prove that the
proposed simulation procedure yields estimates with a relative error that is
bounded independently of the overflow level. This result is much stronger than
asymptotic efficiency, which is shown not to hold for other known methods
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(see Glasserman and Kou [1995]). When the first buffer is infinite, we propose
a change of measure which is a natural extension of the change of measure
for the case of finite first buffer. Using the theory of orthogonal polynomials
[Chihara 1978] we show that this leads to two types of behaviour for the
simulation procedure. When the second buffer is the bottleneck, we again have
estimates with bounded relative error. However, when the first buffer is the
bottleneck, experimental simulation results suggest that the relative error is
(asymptotically) linearly bounded in the overflow level.

A related approach for the simulation of backlogs in fluid flow lines is con-
sidered in Kroese and Nicola [1998]. More recently, an adaptive importance
sampling approach is used to determine (approximately) the ‘optimal’ state-
dependent change of measure for rare event simulation in Jackson queueing
networks [de Boer et al. 2000] (optimality here is in the sense of minimiz-
ing the variance of the estimator or a related cross-entropy distance measure
[Rubinstein 1999]).

In Section 2 we give some preliminaries and a Markov additive process (MAP)
representation of the two-node tandem Jackson network. For this MAP, an ex-
ponential change of measure is introduced in Section 3. In Sections 3.1 and 3.2,
appropriate changes of measure are derived for finite and infinite first buffer,
respectively. A proof of asymptotic efficiency of the corresponding importance
sampling procedure in the case of finite first buffer is also presented. Exper-
imental studies using some concrete examples are carried out in Section 4 to
examine the (asymptotic) efficiency of the developed importance sampling es-
timator. Conclusions and related future research are given in Section 5. The
Appendix deals with the spectral theory of certain triangular matrices and
their corresponding orthogonal polynomials and is partly based on Kroese et al.
[2002]. The lemmas listed there are the main ingredients for the proof of asymp-
totic efficiency of the proposed simulation procedures.

2. MARKOV ADDITIVE PROCESS REPRESENTATION

A Markov additive process in continuous time is a stochastic process (Jt , Zt),
where (Jt) is a Markov chain with denumerable state space and (Zt) has sta-
tionary and independent increments during the time intervals when (Jt) is in
any given state. That is, given Jt has not changed in the interval (t1, t2), then
for any t1 < s1 < · · · < sn < t2, the increments Zs2 − Zs1 , . . . , Zsn − Zsn−1 are
mutually independent, and the total increment during the interval [t1, t2] de-
pends on t1 and t2 only through the difference t2 − t1. Moreover, a jump of (Jt)
from i to j has a certain probability (depending only on i and j ) of triggering
a jump of (Zt) at the same time. The size of the jump in the process (Zt) has a
fixed distribution, which depends only on i and j . For theoretical properties and
limit theorems of MAPs, the reader is referred to Ney and Nummelin [1987a]
and Ney and Nummelin [1987b].

A Markov additive process (Jt , Zt) is characterized by the family of matrices
(Mt(s), t > 0), where the (i, j )-th element of Mt(s) is given by[

Mt(s)
]

i j = Eies(Zt−Z0) I{Jt= j },
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where Ei denotes the expectation operator given the initial MAP state J0 = i.
Notice that Mt(·) is a generalization of the moment generating function for
ordinary random variables. Moreover, we have

Eies(Zt+h−Z0) I{Jt+h= j } =
∑

k

Eies(Zt+h−Z0) I{Jt=k}I{Jt+h= j }

=
∑

k

Eies(Zt−Z0) I{Jt=k} Ei
[
es(Zt+h−Zt ) I{Jt+h= j } | Jt = k

]
=
∑

k

[Mt(s)]ik Ekes(Zh−Z0) I{Jh= j }.

Consequently, if for all k and j

[A(s)]k j := lim
h↓0

1
h
Ek
[
es(Zh−Z0) I{Jh= j } − δk j

]
exists (we have used δ in the usual notation of Dirac), then

d
dt

Mt(s) = Mt(s)A(s), t > 0,

with M0(s) = I (the identity matrix). It follows that

Mt(s) = et A(s), t > 0. (1)

The matrix A(s) is identified as the MAP (infinitesimal) generator.

Two-Node Tandem Network

Consider a simple Jackson network consisting of two queues in tandem. Cus-
tomers arrive at the first queue (buffer) according to a Poisson process with rate
λ. The service time of a customer at the first queue is exponentially distributed
with rate µ1. Customers that leave the first queue enter the second one. The
service time in the second queue has an exponential distribution with rate µ2.
We assume stability of the queueing system, that is,

λ < min{µ1, µ2}.
The size of the first buffer may be finite or infinite; in fact, we will consider
both cases. Let X t and Yt denote the number of customers in the first and
second queue at time t, respectively. Let Pi denote the probability measure
under which (X t) starts from i at time 0 (i.e., X 0 = i, i > 0); and letEi denote the
corresponding expectation operator. In Section 3 we consider various changes of
measure; P̃i denotes any such measure for which (X t) starts at i, Ẽi denotes the
corresponding expectation operator. Assuming that the second buffer is initially
non-empty, say, Y0 = 1, we are interested in the probability that, starting from
(X 0, Y0) = (i, 1), the content of the second buffer hits some high level L ∈ N
before hitting 0. We denote this probability by γi and refer to it as the overflow
probability of the second buffer, given that the initial number of customers in
the first queue is i.

Consider the estimation of the steady-state probability that the content of the
second buffer is at, or exceeds, a given level, L. One way to estimate this prob-
ability is by observing a large number of ‘true’ regeneration cycles (e.g., with
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an empty system as a regeneration point). Then, an estimate of the steady-
state overflow probability is the ratio of two (possibly independent) estimators
[Heidelberger 1995]; one for the expected time at or above level L in a cycle
(the numerator), and the other for the expected cycle time (the denominator).
The numerator could be estimated independently and more efficiently using
importance sampling. A disadvantage is that true regenerations may not be
sufficiently frequent (i.e., the number of events in a regeneration cycle is exces-
sive), thus causing the simulation to be less efficient.

