Check for
Updates

TRANSFORMATIONAL PROGRAMMING-- APPLICATIONS TO
ALGORITHMS AND SYSTEMS'

Robert Paige
Rutgers University
New Brunswick. NJ

I. introduction and Backround

Ten years ago Cheatham and Wegbreit [4] proposed a transformational program development
methodology based on notions of top-down stepwise program refinement first expressed by Dijkstra [10]
and Wirth [45]. A schema describing the process of this methodology is given in fig. 1. To develop a
program by transformation, we first specify the program in as high a level of abstraction and as great a
degree of clarity as our programming language admits. This high level problem statement program P is
proved correct semimechanically according to some standard approach isee Flovd and Hoare [15, 21]). Next,
using an interactive system equipped with a library of encoded transformations. each of which maps &
cerrect program into another equivalent program. we select and apply transformations one at & tme tc¢
successive versions of the program untit we obtain a concrete, low level, efficient impiementation version P

T
P ====> P!
probiem impiementation
statement version

Fig. 1 Transformational Programming Schema

T
fris material is based In part upon work supported by the Nationsl Science Foundation under Grant No. MCS7905293. Part of
this work was done while tne author was visiting Stanford Unwersity.

Permission to make digital or hard copies of part or all of this work or
persona or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citdion on thefirst page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or afee.

© 1983 ACM 0-89791-090-7...$5.00

73

http://crossmark.crossref.org/dialog/?doi=10.1145%2F567067.567076&domain=pdf&date_stamp=1983-01-24

The goals of transformational programming are to reduce programming labor, improve program reliability, and
upgrade program performance In order for labor to be reduced, the effort requred to obtan P. prove it
correct, and derive P by transformation should be less than the effort required to code P from scratch. and
also to debug 1t Program rehability will be improved If P can be certified correct, and if each transformation
preserves program meaning Finally, program performance will be upgraded if transformations are directed
towards increased efficiency.

Experimental transformational systems that emphasize one or more aspects of the methodology outlined
above have been implemented by Cheatham [5], Dariington [3], Loveman [27]. Standish [41], Feather [14]
Huet and Lang [11], and others However, all of these systems fall short of the goals, because of a number
of reasons that include,

1 maptity 1o mechanize the checking of transformation applicability conditions

2 reliance on large, unmanageabie collections of low level transformations, and iong arduocus derivation
sequences

s

3 dependency on transformations whose potential for improving program performance s
unpredictable

4 use of source languages nsufficiently high level to accomodate. perspicuous Initial program
specifications and powerful algorithmic transformations

Yet, convincing evidence that this new methodology will succeed has come from recent advances mn
verification, program transformations, syntax directed editting systems, and high leve! languages These
advances, discussed below, represent partial solutions to the problems stated above. and could eventually be
integrated inte a single system

1 The transformational approach to verification was pioneered by Gerhart [18] and strengthened by
the results of Schwartz [39], Scherlis [36], Broy et al [2], Koenig and Paige [26. 31] Blausten [1], and
others Due mannly to improved technology for the mechanization of proofs of enabling conditions that
justify appiication of transformations, this approach is now at a point where 1t can be effectively used m a
system Such mechanization depends strongly on program analysis, and, in particular, on reanalysis after a
program 15 modified Attribute grammars [24] have been showr to be especially useful in faciitating
program analysis [28] Moreover, Reps [34) has discovered an aigorithm that reevaluates attributes m
optimal tme after 2 program undergoes syntax directed editting changes (as are allowed on the Cornell
Synthesizer [43]1 He has mmpiemented his algorithm recently, ana has reported mitiai success

2 There are encouragmg Indications that za transformational system can be made to depend manly on
a small but powerful collection of transformations applied top~down fashion to programs specified at various
levels of apstraction from logic down to assembler We envision such a system as & farrly conventional
semiautomatic compiler in which classes of transformations are selected semimgchanically in a predetermined
order, and are justified by predicates supplied mechanicaliy but proved semimanually Of particular importance
15 nondetermintsm removal which as formulated by Sharir [40] could leac to a technique for turning naive,
nondeterministic programs into deterministic programs with emergent strategies Such programs could then
be transformed automatically by finite differencing [13, 16, 17, 18, 28 30, 31] and jamming [28, 31, 20]
(which we have implemented) into programs whose data access paths are fully determined The SETL
optimizer could mprove these programs further by automaticaly choosing efficient data structure
representations and aggregations

3 Of fundamental mportance to the transformations just mentioned is the fact that they can be
assoclated with speedup predictions Fong and Ullman [16] were the first to characterize an important class
of algorithmic differencing transformations In terms of accurate asymptotic speedup predictions, eg, they
gave conditions under which repeated calculation of a set former {x in s|kix)} could be computed in Of#s) +
costlk) steps By considering stronger conditions and special cases for the boolean valued subpart k, Paige

[31] later gave sharper speedup predictions (eg, either O(1) steps for each encounter of the set former or
a cumulative cost of Ol#s] steps for every encounter) associated with another differencing method Both
Morgenstern [28] and Paige [31] prove constant factor improvements due to ther jamming transformations
(implemented by Morgenstern for the mprovement of file processing, and by Paige for the optimization of
programs} Constant factor speedup has alsc been observed for data structure selection by the method of
basings but a supporung analytic study has not been presented [8, 37]

A

4 Essentia! to the whole transformational process I1s & wide spectrum programming language (or set
of languages! that can express a program at every stage of development from the intial abstract specification
down to its concrete implementation reahzation Since transformatons apphed to programs written at the
highest levels of abstraction are likely to make the most fundamental algorithmic changes, 1t is important to
stress abstract features in our language In addition to supporting transformations, the highest level language
dictions should support lucid intial specifications, verification, and even program analysis Of special
importance 15 SETL [38. 9], because its abstract set theoretic dictions can model data structures and

74

algorithms easily. because its philosophy of avoiding hidden asymptotic costs facilitates program analysis,
because its semantics conforms to finite set theory and can accomodate a set theoretic program logic, and
because it is wide spectrum. As is evidenced by the work of Schwartz, Fong. Paige, and Sharir, SETL is also
a rich medium for transformation.

