
Providing an Embedded Software Environment for Wireless PDAs

Val�erie Issarny1, Michel Banâtre2, Fr�ed�eric Weis2, Gilbert Cabillic2,

Paul Couderc2, Teresa Higuera1, Fr�ed�eric Parain2

(1)
Inria-Rocquencourt, Domaine de Voluceau, BP 105, 78153 Le Chesnay C�edex, France

(2)
Inria-Irisa, Campus de Beaulieu, 35032 Rennes C�edex, France

fFirst.Lastnameg@finria,irisag.fr

Position Paper

Abstract. The use of wireless Pdas is foreseen to outrun the one of Pcs in the near future. However, for this to

actually happen, adequate software environments must be devised in order to allow the execution of various types

of applications. This paper introduces the base features of such an environment, which is a customizable Jvm-based

middleware. In particular, the middleware platform embeds services for appropriate resource management and for

supporting novel Pda-oriented applications.

1 Introduction

The use of wireless Personal Digital Assistant (Pda) devices is foreseen to outrun the one of Pcs in the
near future. However, for this to actually happen, there is still the need to devise adequate software and
hardware platforms. The use of Pdas should be as convenient as the one of Pcs and in particular must
not overly restrict the applications that are supported. Considering the ongoing e�ort towards providing
convenient hardware platforms in industry, this paper focuses on design issues for an embedded software
environment aimed at wireless Pdas, as examined within the Solidor research group1, at Inria-Irisa and
Inria-Rocquencourt. Two major concerns drive the design of the target software environment:

(i) The environment must accommodate the embedded constraints associated with Pdas. In particular,
it is mandatory to �nely tune the management of energy consumption and of memory.

(ii) The environment must enable the execution of the applications traditionally supported on the desk-
top, including soft real-time multimedia applications. In addition, the easy carry-on of Pdas enables
provisioning new applications extending the capabilities of mobile phones. Such applications will pro-
mote the exchange of information among people as they happen to be in a nearby communication
environment (e.g. based on geographical proximity and/or on the commonality of the users' interests).

Addressing the two above requirements then lies in combining solutions to the following issues:

� Devising resource management policies that are closely coupled with the resulting impact upon energy
consumption.

� Delegating tasks to proxy services so as to bene�t from an increased quality of service while minimizing
resource consumption on the Pdas.

� O�ering an open software environment, which enables both extending the set of applications that can
be supported on the Pda and adapting the software environment as new applications emerge.

The literature already provides us with a number of base solutions, upon which we can build to meet the
aforementioned objectives. Focusing on work from the operating system community, relevant work on the
issue of energy saving for mobile computing has been examined in [3]; the proposed solution lies in energy-
aware adaptation of mobile applications through collaboration between the applications and the operating
system. Compared to this work, we are interested in examining coupled management of resource consumption
with energy saving, including proposing a scheduler taking into account both real-time constraints and the

1http://www.inria.fr/Equipes/SOLIDOR-eng.html

49

 
Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F566726.566738&domain=pdf&date_stamp=2000-09-17


available energy budget for task scheduling. Regarding the delegation of tasks to remote services, this issue
has been examined from the perspective of providing a front-end proxy service, which carries out a number
of computations prior to deliver the application to the thin client (e.g. see [10, 4]). We are interested in a
broader cooperation between the proxy services and the Pdas so as to allow the remote execution of services
whenever possible in order to minimize resource and related energy consumption on the Pda. Finally,
providing an open environment subsumes adhering to some standard so as to get portable code, which can
possibly be dynamically downloaded. The ideal candidate for this is Java, which appears as a major player
in the area of embedded software environment. Although, Java has some shortcomings regarding the target
device, these shall be solved in the near future in the light of ongoing work on extending Java to meet
the requirements appertained to embedded real-time software [6] and to information appliances2. We are
currently examining such extensions, focusing in particular on adequate solutions to energy-aware scheduling
of real-time tasks and memory management.