An alternative way to estimate the steady-state overflow probability at the
second buffer is to observe a large number of ‘pseudo’ regenerations. Here, a
pseudo regeneration is defined to be a sample path between two successive en-
tries to the set of states (X t , Yt) = (·, 1) due to a departure from node 1. These
pseudo regenerations are not independent, identically distributed; however, a
ratio estimator of the overflow probability (similar to that for true regenera-
tions) still holds [Heidelberger 1995], provided that the method of batch means
is used to form a valid confidence interval (each batch consists of a sufficiently
large number of pseudo cycles). Such an estimator is sometimes referred to
as the A-cycle approach (see, for example, Nicola et al. [1993]). An advantage
is that pseudo regenerations are more frequent than true regenerations, thus
leading to less costly simulation. Here too, importance sampling can be used to
efficiently estimate the expected time at or above level L in a pseudo regenera-
tion cycle. The change of measure is the same as that used to efficiently estimate
γi (defined above) for any i = 0, 1, 2, . . . , and which is considered in this paper.

As will be explained in Remark 2.1, the choice of the probability γi (to be esti-
mated) is also made to facilitate the exposition in this paper; other probabilities
of interest may be estimated using the same approach.

The content of the second buffer (Yt) can be expressed as

Yt = Y0 + (Dt − Ot), t > 0,

where (Dt) denotes the departure process from the first queue and (Ot) denotes
the departure process from the second queue. To see why the theory of Markov
additive processes is relevant for the tandem queue, consider the process (St),
defined by

St = Y0 + (Dt − Et), t > 0, (2)

where (Et) is a Poisson process with intensity µ2, independent of (Dt). Given
that Y0 > 0, denote by τ0 the first time Yt hits 0, that is,

τ0 := inf
t
{t > 0 : Yt = 0}.

Clearly, the process (St) is identical to (Yt) in the interval
[
0, τ0

]
. Hence, starting

at t = 0, the process of interest (X t , Yt) is identical to the process (X t , St) only
until (St) hits 0 for the first time.

It is not difficult to see that (X t , St) is a Markov additive process. Namely,
during intervals where (X t) is constant, (St) behaves as a pure death process
with rate µ2. Moreover, a downward jump of (X t) triggers (at the same time)
an upward jump of (St) of size 1. Now, setting X 0 = i and S0 = Y0 = 1, note
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that the overflow probability γi (as defined in the previous section) is exactly
the probability that (St) hits level L before hitting level 0.

Remark 2.1. It is important to note that the appropriate MAP represen-
tation depends on the probability being considered. For example, one way to
remove the restriction Y0 > 0 (in the definition of the probability γi) is by consid-
ering the MAP (Jt , Yt) in which the driving process (Jt) is the two-dimensional
Markov chain (X t , Yt). Note that the additive process (Yt) is a jump process;
the jump size is 0 if (X t) makes an upward jump, +1 if (X t) makes a downward
jump, and is −1 if (Yt) makes a downward jump. The same MAP can be used
to study the more conventional probability that from some arbitrary starting
state (e.g., an empty system), the second buffer hits some high level L before
the system empties.

If we are interested in the overflow probability of the overall network pop-
ulation, starting from an empty system, and before the system empties again,
then an appropriate MAP representation would be (Jt , X t + Yt). Here too, (Jt)
is the two-dimensional Markov chain (X t , Yt). The additive process (X t + Yt)
is again a jump process; the jump size is +1 if (X t) makes an upward jump, 0
if (X t) makes a downward jump, and is −1 if (Yt) makes a downward jump.

In the above MAPs, the driving process (Jt) = (X t , Yt) has the two-
dimensional state space in N×N when the first and second buffers are infinite.
The state space is finite in one dimension (respectively both dimensions) if there
is a limit on the capacity of the first buffer (respectively the total network pop-
ulation). Equation (1) still holds, however, Mt(s) and A(s) are now obtained
by unfolding the two-dimensional state space into a one-dimensional state
space. Further investigation is underway to use these MAP representations for
efficient simulation.

Other Jackson Networks

Other tandem Jackson networks can be treated similarly. For example, consider
a 3-node tandem network; we are interested in the overflow probability at the
third node, starting from a given state (i, j , 1), where i and j may assume any
values. An appropriate MAP representation is one in which the driving pro-
cess (Jt) is the two-dimensional Markov chain (X t , Yt), representing the buffer
content at the first and the second node, respectively. More general Jackson
networks may be represented similarly; however, depending on the measure of
interest, the dimension (and hence the state-space) of the MAP process may
increase with the number of nodes, leading to more tedious yet essentially
similar mathematical and algorithmic treatment. Needless to say, state-space
explosion is an inherent problem that we do not claim to have overcome using
our approach.

3. EXPONENTIAL CHANGE OF MEASURE

The key to understanding the change of measure that we are going to propose
is in Asmussen and Rubinstein [1995], where an exponential change of mea-
sure for Markov additive processes is discussed in the context of rare event
simulation.
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3.1 Finite First Buffer

We first consider the case where the first buffer has a finite capacity N . In
this case the state space of the driving process (X t) is finite in {0, . . . , N } and
the theory in Asmussen and Rubinstein carries through. Consider the MAP
(X t , St) defined in Section 2. To construct the corresponding MAP generator
(i.e., the matrix A(s) in (1)), we need to determine the infinitesimal expectations
Ei[es(Sh−S0) I{X h= j } − δi j ] as h ↓ 0, for all i, j in {0, . . . , N } (note that S0 = 1 and
δi j = 0 for j 6= i, as defined in Section 2). For instance, since a downward jump
of (X t) leads to an upward jump of (St), it follows that, for i = 1, . . . , N , as
h ↓ 0, we have

Ei
[
es(Sh−S0) I{X h=i−1} − δi,i−1

] = Ei
[
es(Sh−S0) | X h = i − 1

]
Pi(X h = i − 1)

= es(µ1h+ o(h))
= µ1hes + o(h).

Hence, the (i, i − 1)-th element of the matrix A(s) exists and is equal to µ1es.
Other elements of the matrix A(s) can be determined similarly. Therefore, for
the MAP (X t , St), (1) holds with A(s) given by the (N + 1, N + 1)-tri-diagonal
matrix

GN (s) =


−λ− µ2 + µ2e−s λ

µ1es −λ− µ1 − µ2 + µ2e−s λ

. . . . . . . . .
µ1es −µ1 − µ2 + µ2e−s

.

Note that the MAP generator GN (s) is equal to the matrix Q̂ (N+1)(e−s), defined
in (27) of the Appendix.

Change of Measure

Next, we define a change of measure based on the family of matrices (GN (s)).
For any s > 0, define κN (s) := log(sp(Mt(s)))/t, where sp(Mt(s)) denotes the
spectral radius (or the maximum eigenvalue) of Mt(s). Using (1) we identify
κN (s) as the largest positive eigenvalue of GN (s). Let w(s) = {wk(s), 0 6 k 6 N }
denote the corresponding right-eigenvector. By the Perron-Frobenius theory of
positive matrices, we see that w(s) is a strictly positive vector (if we take one
of the elements, e.g., w0(s), strictly positive).