. Main Results

The original contributions of our work are listed below:

i Our main result is the implementation of a prototype transformational programming system that
ncorporates several of the ideas mentioned above This system. called RAPTS (Rutgers Abstract Program
Transformation System) [32]. supports the semiautomatic development of reliable and efficient sofwware
using source—to-source program transformations for an abstract variant of the SETL language. Like the prior
transformational systems of Cheatham [4]. Standish [41], Loveman [27]. Darlington [3], and Feather [i4].
RAPTS has modules to perform parsing unparsing fi.e., prettyprinting), search, and transformation application; it
can manipulate libraries of transformations, source programs,and program development states; RAPTS prowvides
2 variety of user aids. also, global control flow and data flow analysis are used to prove the apphcability
conditions of our transformations automatically However, our system emphasizes the strict stepwise
refinement of programs by successive applications of powerful correctness preserving transformations that
can be selected, justified, and applied with a much greater degree of mechanization than other systems.

We have used RAPTS for experimenting with algorithm derivation, system construction, and automated
database processing. An important conceptual advantage in using SETL as both system implementation
language and source language is that RAPTS can be used to improve itseif, as was done for its dead code
elimination procedure. In Appendix lil we show how an mnefficient but clear abstract specification of this
procedure is transformed intc 2 lower level SETL variant that runs in imear time with respect 1o the use-to-
def links Moreover, the transformational approach to verification together with appropriate assertion control
could be used within RAPTS to prove itself correct

i. RAPTS uses a finite differencing method [33] that generalizes John Cocke's strength reduction
[6]. and provides an efficient implementation of a host of transformations including Jay Earley's ‘iterator
inversion’ [13]. Our differencing algorithm is an outgrowth of iess efficient and iese¢ general algorithms due
to Cocke, Schwartz, and Kennedy [6 7] The reduction in strength algorithms found In [6. 7] execute in
Oin} steps (where n is the number of nodes in the flow graph of a program loop! for a single pass.
However, their aigorithm and also the algorithm used by Paige and Koenig [31] takes Omn#x2) steps in the
worst case to compute, due to successive linear time passes over programs growing successively larger.
Our new algorithm only requrres a single pass, and executes in Oini steps overall. ~ We obtan this
improvement by detection of all reducibie expressions (that would be detected within multiple passes of the
classical algorithms} in advance of any transformational steps Our aigorithm gans greater generality by
accepting differencing transformations as input Based on these differencing rules, we automatically determine
categories of variable modifications upon whick we can detect expressions amenable to reduction Thus,
differencing transformations can be applied over a wider range of data types than previously possible.
However, in this paper we will stress the important application to set theoretic expressions, first observed by
Earley [13].

Fong [17] first presented an algorithm to implement a2 subset of Earley's transformations, and her
approach varied from his and Cockes approach by using & deferred update strategy. She also gained more
information by analyzing program paths instead of loops. However. her algorithm ran in time proportional to
e log e bit vector operations, where e is the number of edges in the program flow graph. Furthermore, like
the classical strength reduction algorithms, her algorithm must be reapplied over programs growing
successively larger. (As in the case of the classical algorithms, this problem ts due to the fact that reduction
of one expression f can make another expression gif), which depends on f. reducible: as was first noted by
Cocke and Schwartz [6] and solved by Cocke and Kennedy [7], reduction of f can also introduce new
auxihary expressions that must be further reduced) Even the improvement of Fong's algorithm by Tarjan

[42] and Rosen [35] to almost linear time in e bit vector operations per pass fails to make it a viable
competitor to the classical approach or our new improvement It remanns an interesting open probiem
whether the path analysis approach introduced by Fong can be modified into a single pass algorithm without
iosing asymptotic efficiency. We conjecture that this problem can be solved affirmatively. Further
comparison of her work with ours can be found in [31] '

Like Fong and Uliman [16] our application of set theoretic differencing s based upon reasonable
conditions for ensuring asymptotic speedup Although our current implementation includes about B0 groups
of concrete differencing rules [31]. recent theoretical improvements provide for a much more compact
collection of meta—rules {see Appendix I} that are as easy to specify and implement as our current rules, and
even more general than those proposed in [30].

ii. RAPTS can perform new and powerful set expression jamming transformations implemented by a
inear tme algorithm [30, 31]. A much more powerful algorithm than what is currently implemented and that
yields 'optimal expresston jamming is found in [20].

75

iv. We have designed (but not yet implementedl a new way to mechanically estimate the asymptotic

speed of an algorithm derived by transformation within RAPTS.

Related to this is the earlier work of

Wegbreit, who discussed a transformational system that mechanically analyzed the performance of Lisp

programs as they were improved by transformation [44].

Because we are observing programs specified at

a higher level of abstraction than Wegbreit, and because our transformations deal with more fundamental
algorithmic program mprovements, we obtain more global nformation.

v. We specify our itial abstract program at an unusually high level of abstraction beyond current

standard SETL.

Hlustrations will be included in the next section and Appendix lli.

vi RAPTS incorporates an implementation of a class of abstract static to dynamic expression

transformations that
transformations.)