This paper is organized as follows. Section 2 sketches the requirements that we consider as key concerns
for provisioning the embedded software environment; it then presents the resulting base design decisions,
which lie in providing a customizable middleware platform comprising adequate services. Section 3 discusses
the middleware services on which we are currently concentrating, i.e., those for respectively handling resource
scarcity and enabling novel types of applications. Finally, Section 4 o�ers some conclusions.

2 Base Design of the Embedded Software Environment

This section �rst gives an overview of the main requirements that we have identi�ed for a software environ-
ment aimed at wireless Pdas. It then presents the resulting base design decisions for the environment.

2.1 Requirements

Requirements for a software environment aimed at wireless Pdas are of two kinds depending on whether they
relate to the Pdas' intrinsic features and in particular their limited resource budget, or to the applications
that need be supported for the wide acceptance of Pdas by users. We examine in turns those two sets of
requirements from which we derive base guidelines for the design of the software environment.

Although the progress in hardware technology enables provisioning wireless Pdas that will be increasingly
powerful, Pdas will always have less resource capabilities than conventional Pcs. Most importantly, the suc-
cess of Pdas will primarily lie in combining low-cost, small-size, low-weight, low-power, and long-autonomy
features, which subsumes adequate hardware technology as currently examined by hardware vendors. How-
ever, such a technology must be complemented by adequate software solutions in order to not restrict the
applications that can be run, possibly concurrently. Needed solutions integrate resource management for
enforcing energy saving, and for coping with the limited memory resource budget.

Although wireless Pdas are not intended to fully replace conventional laptops, these are intended to
complement them in a convenient way as they are far more convenient to carry. The success of Pdas
will then outrun the one of Pcs if Pdas enable running most of the applications that are traditionally
supported on the desktop. Pdas further open opportunities for devising novel applications exploiting the
fact that Pdas will always be carried by the users just like mobile phones. Such applications build upon the
ubiquitous computing philosophy, which does no longer require any speci�c surrounding infrastructure except
the possession of wireless Pdas. The main applications for the Pdas are typically those run during a trip.
In this context, applications will be Internet-based for accessing both discrete and continuous multimedia
data. Hence, the major constraint imposed by foreseen applications is to have adequate support for the
management of soft real-time tasks. Wireless Pdas o�er at least the capabilities of a mobile phone, i.e.
phone communication whose software support lies in the management of hard real-time tasks. Pdas further
give the opportunity of novel applications in the spirit of wearable and ubiquitous computing. Considering
that users will always carry their Pda, this enables mobile users to exchange information while they happen

2http://java.sun.com/j2me/.

50



to physically encounter. An example of such application is given in [7], which introduces the notion of pro�le-
based cooperation as a way to support awareness and informal communication between mobile users who
are in close physical proximity. We are further investigating another kind of application that is also based on
physical proximity. This is called Spontaneous Information System and consists of dynamically setting up
a distributed system among Pdas that are physically close and only during so [2]. Supporting these novel
applications requires provisioning adequate services relating to identifying the population of users that are
physically close and trusted enough for the sake of information exchange.

2.2 Base Software Architecture

The previous subsection has given an overview of the requirements for the embedded software environment
aimed at wireless Pdas. These may be addressed through the provision of a middleware platform, comprising
services for resource management and services dedicated to applications. The main issues in o�ering services
of the former category lie in the scheduling of real-time tasks enabling energy saving, and in customized
memory management, especially considering the use of Java. For services dedicated to applications, we are
in particular interested in services aimed at novel applications that depend on proximity-based interactions.
In addition to the above, the environment should be coupled with remote services for delegating tasks to
proxy servers in order to diminish resource consumption on the Pda whenever possible (e.g. see [10, 4]).
Such services are foreseen to become commonplace. For instance, it su�ces to consider the Wap3 (Wireless
Application Protocol) architecture speci�cation, which is already exploited by service providers for the
delivery of Web data to wireless Pdas.