For any s > 0 and any initial state i for the first buffer, we consider the
following change of measure P̃i under which (X t , St) is also a MAP, but for
which the Markov chain (X t) has a different Q-matrix (infinitesimal generator)
given by Asmussen and Rubinstein [1995]

Q̃ N (s) = 1−1(w(s)) GN (s) 1(w(s)) − κN (s) I, (3)

and (St) has death rate

µ̃2(s) = µ2e−s. (4)
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Here, we have used the notation 1(a) to denote a diagonal matrix with entries
equal to the elements of a vector a.

Remark 3.1. Note that the original Q-matrix of (X t) is the tri-diagonal
matrix 

−λ λ

µ1 −λ− µ1 λ

. . . . . . . . .
µ1 −µ1

 .
To see that Q̃ N (s) is a genuine Q-matrix, observe that the off-diagonal entries
of Q̃ N (s) are strictly positive, because w(s) is a positive vector. It remains to
be proved that the rows of Q̃ N (s) sum up to 0. Denoting by 1 the (N + 1)-
dimensional vector of 1’s, and by 0 the (N + 1)-dimensional vector of 0’s, we
have

Q̃ N (s)1 = 1−1(w(s)) κN (s) w(s)− κN (s) 1 = 0.

Writing out (3), we find that the so-called conjugate arrival and service rates
of the first queue are given by

λ̃(k; s) = λwk+1(s)
wk(s)

, k = 0, 1, . . . , N − 1, (5)

µ̃1(k; s) = µ1es wk−1(s)
wk(s)

, k = 1, 2, . . . , N . (6)

Note that the conjugate rates depend on k, the content of the first buffer.

Remark 3.2. Since the rows of Q̃ N (s) sum up to 0, from (3) we find that

κN (s) = −λ− µ2 + λ̃(0; s)+ µ̃2(s),
κN (s) = −λ− µ1 − µ2 + λ̃(k; s)+ µ̃1(k; s)+ µ̃2(s), k ∈ {1, . . . , N − 1},
κN (s) = −µ1 − µ2 + µ̃1(N ; s)− µ̃2(s).

Importance Sampling

We may estimate γi by importance sampling using any of the new measures
defined above (each s > 0 corresponds to a different measure). Indeed, if we
define τ as the first time at which (St) hits level L or level 0, then

γi = Ei I{Sτ=L} = ẼiWτ (s)I{Sτ=L}, (7)

where Wτ (s) is the likelihood ratio corresponding to P̃i over the interval [0, τ ].
Two questions now arise. First, what is this likelihood ratio? Second, what is
the best choice of s under which to perform an importance sampling simulation?

To answer the first question, consider a “trajectory” of (X t , St) in the interval
[0, τ ], during which nτ state transitions have occurred, say, at t1, t2, . . . , tnτ (note
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that tnτ = τ , since τ is a stopping time of (X t , St)). These transitions are due
to either an arrival to the first queue, a departure from the first queue, or
a departure from the second queue. Given that X 0 = i, i ∈ {0, . . . , N }, and
making use of Remark 3.2, it can easily be shown that the likelihood ratio due
to a transition at time t1 is given by:

—if arrival to the first node, then

wi(s)
wi+1(s)

e−t1κN (s), i = 0, 1, . . . , N − 1

—if departure from the first node, then

wi(s)
wi−1(s)

e−se−t1κN (s), i = 1, 2, . . . , N

—if departure from the second node, then

ese−t1κN (s), i = 0, 1, . . . , N .

Repeating the above argument at the transition times t2, . . . , tnτ , yields the
following likelihood ratio, corresponding to P̃i over the interval [0, τ ],

Wτ (s) = wi(s)
wX τ

(s)
e−sSτ+τκN (s). (8)

Having established the likelihood ratio corresponding to trajectories in the in-
terval [0, τ ], we now need to determine an appropriate s under which to carry
out the importance sampling procedure. The above likelihood ratio suggests
that we should take s = sN such that κN (sN ) = 0; in fact there is only one such
sN .

LEMMA 3.3. The equation

κN (s) = 0 (9)

has exactly one solution sN in the interval (0,∞).

PROOF. This follows directly from Lemma A.3(b), because κN (s) is the largest
eigenvalue of Q̂ (N+1)(e−s).

To simplify the notation in what follows, we abbreviate the vector w(sN ) to
w = (w0, . . . , wN ). We also abbreviate λ̃(k; sN ) to λ̃(k), µ̃1(k; sN ) to µ̃1(k), and
µ̃2(sN ) to µ̃2.

We now show that performing importance sampling with s = sN yields an
estimator which is asymptotically efficient.

THEOREM 3.4. Let sN be the unique solution to (9), then under the measure
P̃i defined in (4), (5) and (6), the random variable

0 := wi

wX τ

e−sN L I{Sτ=L} (10)

has an expectation γi and a relative error bounded in L.
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PROOF. First, from (7) and (8) and the fact that κN (sN ) = 0, we have

γi = Ẽi
wi

wX τ

e−sN L I{Sτ=L} = Ẽi0. (11)

Next, we claim that under the new measure,

λ̃(k) > λ, k = 0, . . . , N − 1, (12)
µ̃1(k) > µ1, k = 1, . . . , N , (13)
µ̃2 < λ. (14)

This follows directly from Lemma A.4 of the Appendix, with v having dimension
n = N+1, ûn = e−sN , and (v1, . . . , vn)T = (w0, . . . , wN )T . Specifically, (12) follows
from Lemma A.4 (b) and (5), (13) follows from Lemma A.4 (c) and (6), and (14)
follows from (31) and (4).

Sinceµ1 > λ, it follows that, under the new measure, the output rate from the
second queue is strictly less than its input rate. Hence, under the new measure,
the second queue is unstable and a high level L can be reached before hitting 0
with a probability which is bounded from below by some constant c > 0, that is,

inf
L
P̃i(Sτ = L) = c, (15)

where c does not depend on L. Using (15), (11) gives the following lower and
upper bounds for γi :

ce−sN L wi

maxk wk
6 γi 6 e−sN L wi

mink wk
. (16)

Similarly,

Ẽi0
2 = ẼiW 2

τ (sN )I{Sτ=L} 6 Ẽi
[
W 2
τ (sN ) | Sτ = L

]
6 e−2sN L w2

i

mink w2
k
. (17)

Hence, denoting the variance under the new measure by Ṽi, we have

Ṽi0

(Ẽi0)2
6 (maxk wk)2

c2 mink w2
k
− 1.