2. RAPTS lllustrations

generalize Earleys

iterator

inversion. {See Appendix |l for a sampling of these

It 1s. perhaps, most convehient to explain the transformational capabilities of RAPTS by example, using
photo generated excerpts of an actual RAPTS derivation of topological sorting (an example first considered

by Eariey [13])

Before proceeding, the reader may find it heipful 1o consult the brief description of SETL operations
and their estimated computational costs (based on obvious hash table implementations for sets and maps)

given 1n table 1.

Operation

Remarks

Estimated Cost

s with:s x element adoition o(1)

s Jess = x element deletion 0¢1)

» in s set membership 01}

s += delta set addition O{~delta)

s ~:= deita set deietion O(wrdelta)

fix) = vy indexed mac assignment 0(1)

Fix1. Loxn) function retrieval Oinr}

¢ forall x 1in s) forall joog Ol=~g » cest(Bloenlt)
Block(x}

end forall

o ns | okix)) set former O{~»s » coestik))

ex1sts x in s | k{x) existential guantifier O(rs » costik) }

forall x in s | k{x) universal guantifser Oi{#s x cost(k))

s+t set union O(rs + =1t)

= "t set 1ntersection min(0(~s).00l=1))

s -t set difference C(#s)

ls] image set O(=¥)

TABLE 1 Complexity Estimates of Setl Operations

Our initial algorithm specification mputs a set s and a set of pairs sp representing an irreflexive
transitive predecessor relation defined on s; as output. 1t produces a tuple t in which the elements of s are
arranged in a total order consistent with the partial order sp: sp maps each element x of s into the set
spix} of predecessor elements The algorithm proceeds by repeatediy searching for the minimal elements of
the partially ordered set s, adding such elements to the end of t and then removing them from
s Prettyprinted in RAPTS, our initial program is,

76

program topsort ;

1 read (sp) ;
2 print { sp) ;
3 te=113
b s := domain sp + range sp ;
5 (while exists ains | ((spf{al}) *xs)=1{})
6 t with := a ;
7 s less 1= a ;
end while ;
8 it s = {1} then
g print (t) ;
else
10 print (0) ;
end if ;

end program ;

The running time of the mnitial program is siow, essentially O#E#*%2), which is due to repeated search
for the minimal elements of s each cycle through the while loop. Speeding up this program entails searching
for the minimal elements only once, and maintaining the set of minimal elements by inexpensive 'differential
computations within the while loop as s decreases This strategy for program improvement is captured by a
basic program optimization method we call finite differencing

in order to facilitate finite differencing. we must first turn the code above into a normal form in which
set update operations are implemented in terms of element additions and deletions, set intersections and
deletions are rewritten as set formers, etc. For our exampie, the system will carry out several local
transformations (selected from a production system of simple rewrite rules) Application of each
transformation is justified by an assertion specified by a SETL predicate. If the system can simplify the
predicate to ‘true’, the transformation 1s applied automatically. Otherwise, the system asks the user to
confirm the partly simplified predicate. (in all of our examples presented here, the system has proved these
predicates.)

The essential fragment of the normal form of the topological sorting procedure appears just below,

(while exists a in { setlld in s | # { setik2 in sp { setib1 } |
setlh2 ins} =01}) '
t with = a ;

s less := a

end while

Finite differencing will automatically transform the normal form algorithm mto an equivalent but more
efficient algorithm that uses the speedup strategy stated earlier. In rough terms, differencing will perform
the following three steps based on Cocke's reduction in strength schema [6].

i. Just before the while loop, insert code that evaluates the set of minimal elements

{set1b1 in s|#{set142 in sp{ setili }|setih2 in s}= 0} (1)
and stores it into the variable 'minset. We call this code the /injtia/ization for minset

ii. Within the while loop where s is modified, insert code that recaiculates minset from its old value
so that it always stores the value of the set of minimal elements at the point (ine 5) where it is computed.
We call the code that updates minset the difference of minset with respect to the modification s /ess:= a
When the difference code is executed just prior to the modification, it is called predifference code; when it
is executed just after the modification, it is called postdifference code.

i At line B replace the munimal set, which is made redundant by steps (i} and (i, with the variable
minset

For this approach to improve program performance, the overall computational cost of calculating the
initialization and difference code in the transformed program must be less than the cost of repeated
calculations of the minimal set in the unoptimized program Our system makes this analysis based on classical
code motion assumptions (based on Cocke and Schwartz [8, 31]) and mechanical examination of the minimal
set (1) and the while loop within the normal form of our algorithm before differencing is applied For this
example, the system will predict that differencing will yield asymptotic improvement in the cost of computing
(1) (Note that Fong and Uliman [18] relied on weaker assumptions; see [31] for a comparison)

The intuitive ideas behind the analysis are based on a decision procedure for a class of expressions
for which the cost of computing difference code relative to certain kinds of parameter modifications is
asymptotically less expensive then the cost of full expression evaluations. We say that expressions belonging
to this class are differentiab/le. To define the class of differentiable expressions, we first define a finite
collection of 'elementary’ differentiable expressions and their associated difference code blocks whose
computational cost is comparatively small. As is shown in [31], the full class of differentiable expressions is

77

formed from composition of the elementary expressions and parameter substitution This extended definition
is justified by a formal calculus that constructs inexpensive difference code for a nonelementary differentiable
expression by combining difference code for the elementary differentiable expressions out of which 1t 1s
formed ’