Following the identi�ed requirements for the software environment, we propose a Jvm-based middleware
(see in Figure 1) where the choice of building our environment on Java results from our concern of o�ering an
open environment. The environment relies on the base underlying infrastructure comprising the hardware,
the operating system, and base wireless communication protocols. As already raised, there is a number
of hardware vendors investigating the design of convenient hardware platforms for next generation Pdas.
In the speci�c case of our project, we will be experimenting with a multiprocessor hardware platform4.
However, it is one of our design objectives to propose a software environment that is open enough to be used
over various hardware platforms. In the same way, providing Os environments for Pdas, possibly running
Java applications, is examined by a number of Os vendors (e.g. the Symbian's Epoc). Here again, we are
devising our environment so as to be independent from the underlying Os. Regarding experimentation, we
are currently using the WindRiver VxWorks real-time Os. Independence with the underlying infrastructure
is achieved through the wrapper layer, which o�ers the Api as used by the software environment. Let us
notice that one of our major design concerns for the de�nition of the Api is to leave place for optimization
whenever possible. Hence, the Api will embed a number of optional functions. In particular, we consider
underlying operating system support for identifying the actual energy budget available. Let us further raise
here that the handling of phone communication needs not be addressed within the software environment.
However, the resulting usage of hardware resources must be accounted for by the scheduler. This issue is
addressed by pre-reserving resources needed for handling phone communication, hence handling it as a top-
level priority task. The base Jvm of our environment is a Jvm that we have been developing from scratch
so as to be able to o�er an open, middleware environment which can easily be customized with respect to
the services that it embeds. The base Jvm is now operational, o�ering the necessary functionalities for the
execution of Java applications. Notice that unlike traditional Jvms, the applications run concurrently within
a single Jvm instance, in a way similar to the Java Os from Utah [11]. This has thus led us to integrate the
necessary protection mechanisms within the base Jvm.

3 Middleware Services

Considering the services o�ered by the middleware platform so as to enable the optimal usage of Pdas,
it is clear that a large number of services may be envisioned. In the current course of our project, we

3http://www.wap.net
4http://www.irisa.fr/solidor/work/scratchy.html

51



Application Application Application

Underlying Infrastructure (OS / Hardware / Wireless Communication protocols)

Base JVM

JVM-based Middleware

Resource management services Application-dedicated services Remote cooperation services

RT Memory

Mgt.Scheduling Awareness

Energy

Mgt.

Profile

User

Mgt.

region

Collaborative

Loading

Negotiation

Protocol... ... ...

...

Wrapper offering the infrastructure API as used by the software environment

Figure 1: Architecture of the embedded software environment

are concentrating on the services for resource management, and on the services for enabling Spontaneous

Information Systems, i.e., setting up a trusted collaborative region among users that are physically close
together and only during so. These two categories of services are further discussed below.

3.1 Services for Resource Management

Regarding the scheduling of tasks within the environment, we have to address scheduling of soft real-time
tasks while accounting for the associated energy consumption. The construction of real-time applications
using the Java environment is already a problem (e.g. see [6]). Basically, the construction of soft real-time
applications must enable identifying the adequate scheduling of embedded tasks so as to meet associated
temporal constraints like deadline and ready execution time. Let us recall here that soft real-time systems
di�er from hard real-time ones in that deadlines can be missed. In particular, this enables provisioning a
scheduler based on the empirical analysis of real-time task duration rather than on the worst-case executions.
Real-time tasks making up an application can be scheduled according to either a priority-based scheme or a
deadline-based scheme where the assignment of priorities in the �rst scheme is done according to the tasks'
periods, deadlines and durations. Hence, the Java programmer must be provided with some means to express
the real-time constraints associated with tasks, which typically embeds the associated periods, deadlines,
and durations. In addition, the programmer must be careful regarding the usage of the Java synchronization
and exception handling mechanisms. We address the above issues by providing the programmer with a
number of Java classes. These serve describing a real-time application in terms of embedded real-time
tasks (i.e., temporal constraints associated with the task together with the Java code to be executed upon
each period) and shared resources (i.e. any resource that may be accessed by more than one real-time
task). This model enables not using Java threads and synchronization mechanisms, which pose problems
for the construction of real-time tasks. The proposed description of real-time applications enables deriving
a scheduling graph for the real-time tasks according to their temporal constraints and to their access to
shared resources. Hence, upon the arrival of a new application, the scheduling graph of the application is to
be combined with the overall scheduling graph that speci�es the scheduling of tasks for all the applications
that are run concurrently. The application may be ultimately rejected if the scheduler cannot compute a
global scheduling graph enabling to meet the temporal constraints of all the applications. In addition to
embedding the temporal constraints of applications, the speci�cation of applications further comes along with
the associated energy consumption. This thus enables the scheduler to either accept or reject an incoming
application according to the resulting energy consumption5. We are currently implementing the scheduling