In other words, 0 has a bounded relative error, independent of L.

Remark 3.5. Equation (16) shows that, as a function of L, γi decays expo-
nentially with rate sN , that is,

γi ∝ e−LsN = (e−sN
)L
.

Alternatively, we may say that, as a function of L, γi decays geometrically with
rate ηN = e−sN .

The above theorem shows (formally) that we can estimate γi efficiently by
generating samples 01, . . . , 0n of 0 from n independent importance sampling
simulation runs (using the conjugate rates), with a stopping time when the
content of the second buffer hits either level 0 or level L. An estimator for γi is

0̂ = 1
n

n∑
j=1

0 j .
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An estimator for the variance of 0 is the usual sample variance, which can be
used to construct a confidence interval for the estimator 0̂.

To obtain the conjugate rates, we need to calculate ηN and w. There exist
various efficient techniques to find the largest eigenvalue of a matrix; any of
these can be used to solve (9) for sN and hence ηN . To determine the eigenvector
w, we normalize w such that w0 = 1. Using the tri-diagonal form of G(sN ), it is
easy to see that

w1 = (λ+ µ2 − µ2ηN )/λ,

and

wk+2 + a1wk+1 + a2wk = 0, k = 0, . . . , N − 2, (18)

where a1 = −(λ + µ1 + µ2 − µ2ηN )/λ and a2 = µ1/(ληN ). These equations
completely determine w in terms of ηN . Alternatively, in view of the difference
equation (18), a solution for wk may be expressed in the following form

wk = c1zk
1 + c2zk

2, k = 0, . . . , N , (19)

where c1, c2 are constants determined from w0 and w1; z1 and z2 are the (possibly
complex) roots of the following characteristic polynomial (which is obtained by
substituting the above solution for wk in (18)):

ζ 2 + a1ζ + a2 = 0, (20)

with a1 and a2 as defined above.
It turns out that if the first buffer is the bottleneck (i.e.,µ1 < µ2) or ifµ1 = µ2,

then (20) has two complex solutions, say, ze±iφ (here i := √−1), and therefore

wk = zk((c1 + c2) cos(kφ)+ (c1 − c2) sin(kφ)), k = 0, . . . , N ,

where c1 and c2 are determined from the two equations:

w0 = 1 = c1 + c2,

w1 = (λ+ µ2 − µ2ηN )/λ = z((c1 + c2) cos(φ)+ (c1 − c2) sin(φ)).

It follows that

wk = zk(cos(kφ)+ c sin(kφ)), k = 0, . . . , N ,

with c = (c1 − c2) = (w1/z − cos(φ))/ sin(φ). Finally, the conjugate rates in (4),
(5) and (6), are given by:

µ̃2 = µ2ηN ,

λ̃(k) = λz
(cos((k + 1)φ)+ c sin((k + 1)φ))

(cos(kφ)+ c sin(kφ))
, k = 0, . . . , N − 1,

µ̃1(k) = µ1

ηN z
(cos((k − 1)φ)+ c sin((k − 1)φ))

(cos(kφ)+ c sin(kφ))
, k = 1, . . . , N .
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If the second buffer is the bottleneck (i.e., µ2 < µ1), then (20) has two real
solutions, say, z1 and z2. Therefore, wk is given by (19) with c1 and c2 as deter-
mined from the two equations:

w0 = 1 = c1 + c2,

w1 = (λ+ µ2 − µ2ηN )/λ = c1z1 + c2z2.

The corresponding conjugate rates are determined from (4), (5) and (6):

µ̃2 = µ2ηN ,

λ̃(k) = λc1zk+1
1 + c2zk+1

2

c1zk
1 + c2zk

2
, k = 0, . . . , N − 1,

µ̃1(k) = µ1

ηN

c1zk−1
1 + c2zk−1

2

c1zk
1 + c2zk

2
, k = 1, 2, . . . , N .

3.2 Infinite First Buffer

When the first buffer has infinite capacity, the process (X t , St) defined in (2) is
still a Markov additive process, but now the state space of the Markov process
(X t) is infinite. Equation (1) still holds, but now A(s) is given by the infinite-
dimensional tri-diagonal matrix

G(s) =

−λ− µ2 + µ2e−s λ

µ1es −λ− µ1 − µ2 + µ2e−s λ

. . . . . . . . .

 .
Note that the MAP generator G(s) is equal to Q(e−s), defined in (26) of the
Appendix.

Importance Sampling

Importance sampling may be applied by extending the change of measure pro-
posed for the finite first buffer case (defined by (3) and (4), with s = sN ) to the
case where the first buffer is infinite. By Lemma A.5, as N → ∞, ηN = e−sN

increases to a constant η, with either η = λ/µ2 (when µ2 < µ1 ) or else η is the
unique u ∈ (0, 1) satisfying

2

√
λµ1

u
= λ+ µ1 + µ2(1− u). (21)

Having determined η from the above, we naturally set s = − log η in (3) and (4)
to obtain a change of measure in which (X t) has the Q-matrix

Q̃ = 1−1(w)Q(η)1(w), (22)

and (St) has death rate

µ̃2 = µ2η, (23)
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where w is the right eigenvector of Q(η) corresponding to the eigenvalue 0.
(Note that, by Lemmas A.3 and A.5, Q(η) indeed has an eigenvalue 0.) Moreover,
setting w0 = 1, the eigenvector w satisfies,

w1 = (λ+ µ2 − µ2η)/λ,

and

wk+2 + a1wk+1 + a2wk = 0, k = 0, 1, 2, . . . ,

where a1 = −(λ + µ1 + µ2 − µ2η)/λ and a2 = µ1/(λη). The vector w is now
completely determined in terms of η. Similar to the finite first buffer case, the
solution for wk can also be expressed as follows:

wk = c1zk
1 + c2zk

2,

where c1 and c2 are constants, and z1 and z2 are the (possibly complex) roots of
the the characteristic equation:

ζ 2 + a1ζ + a2 = 0, (24)

with a1 and a2 as defined above. We now distinguish two cases.
If the second buffer is the bottleneck (i.e., µ2 < µ1), then we have η = λ/µ2.