We now apply the preceding analysis to the mmimal set (1) using the collection of basic set theoretic
differentiable expressions found In Appendix | Examination of the minimal set calculation detects three
potentially differentiable subexpressions,

newpred{set141} = {setil2 in sp {setlh41} |setls2 in s }

numpred (set141) = # newpred {setliht }

minset = {setiki in s | numpred(setikl) = 0}
that might permit efficient differencing for the minimal set Unfortunately, neither newpred{setid1} nor
numpred(setid4 1) are differentiable, because we cannot form efficient difference code for them relative 1o the
arbitrary modifications in the free variable setl41 that occur within the while loop of the normal form

However, we can overcome this problem using transformations (listed in Appendix I} that handle
dynamic expression formation, a generalization of Earleys iterator inversion Application of transformation (4!}
of Appendix Il converts newpred{seti41} into the following differentiable expression

newpred = {[x,y] in sp| y in s}
which removes the troublesome free variable setl4!, and stores values of newpred{setl41} for all relevant
vaiues of seti41. Likewise, transformation (26) turns numpredisetl4 !} into the following expression that can
be mantained dynamically at low cost,

numpred = {[x, #newpred{x}J1: x in domain newpred}

Supported by the elementary differentiable expresstons, newpred. numpred, and minset, the minmal set
(1) 1s seen to be differentiable, and our system can proceed to carry out the main transformational steps that
will speed up the normal form of the toplological sort, 1e.

i. Store initial values into newpred. numpred. and minset on entry to the whiie loop

i Update newpred, numpred. and minset just prior to line 7 where s s modified in order to make
the computation of the minimal set at Iine 5 redundant

Consistent with previous discussion, we refer to the update code involved in tash (i} as the difference
of newpred, numpred, and minset with respect to the element deletion s less:= setll. and we form this
difference code using a kind of ‘chain ruie that combines the separate rules for forming difference code
first for newpred, then numpred, and finally minset fie., from inner to outer subexpression of the minimal
set).

We will iliustrate the chamn rule by proceeding with this example The predifference of newpred
relative to the modification s less= a is

(Forall set148 in { x in domain sp | a insp §{ x 1 }) (2)
newpred{set148} less:= a;

end forall ;
Observe that the predifference code (2] contains a costly embedded expression

succ{al = { x in domain sp | a insp { x} }
that we do not want to compute. However, the system will recognize that this expression can itself be
reduced by ‘'second differencing. At the same time that the three other differentiable expressions are
detected, the system will recognize that differentiation of the dynamic expression

succ = {[y,x]: x in domain sp, y in sp{x}}

can efficiently eliminate the costly. static expression occurring within the difference code (2)
The predifference code for numpred relative to the change in newpred within (2) 1s simply
numpred (set148) -:= 1; (3)

The final step of the chain rule involves forming the difference of minset relative to modifications in both of
its parameters, s and numpred. These predifference blocks are

comment: relative to changes in s (4}
if numpred (a) = 0 then
minset less := a ;
end if ;

and

78

comment: relative to changes in numpred (5)
if setl48 in s then
if numpred { setl48) = 0 then

minset less := setl48 ;
elseif numpred { setl48) = 0 + 1 then
minset with := set148 ;
end if ;
end if

respectively. The chan rule combines the preceding blocks of difference code to form the following
collective predifference of newpred.succ, numpred, and minset with respect to s less= &
(forall set1L48 in suce { a}) (6)
if set148 in s then
if numpred { setl48) = 0 then
minset less := set1h48 ;
eiseif numpred (setl4B8) = 0 + 1 then

minset with set148 ;
end if ;
end if ;
numpred (setl4f) - := 1 ;

newpred { seti48 } less := a ;
end forall ;
if numpred (a } = 0 then
minset iess := a ;
end if ; .

Analysis of the overall cost of executing the block (6} rests on three easy observations,

i. Based on the monotonically decreasing set s within the while loop, we estimate that (6) is executed
Oi#s: times, where s 15 the nitial value.

i. Based on tne complexily estimates statec in Table i. the difierence blocks (31 {4i. and !5} invoive
only constant factor costs. Such costs are subsumed by the costs of surrounding code and can be ignored
These examples iliustrate the following general property

Definition An expression E = fls) 1s strongly continuous with respect to modifications of the form ds 10 s
if the cost of the difference code for E with respect to ds is O(1) .

Thus, minset is strongly continuous with respect to indexed assignments to numpred and element deletions to
s. Also, numpred s strongly continuous with respect to element addiions and deletions to newpred

ii. Repeated execution of the difference code for newpred.
(Forall setiL8 in succfal)
newp-ed{seti48} less:= a;
end forall ;
relative to each distinct element ‘2 removed from the monotonically decreasing set s, has an overall
asymptotic cost no worse than a single calcuiation of newpred = {[x,y] in sp | y in s} at the initial value
of s; ie, Oi#spl. This example illustrates the following general property.

Definition. An expression E = fis) I1s weak/y continuous with respect to modifications ds to s if for every
minimal length sequence of operations ds1,ds2...dsn {of the form ds) that constructs the final value s2 from
the mitial value s1, the cumulative cost of all difference code for E with respect to all of the operations
ds1..dsn 18 Oimaxicostifis1),cost(fis2)) + nl. (Note that all of our speed estimates are based on the
heuristics given in Table 1)

Thus, newpred is weakly continuous with respect to element additions to s.

Based on tnhe preceding analysis. the asymptotic cumulative cost of (6) is estimated at Of#sp) which s
an order of magniude better than the overall cost of the minimal set computation (1; in the normai form
algorithm.