5Our approach regarding energy-aware scheduling further lies in exploiting the underlying heterogeneous multiprocessor
hardware architecture, which enables choosing the most adequate processor for executing a task with respect to both temporal

52



service, and further investigating solutions to the issues of exception handling (e.g. see [9]), and of fair
handling of non real-time applications (e.g. see [8])

Another key issue for resource management lies in memory management, especially given the use of Java
and its implicit memory reclamation mechanism. In particular, the Garbage Collector (Gc) must be carefully
designed to be compliant with real-time constraints [1]. We are currently designing a memory management
strategy, which builds on a number of existing work. First, we rely on a distributed memory management
scheme where each running application is assigned a given portion of memory upon execution. A dedicated
Gc is then run within each application according to the application's memory usage pro�le. By default, any
real-time application will be combined with the Gc proposed in [12]. Finally, a global real-time Gc is run for
reclaiming the objects created by the environment as well as those shared among applications. In addition,
while there exist garbage collection algorithms that o�er the necessary features for being compliant with
real-time constraints, the issue of scheduling the Gc-related tasks without interfering with the scheduling of
real-time tasks remain. Given the pro�ling of the application's memory usage and the knowledge of eligible
algorithms, we are currently investigating ways to couple the Gc with the application by introducing the
Gc as a real-time task [5].

The execution of applications further relies on a negotiation protocol as commonly used when running
multimedia applications. The handling of real-time constraints together with the limited capability of the
Pda require to make sure that there is enough resource available to execute a new application. In the case
where there is not enough resource left, it is common to have a negotiation protocol taking place between the
application and the system where the application lowers its resource requirements by changing the resulting
quality of service o�ered to the user (typically, changing from color to black-and-white for video display). We
have not yet examined in detail this issue, we are currently studying it where we are interested in addressing
dynamic negotiation in order to bene�t from resources left by applications that terminate.

The scheduling and memory management services that we are investigating subsume some precise knowl-
edge about the applications' behavior. However, since we are addressing soft real-time constraints, the
applications' analyses may rely on pro�ling rather than on precise static analysis tools evaluating resource
consumption in the worst case. We are currently designing pro�ling tools for Java so as to assess the appli-
cation's behavior in terms of energy consumption, execution time, and memory usage. Such tools are not to
be used on the Pda. Instead they will be o�ered in the development environment and the analysis results
will be provided together with the application when delivered to the Pda for execution. Notice that this
approach is similar to the virtual machine distribution proposed in [10] regarding the front-end handling of
applications.

3.2 Services Dedicated to the Spontaneous Information System Application

In a Spontaneous Information System (Sis), the information system is distributed over the Pdas themselves.
This requires from a device to be able to dynamically discover the other Pdas physically close, and the in-
formation they can eventually provide. Jini6 addresses this issue for a slowly evolving environment, the
problem of exploiting the volatile network connections of highly mobile devices (used to set up a Sis) is not
considered. In particular, Jini requires the availability of a centralized lookup service. Regarding the Sis
context (a set of autonomous and mobile Pdas), we have to design an information discovery mechanism
without any centralized entity. At the same time, we must also guarantee information con�dentiality accord-
ing to a user de�ned policy. To reach these goals, the following issues have to be considered carefully: (i)
designing of a lookup service satisfying the autonomy property of each Pda, and (ii) de�ning a progressive
information disclosing to satisfy user con�dentiality constraints.