Equation (24) has two real solutions, z1 = µ1/λ and z2 = µ2/λ, of which only
the second satisfies the boundaries: w0 and w1. It follows that

wk = (µ2/λ)k = (1/η)k , k > 0.

The corresponding conjugate rates are:

λ̃ = µ2,
µ̃1 = µ1,
µ̃2 = λ.

That is, we interchange the arrival rate and the smallest service rate. Ex-
perimental results in Section 4 suggest that this change of measure yields
estimates with bounded relative error. Note that this is consistent with the
state-independent (and asymptotically efficient) change of measure obtained
from large deviations analysis of related overflow probabilities in queueing
networks (see, e.g., Frater and Anderson [1989]; Parekh and Walrand [1989]).

If the first buffer is the bottleneck (i.e., µ1 < µ2) or if µ1 = µ2, then η is
the unique solution of (21) in (0,1). With some algebra it can be shown that,
for this η, the characteristic equation (24) has only one real solution, say, z.
Consequently, wk has the form:

wk = zk(1+ ck), k = 0, 1, 2, . . . ,

with c = (λ + µ2 − µ2η)/(λz) − 1. It follows that the conjugate rates are given
by:

µ̃2 = µ2η,

λ̃(k) = λz
1+ c(k + 1)

1+ ck
, k = 0, 1, . . . ,
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µ̃1(k) = µ1

ηz
1+ c(k − 1)

1+ ck
, k = 1, 2, . . . .

Experimental results in Section 4 seem to suggest that this change of measure
yields estimates with a relative error that (asymptotically) grows linearly with
the overflow level L.

Remark 3.6. With some algebra, it is not difficult to show that if µ1 6 µ2,
then (24) has a double root, say, z, which satisfies the following equation

λz = µ1

ηz
. (25)

It follows that

lim
k→∞

λ̃(k) = λz = µ1

ηz
= lim

k→∞
µ̃1(k).

In other words, under the new measure, the first queue is unstable and becomes
“critical,” that is, λ̃(k) = µ̃1(k), as k → ∞. In fact, when µ1 = µ2 = µ, it can
be shown from (21) and (24) that η = λ/µ and z = µ/λ. Therefore, when the
service rates are equal, the conjugate rates are state-independent, obtained
by interchanging the arrival rate and the service rate at the second server
(i.e., λ̃ = µ̃1 = µ and µ̃2 = λ). Experimental results in Section 4 seem to
indicate that this change of measure yields estimates with a relative error that
is (asymptotically) bounded linearly in L. This agrees with observations made
in the literature (see, e.g., Glasserman and Kou [1995], Heidelberger [1995])
that the commonly used heuristic in Parekh and Walrand [1989] is less effective
when the service rates are equal.

4. EXPERIMENTAL RESULTS

We give four concrete examples of the tandem Jackson network with two
servers. In the first example, we consider a system in which the second server
is the bottleneck. In the second and third examples, the first server is the bot-
tleneck. The interesting case of equal service rates is considered in the fourth
example. We are interested in the estimation of the overflow probability in the
second buffer γ = γ1 (i.e., starting from X 0 = 1 and Y0 = 1), for both cases:
finite and infinite first buffer.

In all experimental results presented here, the same number of replications,
namely, 106, is used to obtain each estimate using importance sampling. It is
important to note that the properties of the estimator (established or claimed) in
this paper are with respect to the number of replications rather than the actual
simulation effort (e.g., CPU time). The latter, being proportional to the expected
number of simulated events per replication, increases (roughly) linearly with
the overflow level, L. For each estimate in Tables I, II, III, and IV, we also
include its relative error RE (standard deviation divided by the mean) and the
actual CPU time. For the tandem Jackson network being considered, numerical
values of the overflow probabilities can be obtained using the algorithm outlined
in Garvels and Kroese [1999]. For the purpose of validation, these values are
also listed in the tables, along with the corresponding estimates.
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Table I. Estimates of the Overflow Probability in Example 1

(λ, µ1, µ2) L γ (Numerical) γ̂ (IS) RE (IS) CPU (sec)

(1, 4, 2) 20 1.428e-6 1.43e-6 0.11% 90
N = 9 25 4.446e-8 4.44e-8 0.11% 114

50 1.303e-15 1.30e-15 0.11% 238
60 1.264e-18 1.27e-18 0.11% 287

100 1.120e-30 1.12e-30 0.11% 484
(1, 4, 2) 20 1.432e-6 1.43e-6 0.11% 90
N = ∞ 25 4.472e-8 4.47e-8 0.11% 114

50 1.332e-15 1.33e-15 0.11% 238
60 1.301e-18 1.30e-18 0.11% 287

100 1.183e-30 1.18e-30 0.11% 484

Table II. Estimates of the Overflow Probability in Example 2

(λ, µ1, µ2) L γ (Numerical) γ̂ (IS) RE (IS) CPU (sec)

(1, 2, 3) 20 1.878e-11 1.88e-11 0.24% 76
N = 9 25 3.759e-14 3.75e-14 0.24% 94

50 1.247e-27 1.24e-27 0.24% 189
60 5.063e-33 5.06e-33 0.24% 234

100 1.377e-54 1.38e-54 0.24% 379
(1, 2, 3) 20 2.048e-11 2.05e-11 0.49% 82
N = ∞ 25 4.610e-14 4.63e-14 0.56% 102

50 4.305e-27 4.32e-27 0.87% 201
60 2.956e-32 2.94e-32 0.98% 236

100 8.595e-53 8.59e-53 1.38% 384

Example 1 (λ = 1, µ1 = 4 and µ2 = 2. The Second Server Is the Bottleneck.)

For a finite first buffer, N = 9, we find that the geometric decay rate η of the
second buffer is approximately1 0.49967. Equation (20) has two real solutions
z1 = 2.00198 and z2 = 3.99868, and the eigenvector w is given by wk = c1zk

1 +
c2zk

2, k = 0, 1, . . . , N , with c1 = 1.00066 and c2 = −0.00066. This leads to a
change of measure which is very close to interchanging the arrival rate and the
slowest (second) service rate, i.e., λ̃ ≈ 2, µ̃1 ≈ 4 and µ̃2 ≈ 1.

For an infinite first buffer, we find that η = 1/2, and the eigenvector w is
given by wk = 2k , k = 0, 1, 2, . . . . This leads to λ̃ = 2, µ̃1 = 4 and µ̃2 = 1, i.e.,
interchanging the arrival rate and the service rate of the slowest (second) server.