Based on Table 1 and the assumption that initialization of newpred, succ, numpred, and minset can be
achieved by the straightforward assignments

79

newpred := {[x,yl in sp| y in s}; (7)
suce := {[y,xJ: x in domain sp, y in spi{x}};

numpred := {[x, #newpred{x}]: x in domain newpred};

minset := {setl4i in s | numpred(setih1) = 0};

we estimate the preprocessing costs to be O(#sp), which justifies our prediction of asymptotic speedup
Howsver, we gain a constant factor improvement over this naive initialization by jamming the implicit loops
within these set formers [31] The jamming algorithm implemented in RAPTS constructs newpred and
numpred In a single loop A deeper investigation of this important transformation and an improved algorithm
is found in [20] ‘

The speedup prediction just presented is based on analysis of the normal form algorithm, so that it
can be determined whether differentiation 1s profitable prior to any differencing transformations are appled.
By analysis of tne normal form it 1s sometimes also possible to estimate the asymptotc speed of the
transformed algorithm Based on the Table 1 estimates and detecuon of the presence of monotonic set
growth within ‘'while loops Iwhich can provide an estimate for the loop repetiton frequency), it can be
determined that after the minimal set computation 1s replaced by ‘minset, ali code other than that which has
been introduced by differencing and initialization contributes no more than O(#sp! in overali cost Adding In
our estimates for cumulative differencing and Initialization costs gives us an overall estmate of Ot#sp) In
running time for the transformed algorithm.

Further improvement i time and especially space can be realized by performing dead code elimination,
which exploits the increase in data independence resulting from differencing and jamming. Based on an
algorithm due to Kennedy [23, 31], our dead code elimination procedure detects all assignments to newpred
as superfiuous The result of this final step is,

program topsort : -
bl read (sp)
2 praint (sp) ;
3 t = [1
) s = domain sp + range Sp ;
5 succ := { }
[(fora'l setl4d in domain sp , setlBC n sp { set148 })
7 succ { set180 I with := setl4g
end torall ;
8 numpred = { }
] (forall [set143 , setidd] 1n sp)
10 1f setld4 in s then
14 numpred (set143) + = 1
end f
end feorall
12 minset := {
13 (forall set1B4 in s)
14 if numpred (setl154) = O then
15 minset with = setlb4
end if ;
end forall ;
16 (while exists a i1n minset)
17 t with = a ;
18 (forall seti48 in succ { a })
19 if setid48 in s then
20 1f numpred { setl48) = O then
21 minset 1ess := s5etl48
else1f numpred (setlds) = O + 1 then
22 minset with := setld48
end 3f
end 1f *
23 numpred (setld4g) - .= 1
enc forall
24 1f numpred (2)} = C then
25 minset less :* a |
end f ;
26 s less := a ;
end while
27 it s = {1} then
28 print (t) ;

80

else
29 prant (0)
end 1f
end program ;

Our current implementation outputs the code just above after mechanical application of the preparatory
transformations, dynamic expression formation, finite differencing, jamming, and dead code elimination. As is
evident from our example, these transfcrmations treated together function primarily to automate the formation
of data access paths Since the length of such paths traversed during execution ts strongly related to the
asymptotic runming tme of an algorithm, it 1s not surprising that finite differencing and its ancillary
transformations vyield asymptotic speedup. In addition to speedup. the process just illustrated supports
verification. The soundness of our transformations, along with a standard correctness proof af the initial
abstract algorithm, proves the correctness of the less perspicuous but more efficient equivalent algorithm
above.

Further improvement will result from manually inttiated assertion propagation and easy syntactic
transformations. For example, we can introduce the assertion asser: setl4d in s just before iine 10 n order
to elminate the extraneous membership test at line 10. It is also worthwhile to place the statements
assert seti48 in s prior to line 19, assert numpred(setid8) /= O just before 20, and assert numpredia) = O
immediately before 24, and then exploit these assertions in obvious ways

Further automatic improvement by a large constant factor may be achieved by data structure selection
and aggregation [8, 37], transformations that should eventually be integrated into RAPTS. However,
considerable extensions to the referenced method are needed to obtan the most desirabie data structures for
our example (see Knuth [25]).

A careful semiautomatic approach to select data structures for topological sorting has been worked
out by Katzenelson [22], who used clusters of abstract data types. Katzenelson observed that the most
difficult transformational step involves showing how numpred and minset can share the same space. To solve
this problem, we use the following transformation which can be justified mainly on syntactic grounds. Since
numpred 1s pointwise monotonically decreasing to 0 within the whiie loop from lines 16 to 26, and since
numpred is only referenced when it 1s nonzero just before line 22 we can release its space when it goes to
0. Note. however, that when numpredix} becomes C is exactly when minset = {x in s| numpredix} = 0} is
augmented by x. The result of all these transformational steps yields the following data structures

pase{1 e..uni1versal set) numpred,’
domain sp + range sp sp minset
e P — e e ey
______________________________________ o e
X pointer to numpred(xi or pointer to
sp{x} next eiemert of minset gueue

oo I B
| L

_____________________________________ U R

it is worthwhile to elaborate on the approach used to estimate asymptotic program performance for
the toplogical sorting example. Most differentianle expressions in Appendix | are either strongly or weakly
continuous with respect to element additions or deletions to set or map valued parameters. For example, all
elementary differentiable expresstons except for (8) and {10) in Appendix | are strongly continuous with
respect 10 the set S, strong continuity i also exhibited by expression {1} with respect to the set Q and by
expressions (3} {41 (7). and (10! with respect to the functon F Weak continuity can be observed in
Expressions (B) and (8! with respect to the set Q and in expression {10) with respect to S Note that the
expression associated with newpred in the toplogical sort example 1s of the form (5, of Appendix | and
exhibits both strong and weak continuity. Some properties of continuity are formalized in the theorem below.