Another key issue for Sis occurs after the information discovery phase. Users are mobile, thus unexpected
disconnections are frequent (because of the limited communication range) and communication time can not
be bounded. Regarding these constraints, the issue is to design an e�cient communication scheme in spite
of user's mobility. An approach we are currently investigating is to take into account, at the physical
level, the parameters that characterize the position of a remote entity. This thus will enable to estimate

constraints and resulting energy consumption.
6http://www.sun.com/jini

53



periodically the "remaining communication time" between two mobile nodes. In addition we also consider
the information representation within a Sis. Our objective is to design mechanisms to transfer structured
information between Sis entities and stabilize them despite the highly volatile environment (user mobility
and limited coverage of the communication interface). These mechanisms have to be de�ned in order to
take bene�t of the above "communication time estimation" built from environment awareness. To this end,
we study carefully the following issues: (i) devising an "appropriate" representation of the information, and
(ii) providing an atomic information transfer with selective degradation of data according to the estimated
communication time.

4 Conclusion

Wireless Pdas are foreseen to become prominent computing devices in the near feature by combining the
easy carry-on feature of mobiles phones with the processing capacity of current Pcs. However, o�ering
such Pdas to users still requires proposing adequate software and hardware environments. This paper has
introduced a software environment for wireless Pdas, which lies in a customizable Jvm-based middleware.
Our current research interest is on devising the needed middleware services to allow the execution of various
applications as diverse as multimedia applications and novel applications enabling to set up a distributed
information system over the Pdas of users that are physically close. The base middleware infrastructure is
now operational. We are now concentrating on the design and implementation of a subset of middleware
services, i.e., services for resource management and in particular those for energy-aware real-time scheduling
and memory management, and services for setting up spontaneous information systems.

References

[1] H.G. Baker. The Treadmill: Real-Time Garbage Collection Without Motion Sickness. In Workshop on Garbage
Collection in Object-Oriented Systems. OOPSLA'91, 1991.

[2] M. Banâtre and F. Weis. A new paradigm for mobile communication systems. Information Society Technologies
Conference (IST'99), November 1999.

[3] J. Flinn and M. Satyanarayanan. Energy-aware adaptation of mobile applications. In Proceedings of SOSP'99,
pages 48{61, December 1999.

[4] A. Fox, S. D. Gribble, and Y. Chawathe. Adapting to network and client variation using active proxies: Lessons
and perspectives. In Special Issue of IEEE Personal Communications on Adaptation, August 1998.

[5] R. Henriksson. Scheduling Real Time Garbage Collection. Technical report, Also published in Proceedings
of NWPER'94, Nordic Workshop on Programing Environment Research, Lund, Sweden. ftp://www.dna.lth.se,
June 1994.

[6] T. Higuera, V. Issarny, M. Banâtre, G. Cabillic, J-P. Lesot, and F. Parain. Java embedded real-time systems:
An overview of existing solutions. In Proceedings of ISORC 2000 { The 3rd IEEE International Symposium on
Object-oriented Real-time Distributed Computing, pages 392{399, March 2000.

[7] G. Kortuem, Z. Segall, and T. G. Cowan Thompson. Close encounters: Supporting mobile collaboration through
interchange of user pro�les. In International Symposium on Handheld and Ubiquitous Computing (HUC'99),
pages 171{185, 1999.

[8] J. Nieh and M. S. Lam. The design, implementation and evaluation of SMART: A scheduler for multimedia
applications. In Proceedings of SOSP'97, pages 202{216, December 1999.

[9] K. Nilsen, S. Mitra, S. Sankaranarayanan, and V. Thanuvan. Asynchronous Java exception handling in a real-
time context. In IEEE Workshop on Programming Languages for Real-Time Industrial Applications, December
1998.

[10] E. Gun Sirer, R. Grimm, A. J. Gregory, and B. N. Bershad. Design and implementation of a distributed virtual
machine for networked computers. In Proceedings of SOSP'99, pages 202{216, December 1999.

[11] P. Tullmann and J. Lepreau. Nested Java Processes: OS Structure for Mobile Code. In Eighth ACM SIGOPS
European Workshop. http://www.cs.utah.edu/projects/ux, September 1998.

[12] P.R. Wilson and M.S. Johnstone. Real-Time Non-Copying Garbage Collection. In Workshop on Garbage Col-
lection and Memory Management. OOPSLA, 1993.

54