The resulting estimates and their relative errors are displayed in Table I.
For both cases, finite and infinite first buffer, the estimates (for an increasing
overflow level, L) exhibit bounded relative error. This is consistent with well
established theoretical and empirical results (see, e.g., Parekh and Walrand
[1989], Frater and Anderson [1989], Glasserman and Kou [1995]).

Example 2 (λ = 1, µ1 = 2 and µ2 = 3. The First Server Is the Bottleneck.)

For a finite first buffer, N = 9, we find that η = 0.28898. Equation (20) has two
complex solutions ze±iφ , with z = 2.63077 and φ = −0.22144. The eigenvector
w is therefore given by wk = zk(cos(kφ) + c sin(kφ)), k = 0, 1, . . . , N , with

1We have rounded all numerical values to 5 significant digits.
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Table III. Estimates of the Overflow Probability in Example 3

(λ, µ1, µ2) L γ (Numerical) γ̂ (IS) RE (IS) CPU (sec)

(1, 4/3, 2) 20 1.150e-8 1.15e-8 0.23% 73
N = 9 25 1.405e-10 1.40e-10 0.23% 92

50 3.887e-20 3.89e-20 0.23% 185
60 5.843e-24 5.83e-24 0.23% 222

100 2.982e-39 2.98e-39 0.23% 370
(1, 4/3, 2) 20 1.348e-8 1.35e-8 0.52% 73
N = ∞ 25 1.966e-10 1.96e-10 0.60% 91

50 2.203e-19 2.19e-19 0.95% 177
60 6.541e-23 6.50e-23 1.07% 211

100 6.790e-37 6.78e-37 1.52% 342

Table IV. Estimates of the Overflow Probability in Example 4

(λ, µ1, µ2) L γ (Numerical) γ̂ (IS) RE (IS) CPU (sec)

(1, 2, 2) 20 2.557e-7 2.55e-7 0.19% 76
N = 9 25 6.397e-9 6.40e-9 0.19% 96

50 6.340e-17 6.32e-17 0.19% 194
60 3.987e-20 3.99e-20 0.19% 234

100 6.235e-33 6.23e-33 0.19% 393
(1, 2, 2) 20 2.787e-7 2.77e-7 0.29% 77
N = ∞ 25 7.661e-9 7.68e-9 0.31% 96

50 1.559e-16 1.56e-16 0.38% 188
60 1.382e-19 1.39e-19 0.40% 224

100 9.618e-32 9.63e-32 0.46% 366

c = (w1/z − cos(φ))/ sin(φ) = −0.98048. The change of measure is obtained
accordingly (as in Section 3.1).

For an infinite first buffer, we find η such that (20) has only one solution z.
Algebraically, η is a solution of −8+ 36η − 36η2 + 9η3 = 0, and z = √µ1/(ηλ).
The numerical values are η = 0.31194 and z = 2.53209, and the eigenvector
w satisfies wk = zk(1 + ck), k = 0, 1, 2, . . . , with c = w1/z − 1 = 0.21014. The
change of measure is obtained accordingly (as in Section 3.2).

The resulting estimates and their relative errors are displayed in Table II.
For a finite first buffer, the estimates (for an increasing overflow level, L) ex-
hibit bounded relative error. When the first buffer is infinite, the estimates are
accurate but their relative error seems to increase linearly with L.

Example 3 (λ = 1, µ1 = 4/3 and µ2 = 2. The First Server Is the Bottleneck.)

Using the same procedure as in the above example, for a finite first buffer,
N = 9, we find that η = 0.41467. Equation (20) has two complex solutions
ze±iφ , with z = 1.79315 and φ = −0.21466, and the eigenvector w is given by
wk = zk(cos(kφ)+ c sin(kφ)), k = 0, 1, . . . , N , with c = (w1/z− cos(φ))/ sin(φ) =
−1.09603.

For an infinite first buffer, we find (as in the above example) that η = 0.45520,
z = 1.71147, and the eigenvector w is given by wk = zk(1+ ck), k = 0, 1, 2 . . . ,
with c = w1/z − 1 = 0.22094.
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The resulting estimates and their relative errors are displayed in Table III.
As in the above example, for a finite first buffer, the estimates (for an increasing
overflow level, L) exhibit bounded relative error. When the first buffer is infinite,
the relative error seems to increase linearly with L.

Example 4 (λ = 1, µ1 = 2 and µ2 = 2. Equal Service Rates at Both Nodes.)

For a finite first buffer, N = 9, we follow the same procedure as when the
first server is the bottleneck. We find that η = 0.47847. Equation (20) has two
complex solutions ze±iφ , with z = 2.0445 and φ = −0.15, and the eigenvector
w is given by wk = zk(cos(kφ) + c sin(kφ)), k = 0, 1, . . . , N , with c = (w1/z −
cos(φ))/ sin(φ) = −0.0704.

For an infinite first buffer, the conjugate rates are obtained by exchanging
the arrival rate and the service rate at the second server, that is, λ̃ = 2, µ̃1 = 2
and µ̃2 = 1 (see Remark 3.6).

The resulting estimates and their relative errors are displayed in Table IV.
Here too, for a finite first buffer, the estimates (for an increasing overflow level,
L) exhibit bounded relative error. When the first buffer is infinite, the relative
error seems to increase linearly with L.

Remark 4.1. According to the theory in Section 3, the derived change of
measure holds for any starting state, provided that Y0 ≥ 1. When Y0 = 0
(i.e., starting with an empty second buffer), the process (Yt) stays at level 0
for a while before taking off to higher levels. For any such starting state (for
example, an empty system), empirical results (not included here) show that
the same change of measure yields estimates with a bounded relative error,
except when the first server is the bottleneck and its buffer is infinite. In this
case, the relative error increases sharply with L, suggesting that a different
(exponential) change of measure to be used along the boundary (while (Yt) = 0)
should perhaps be sought. Indeed, when we use the conditional transition
probabilities (given an overflow of the second buffer) as a change of measure
on (Yt) = 0, the relative error of the resulting estimates increases linearly
(and slowly) with L. This, however, is not practical, since determining the
conditional transition probabilities along the boundary (Yt) = 0 is of the same
order of complexity as determining the probability we are trying to estimate.
Instead, by considering an appropriately modified MAP representation of the
tandem network (as noted in Remark 2.1), our methodology (in Section 3) may
be adapted to derive another exponential change of measure which holds also
along the boundary (Yt) = 0.