Theorem: i Strong continuity is closed under arbitrary composition.

i Let E = fis) be weakly continuous with respect to changes ds to s, and let ds1l..dsn be any minimum
length sequence of operations of the form ds that constructs s2 from s1. If all difference code for E with
respect to dsl,..dsn forms a minimum length sequence of operations of the form dE that constructs f(s2)

81

from fis1), and if g€ is weakly continuous with respect to dE. then gifis)) is weakly continuous with respect
to s The cumulative cost all the difference code for gifis)) is Oimaxicostif(s1)costifis2)} =+
max{costigif(s 1)), costigifis2iM.

i If fis) is strongly continuous with respect to ds, it is also weakly continuous with respect to ds

For an example of composition of weakly continuous expressions, consider nested image sets. The mage
set expression E = f[s] 1s weakly conunuous with respect to element additions and deletions to s, and in a
program loop where s 1s monotonically increasing (resp decreasing), so is the value of E after differencing 1s
applied Thus if we consider the nested expression h[g[f[s]]] in such a loop in which hg and f are
invariant, the cumulative cost of executing difference code within the loop after it 1s optimized I1s estimated
to be Olh+#Hg+#f)

We have used the preceding mechanical asymptotic time estimates successfully on several algorithms
that include finding connected components In a graph, finding the center of a free tree [31], finding alt
nonterminals that derive the empty string in a context free grammar, computing attribute closure, and
partitioning a flow graph into intervals

The impiementation of finite differencing within RAPTS uses three main algorithms
1. definition of variable modification categories based on finite differencing rules;

ii detection of variables and differentiable expressions (n a program loop) that fali into the categories
defined in step i

it finite differencing of the differentiable expressions with respect to the program loop

Details of these algorithms can be found in [33]). Step ii which is logically similar to the procedine
presented in [30], passes through a postordering of a parse tree form of the program loop. At each node
2 value number is computed [6, 12] to determine whether an expression is differentiable, and also whetner
it has been encountered before The goal of this step is to determine all differentiable expressions. Some
of these are detected directly in the loop. while others occur as auxiliary expressions within differencing
rules The time complexity is linear in the sum of the parse tree sizes for the loop and the differentiable
expressions. Step iii uses two lists produced by step i a list of places in the loop where each
differentiabie expression occurs, and a fist of places each variable is modified It rapidly replaces each
differentiable expression f by its associated variable name E within the loop by a straightforward bottom up
procedure For each modification dx to a variable x on which some differentiable expression depends, the
collective pre— and postdifference blocks are formed with respect to dx and inserted around dx The time
complexity for this procedure is hnear i1 the sum of the sizes of the inserted difference code and the code
which 1s eliminated as redundant

Conclusion

Interactive syntactic editting systems such as the Cornell Synthesizer have successfully demonstrated a
program construction methodology that mitigates compile tme error The Synthesizer speeds the process of
program construction by dynamically monitoring syntax and, to some extent, semantics while the program s
entered interactively. Transformational programming is a proposed methodology that aims to eliminate run
time error, so that debugging would be unnecessary It seeks to speed the programming process by
interactively monitoring program correctness and efficiency during program construction

RAPTS is a novel implementation of a prototype transformational system that represents a synthesis of
old and new ideas. It incorporates new aigorithms (its differencing algorithm is an improvement over classical
strength reduction used in conventional compiling systems) and new transformations. We have used RAPTS to
derrve many simple algorithms such as the one just presented For a more complicated exampie see
Appendix lll. We have introduced a straightforward mechanism for estimating the speedup that results from
finite differencing and the speed of a differentiated algorithm prior to differentiation. important followup
work to this would be to determine conditions under which these initial performance estimates are preserved
by a conventional complexity measure after conventional data structures are chosen to impiement the sets and
maps occurring within the differentiated algorithm.

Appendix . Differentizble Set Expressions

Listed below 1s a small, but farly complete, collection of elementary set~theoretic meta—expressions
that can be maintained efficiently by differencing We assume that each set former in this collection can also
be expressed in terms of multi-iterators, which generalize cartesian product, e.g.

fe(X,¥): X in S, Y in T(X) | K(X,¥)}
Although the difference rules associated with each elementary expression are not shown, they follow

82

easily from standard distributive laws. Qut of these meta—expressions and corresponding difference rules,
the more concrete and numerous elementary expressions and efficient difference rules found in [31] can be
derived.

1 S+ Q
2. { X ins | B(X)?}
a {X in & | F(X) = T} where T is an 1nteger valued

constant, F 1s integer valued.

4, {X 1n 5 | FIX) /= T; where T is an integer valuea

zonstant, F is i1nteger vealued,

5 X 1in s | elX) in Q}

G. X 1n 5 | elX) netin Q)

7. {x 1n & | F(X) relop R} where F[S] is dense on the interval of integers
containing the range of R values: F must be nteger valued;
relop can be any of the comparisons <,>,<=,>=

8 {> 1n § | F(X) relop R} where F[S] 1s’sparse on the interval of integers
containing the range of R values, or when F and R can be
real; N this case, we also maintain the following two
auxiliary expressions:

V = SORTED(F[S]) AND
K = MIN/{I 1n [1..»V + 1] | NOT(V(I) < R)}

8. {e{(¥) X in S}

10 F[s]

11. #5

12. +/S where + represents arithmetic sum.