5. CONCLUSIONS

In this paper, we have introduced a MAP (Markov additive process) representa-
tion of a two-node tandem Jackson network. An exponential change of measure
is used in an importance sampling procedure to estimate the probability of
buffer overflow in the second node. The ‘optimal’ twisting parameter and the
corresponding conjugate rates are determined by solving an appropriate eigen-
value problem. Unlike heuristics proposed and studied in the literature, our
approach yields conjugate rates which, in general, depend on the content of the
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first buffer. It is shown (formally and empirically) that importance sampling
simulations with this change of measure yield asymptotically efficient estima-
tors, with a bounded relative error. Only when the first node is the bottleneck
and its buffer size is infinite, experimental results seem to indicate that the
relative error is bounded linearly in the buffer overflow level.

This paper represents only an introduction and a preliminary study of a new
mathematical approach for the analysis and efficient simulation of rare events
in queueing networks. Further research is now being conducted to examine its
feasibility and effectiveness for other rare events of interest in tandem Jackson
networks. A related approach based on a MAP representation of a two-node fluid
line is used in Kroese and Nicola [1998] to devise an asymptotically efficient
simulation of rare overflow events. A different approach, based on adaptive
importance sampling, to approximate the ‘optimal’ state-dependent change of
measure has also been used recently to estimate rare event probabilities in
Jackson queueing networks [de Boer et al. 2000]. Further investigation of this
approach is worthwhile, as it may also hold some promise. Generalizations to
feed-forward and possibly non-Markov queueing networks would constitute an
important step towards the applicability of the approach, for example, for the
development and evaluation of resource allocation and routing algorithms in
communication networks.

APPENDIX

Some of the lemmas and proofs are taken from the forthcoming paper Kroese
et al. [2002] and are included here to keep the paper self-contained.
For each u ∈ (0, 1], let Q(u) be the infinite dimensional tri-diagonal matrix

Q(u) =

−λ− µ2 + µ2u λ

µ1/u −λ− µ1 − µ2 + µ2u λ

. . . . . . . . .

 . (26)

Let Q (n)(u) denote the n-th upper-left corner truncation of Q(u). That is, the
(n× n)-matrix obtained from Q(u) by deleting the rows and columns n+ 1, n+
2, . . . .

Define the (n× n)-matrix Q̂ (n) as

Q̂ (n)(u) =


−λ− µ2 + µ2u λ

µ1/u −λ− µ1 − µ2 + µ2u λ

. . . . . . . . .
µ1/u −µ1 − µ2 + µ2u

 .
(27)

For a fixed u, the sequence of polynomials P1(x), P2(x), . . . , is defined by the
following recursion:

P0(x) = 1,
λP1(x) = x + λ+ µ2(1− u),

λPn(x) = (x + λ+ µ1 + µ2(1− u))Pn−1(x)− µ1

u
Pn−2(x), n > 2. (28)
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Also, for n > 1, let

P̂n(x) = Pn(x)− Pn−1(x),

and

Kn(x) = uPn(x)− Pn−1(x).

We will write Pn(x; u) when we wish to emphasize the dependence of Pn on u
(and similarly for P̂n and Kn).

We now derive some properties for the polynomials and matrices defined
above.

LEMMA A.1. (a) The zeros of Pn are the eigenvalues of Q (n).
(b) The zeros of P̂n are the eigenvalues of Q̂ (n).

PROOF. Let In denote the identity matrix of dimension n. The characteristic
polynomial of Q (1) is

det
(
xI1 − Q (1)) = x + λ+ µ2(1− u),

Because the matrices Q (n) are tri-diagonal, we have

det
(
xI2 − Q (2)) = (x + λ+ µ1 + µ2(1− u)) det

(
xI1 − Q (1))− µ1

u
λ,

and for n > 3

det
(
xIn − Q (n)) = (x + λ+ µ1 + µ2(1− u)) det

(
xIn−1 − Q (n−1))

−µ1

u
λdet

(
xIn−2 − Q (n−2)).

We see that λn Pn(x) is the characteristic polynomial of Q (n), and thus, for each
n = 1, 2, . . . , the zeros of Pn(x) are the eigenvalues of Q (n). This proves (a).

To show (b), observe that the characteristic polynomial of Q̂ (n) satisfies

det
(
xIn − Q̂ (n)) = (x + µ1 + µ2(1− u)) det

(
xIn−1 − Q (n−1))

−µ1

u
λdet

(
xIn−2 − Q (n−2))

= det
(
xIn − Q (n))− λdet

(
xIn−1 − Q (n−1))

= λn(Pn(x)− Pn−1(x)).

Hence, the zeros of P̂n(x) are the eigenvalues of Q̂ (n).

LEMMA A.2. (a) Pn has n distinct real zeros xn,1 < · · · < xn,n, and these zeros
interlace. That is, for all n > 2,

xn,i < xn−1,i < xn,i+1, i = 1, . . . , n− 1.
(b) P̂n has n distinct real zeros x̂n,1 < · · · < x̂n,n which interlace. Moreover,

x̂n,n > xn,n and, for all n > 2,
xn,i < x̂n,i < xn,i+1, i = 1, . . . , n− 1. (29)

(c) Kn has n distinct real zeros x̄n,1 < · · · < x̄n,n which interlace. Moreover,
x̄n,n > x̂n,n and, for all n > 2,

x̂n,i < x̄n,i < x̂n,i+1, i = 1, . . . , n− 1. (30)
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PROOF. This can be shown by induction on n: Obviously, P1 has one real
zero. Assume that P1, . . . , Pn−1 have interlacing real zeros. Because the coef-
ficient of xi in polynomial Pi is positive, by the interlacing property we have
Pn−2(xn−1,n−1) > 0, Pn−2(xn−1,n−2) < 0, Pn−2(xn−1,n−3) > 0, and so on. The sign of
Pn−2(xn−1,1) is positive if n is even, and negative otherwise.

Consequently, by (28) we have Pn(xn−1,n−1) < 0, Pn(xn−1,n−2) > 0, and so on.
This shows that between each two subsequent zeroes of Pn−1 must lie exactly
one zero of Pn. Moreover, since Pn(xn−1,n−1) < 0, exactly one zero of Pn must
be greater than xn−1,n−1. Finally, if n is even, Pn must become positive before
xn−1,1, and if n is odd, it must become negative before xn−1,1, showing that there
must lie one zero before xn−1,1. This proves (a).

To prove (b), first observe that P̂n satisfies the same recursion as Pn (i.e., (28)
with the P ’s replaced by P̂ ’s). The interlacing property immediately follows.
Moreover, since

P̂n(xn,n) = 0− Pn−1(xn,n) < 0

and

P̂n(xn,n−1) = 0− Pn−1(xn,n−1) > 0,

P̂n must have a zero greater than xn,n and a zero in the interval (xn,n−1, xn,n).
Continuing this argument for the other zeros of Pn we conclude that (29) is true.