Appendix 1. DYNAMIC EXPRESSION FORMATION

Below we present rules. based on Earley's iterator inversion [13] and Paige's method of discontinuity
removal [30], for transforming static set formers and other set theoretic expressions into a form surtable
for efficient dynamic modification Each basic expression f given below depends on free variables q.g1.g2..
that can undergo such modifications that disallow efficient dynamic maintenance of the value of f. However, f
can be profitably maintained dynamically by eliminating its free variables and using & dynamic expression f
associated with f in the table below. Note that f stores the values of fig} for all useful instantiations of
a

Static Expression Cynamic Expression

1.4 an Glgy | B(X)) {Y,x] wn & | B(X)}

2. {X ins | F(X) = &) {[F(X),X]: X in §)

3. {x 1n G{g2} | F(X) = g%} {LEFEX),¥),X): [V.X) in G}

.4 an Glgr | X i Q) Yy vl in G | Y an QY

5. (X 1in s | X 1n F{a}> {0X,Y) s F LY o S

6. {x 1n G{g1) | X in F{g2}) (Ix,v]l.z] [%x,2} 'n G. y 1n domain F | 2 in F{y}}
7. {x in G{g} | F(X) 1n Q} {[Y.x] 'n G | F(X) in Q)

8. {x 1n s | F(X) 1n H{g)} {{y,x]* y 1n domain H, x 1n domain F | F(x) 1n H{y}}
9. {X 1n G{a1} | F(X) in H{g2}} <{[[y.zl.xl:ly.x) 1n G, 2z 1n demawn H | F(x) in H{y}!}
16.{x in G{a} | X notin Q} {x.v) n G} Y notin QY

11.{x 1n S | X notin F{g}} {{y.x}: y in domain F, x 1n S | x notin F{y}}

12.{X wn G{g1Y | X notin F{(q2}} {[Iv.zl.x) [y.x] 1n G.z 1n domain F |x notin F{z}}
153.4x in G{q} | F(X)} notin Q} {[Y.X] in G | F(x) notin Q}

14 {Xx 1n S | F(X) notin H{g)}) {{y.x]- y 1n domain H, x 1n S | F(x) notin Hiy}}

15 {X 1n G{g1}|F(X) notin H{g2}} {[lvy,z].x):[y.x] in G.z n domain HW{F(x) notin H{z}}
16.{y 1n 5 | g n F{xMY {I¥.X1: X 7n S, Y 1in F{x*}

17,40 1n Gia2' b oat oin FARYY {IIUxT Wl (Wl an G, U oan Fiads

18.{% in Gio: |y < R} {{rn.¥] in G | Y <R}y

1¢ {X 1n S | ¥ < Figi} {[y.x]: y in domain F, ¥ 1n S | x < F(y)}

20.4¥ 1n Gigl} | X < Ftag2)} {[ly.z}.x1: Iy.x] in G. z 1n domain F | x < F(z)}
214X in G{g} | F(X) < R} {{x.Y]l in 6 | F(Y) < R}

224X in § | F(X) < H(g)} {[y.x]: v 1n domain H, x in S | F(x) < H(y)}

23.4X in G{g1} | F(X) < H(g2)) {(Iiy.z).x}. [y.x) 1n G. z 1n comain H | F(x) < H(z)}
24 {F(X): X in G{a}} {Iy.FOx)]: Iy.x} 1n G)

25.F[G{a}] {Iy.x}: [y.z] 1n G, x in F{z})

83

26, #FiG) {Iy. =F{y}]. y 1n domain Fi
27 . +/F{q} {(Ix, +/F{X}1. X in DOMAIN F}
where + represents arithmetic sum

Appendix 1ll. Differencing Applied to Dead Code Elimination Within RAPTS

Below is an 1nitsal abstract algorithm specifying a portion

cf the dead code elimination procedure used within RAPTS The

set crit 1s the set of critical statements (1ni1tially aefined to be the
print statements of a program). The algorithm works bv repeated))
adding to crit the set of snstructions that can affect tne vatue of
variable uses within crit unti1l crit nc longer orows

ruses{g} 18 the set of variable uses within statement o

usetodef {u} 15 the set of al) variable definmitions thai can reach
variable use u

instof(d) 1s the statement associrated witn a variable definition d

compound(q) 1s the compound statement immediately containing statement
q

pregram dead
4 read (instof |, usetodef ., i1uses ., compound , crit)
(converge)}

crit + := (instof [usetocef [1uses [crit }J]] + compound |

crit 1)
end \
4 orint (crit)
end

Z. It 1 wathin the norma: form below tnat 14 dirfferentiable expressiong
are getected. 1ncluding ist and 2nd difference expressions. Analysis
determines that the maps instof, usetoaef, 1uses, and compouna

are 231 weakly continuous with respect to element acditions in

their. set valued arguments, that weak cortinuity 1s closed for

these expressions., and finally, that the cumulative cost of arfference
coae 15 estimated to be

O(rFinstof+rFusetodef+=1uses+~compound),
whichk 1s dominated by O(rusetodef).This estimate 1s the same for
mitiatization costs. It 1s easy 1o see that after differencing.
tne remaining coste are proportional to the sum of the 1nput and

output sizes.

program dead

1 read (1nstof , usetodef , 1uses . compound . crit |
2 { while exi1sts getl1 1r { setlQ 1n { 1nstof [usetodef | iuses [
crit]]] + compound [erit 1) | setlO notin crit Y)
3 crit with = setlt
end while
4 praint (crat)

end ;

< Afrer oi1fferencing and dead code elimination, the mair loop of the
algoritnm appears below. Note that 4 out of the 14 d-fferentiaple
expressions have been eliminated as useless. The passage from step

1 to 3 15 done completely automatically within RAPTS.