Finally, (c) is proved in the same way as (b), after observing that

Kn(x) = P̂n(x)− (1− u)Pn(x).

Next we consider the largest eigenvalues of Q (n) and Q̂ (n) as functions of u.

LEMMA A.3. (a) The largest eigenvalues xn,n and x̂n,n of Q (n) and Q̂ (n), re-
spectively, are convex functions of u ∈ (0, 1].

(b) There exist unique numbers un and ûn in the interval (0, 1) such that

xn,n(un) = 0 and x̂n,n(ûn) = 0.

PROOF. Consider the non-negative matrix H(z) := (λ+µ2 +µ1)In+ Q (n)(z).
Let α(z) denote its largest eigenvalue (which is equal to the largest eigenvalue
of Q (n)(z) plus λ + µ1 + µ2). Note that the logarithm of each element of H(z)
is a convex function in z ∈ (0, 1]. From a well-known result for non-negative
matrices [Kingman 1961], it follows that logα(z) (and therefore α(z)) is also a
convex function on (0, 1]. This shows that the largest eigenvalue of Q (n)(z) is a
convex function on (0, 1]. The same applies to the largest eigenvalue of Q̂ (n)(z).
This proves (a).

To show (b), first note that for sufficiently small z, x̂n,n(z) > 0 and xn,n(z) > 0.
Also, x̂n,n(1) = 0, because Q (n)

0 + Q̂ (n)
1 + Q (n)

2 is the generator (Q-matrix) of a
Markov process. A well-known condition for stability (see, e.g., Neuts [1981, pp.
16–19]) is that the derivative x̂ ′n,n(1) > 0. These facts, combined with (a) show
that there is a unique ẑn such that x̂n,n(ẑn) = 0. To complete the proof for xn,n,
observe that xn,n(z) < x̂n,n(z).
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LEMMA A.4. Let v = (v1, . . . , vn)T be the right eigenvector of Q̂ (n)(ûn) corre-
sponding to the eigenvalue 0. Then,

(a) vi > 0, i = 1, . . . , n,

(b)
vi+1

vi
> 1, i = 1, . . . , n− 1,

(c)
vi

vi+1
> ûn, i = 1, . . . , n− 1.

PROOF. By definition of ûn, 0 is the largest eigenvalue of Q̂ (n)(ûn). The cor-
responding eigenvector is given by

(P0(0; ûn), . . . , Pn−1(0; ûn))T .

The largest zeros of Pi(x; ûn), i = 1, . . . , n − 1, are all smaller than x̂n,n = 0.
Moreover, the leading coefficient of Pi is positive. Hence, Pi is increasing from xi,i
onwards. Consequently, Pi(0; ûn) > 0, i = 1, . . . , n− 1. Obviously, P0(0; ûn) > 0.
This proves (a).

To prove (b), we need to show that Pi(0; ûn)−Pi−1(0; ûn) > 0. Or, equivalently,

P̂i(0; ûn) > 0, i = 1, . . . , n− 1.

The argument is similar to that of (a). By definition of ûn, the largest zero of
P̂i(x; ûn) is 0. Because of the interlacing property of the polynomials {Pi}, all the
largest zeros of P̂1, . . . , P̂n−1 are less than 0 and the polynomials are increasing
from those zeros onwards. Hence (b) follows.

Finally, to prove (c) it suffices to show that

Ki(0; ûn) < 0, i = 1, . . . , n− 1.

We know that x̄i, j < 0, for i = 1, . . . , n− 1 and j = 1, . . . , i − 1. Hence, all the
second largest zeros of K1, . . . , Kn−1 are less than 0. By the interlacing property
we also know that x̄i,i > x̄1,1, for i = 2, 3, . . . . Since for i = 1, . . . , n − 1, Ki is
positive after its last 0, it remains to show that x̄1,1 > 0.

The zero of K1(x) is (u− 1)(µ2u− λ)/u, which, for u = ûn, is positive if

ûn < λ/µ2. (31)

This latter inequality holds, because if it did not, then P1(x) and (by the inter-
lacing property) all other Pn(x) would have a zero greater than 0. This concludes
the proof.

LEMMA A.5. If µ1 6 µ2, then as n→∞, ûn increases to the unique u ∈ (0, 1)
satisfying

2

√
λµ1

u
= λ+ µ1 + µ2(1− u).

On the other hand, if µ1 > µ2, then as n→∞, ûn increases to λ/µ2.

PROOF. The result basically follows from the theory of orthogonal polyno-
mials [Chihara 1978]. We give here only the main ideas. For a full proof we
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refer to Kroese et al. [2002]. The crucial step is that the {Pn} form a so-called
orthogonal polynomial sequence, and satisfy∫

S
Pn(x)Pm(x)ψ(dx) =

(µ1

uλ

)n
δn,m,

where ψ is a measure with support S given by

S =
{

[σ (u), ξ (u)] if u 6 λ/µ1,
[σ (u), ξ (u)] ∪ {χ (u)} if u > λ/µ1,

with

σ (u) = −λ− µ1 − µ2(1− u)− 2

√
λµ1

u
(32)

ξ (u) = −λ− µ1 − µ2(1− u)+ 2

√
λµ1

u
(33)

χ (u) =
(
λ

u
− µ2

)
(1− u). (34)

The limiting behaviour of the zeroes of Pn is closely related to the measure ψ .
In particular,

{xn,1}∞n=1 is a strictly decreasing sequence with limit σ (u);

{xn,n−1}∞n=1 is a strictly increasing sequence with limit ξ (u);

{xn,n}∞n=1 is a strictly increasing sequence with limit χ1(u),

where (see Chihara [1978])

χ1(u) = sup S =
{
ξ (u) if u 6 λ/µ1,
χ (u) if u > λ/µ1.

The lemma now follows easily from the observations above. Namely, if µ1 6 µ2,
then xn,n(u) and hence also x̂n,n(u) tend to ξ (u). Consequently, the corresponding
un and ûn tend to the unique u ∈ (0, 1) satisfying

2

√
λµ1

u
= λ+ µ1 + µ2(1− u) .

On the other hand, ifµ1 > µ2, then xn,n(u) and x̂n,n(u) tend toχ (u). Consequently,
the corresponding un and ûn tend to λ/µ2.
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