35 { while exi1sts setli in npewinsis)
36 (forall setl15 in iuses { setlt } | nusepred (setl5) = 0)
37 (forall setl18 1n usetodef { setl5 } | ndefpred (setli8) =

84

o)

3s (foral) set123 in instof { setit8 } | minstpred (setl123)
=0)
39 1f set123 notin comps then
40 1f setl23 notin crit then
41 newinsts with '= setl123 ;
end 1f
42 nstpnts with = set123
eng 1f
43 insts with := set123
end forall
as (forall set130 in 1nstof { set118 } }
45 ninstpred (setl130) + = 1 ;
end forall
end forall
46 (forall setl127 1n usetodef { setld })
47 ndefpred (sett27) + = {

end forall
end foratll

48 (forall set110 1n compound { setlt } | ncompred { setl10) = O
)
48 1f set110 notin 1nsts then
50 1f set110 notin crit then
51 newinsts with = setli0
end 1f
82 nstpnts with = setl110
end 1f

53 comps with "= setli1C -

end forall
54 { forall setlid 1n compouna { set11 })
55 ncompred (setlid } + = 1

end forall
56 (forall set139 1n juses { setltl })
57 nusepred (set139) - = A

end forall
58 1f setl1 1n 1nstpnts then
59 newinsts less = setlt

end if | .
60 crit with = setlt |

end while ;

References

1. Blaustein, Barbara T. Enforcing Database Assertions Techniques and Applications Tech Rept TR-21-81.
Center for Research in Computing Technology, Harvard University, Aug, 1981

2. Broy, M, Partsch. H, Pepper, P, and Wirsing, M “"Semantic Relations in Programming Languages’
Information Processing 80 {1880)

3. Burstall, R M, and Darington, J "A Transformation System for Developing Recursive Programs
JACM 24, 1 (Jan 1877)

4. Cheatham, T. E. and Wegbreit, Ben. A Laboratory for the Study of Automating Programming Proc
AFIPS 1872 Spring Jomnt Computer Conf., 1972

5. Cheatham, T E, Holloway, G H, Townley, J A Program Refinement by Transformation Proc bth Int
Conf on Software Engineering, Mar, 1981

8. Cocke, John and Schwartz. J T. Programming Languages and Their Compilers. CIMS, New York
University, 1969

7. Cocke, John and Kennedy, Ken “An Algorithm for Reduction of Operator Strength” CACM 20, 11 (Nov
1977)

85

8. Dewar, Robert B. K., Grand, Arthur, Liu Ssu—Cheng Schwartz, Jacob T.and Schonberg, Edmond. “Program
by Refinement, as Exemplified by the SETL Representation Sublanguage” 7OPLAS 7, 1 (July 1978

8. Dewar. Robert The SETL Programming Language. Manuscript
10. Dijkstra, £ W. A Discipline of Programming. Prentice—Hall, 1876.

11. Donzeau—-Gouge, V., Huet G, Kahn, G, Lang. B Programming environments based on structured editors:
the Mentor Experience Tech. Rept Rapport de Recherche No 26, INRIA, Rocquencourt, France, July, 1880.

12. Downey. Peter, Sethi, Ravi, and Tarjan, Robert “Variations on the Common Subexpression Problem”
JACM 27, 4 (Oct 1980

13. Earley, Jay. 'High Level lterators and a Method for Automatically Designing Data Structure
Representation’ Journal/ of Computer Languages 1 {1876), 321-342

14. Feather, Martin S A System for Developing Programs by Transformation. PhD. Th, U. of Edinburgh,
. 1979

15. Fioyd, Robert W. Assigning Meaning to Programs. Proceedings of Symposia on Applied Mathematics
Vol XIX, American Mathematics Society, Providence, R |, 1967.

16. Fong. Amelia C. and Ullman, Jeffrey D. Induction Variables in Very High Level Languages. Proc. Third
ACM Symp on Principles of Programming Languages, Jan. 1976

17. Fong. A C. Eliminaton of Common Subexpressions in Very High Level Languages. Proc. 4th ACM
Symposium on Principles of Programming Languages, Jan. 1977.

18, Fong. A C. Inductively Computable Constructs in Very High Level Languages Proc 8th ACM Symposium
on Principles of Programming Languages, Jan, 1878

18. Gerhart, S Correctness Preserving Program Transformations. Proc Second ACM Symposium on
Principles of Programming Languages, 13975

20. Goldberg. Allen, Paige, Robert. Loop Fusion. unpublished manuscript
21, Hoare C. A R "An Axiomatic Basis for Computer Programming” CACA 72, 10 (1968) 576 - 581

22. Katzenelson, J. "Clusters and Dialogues for Set Implementations” /EEE Trans. on Software Engineering
SE-5, 3 (May 19781

23. Kennedy, Ken. A Survey of Compiler Optimization Techniques. In Program Flow Analysis. Muchnich, S.
Jones, N, Eds., Prentice Hall, 1981, pp. 5-54.

24. Knuth, D E "Semantics of Contexi—free Languages' WMathematical Systems Theory 2, 2 {1868;
25. Knuth, D. E. Fundamental Algorithms. Addison—Waesley, 1968.

26. Koenig, Shaye. A Transformational Framework for Automatic Derived Data Control and lts Appiications in
an Entity—Relationship Data Modet Tech Rept LCSR-TR-23, Rutgers University, Dept of Computer Science,
18981. New Brunswick, N. J

27. lLoveman, D B “Program Improvement by Source to Source Transformation' JACH 24, 1 (van 1877

28. Morgenstern, Matthew. Automated Design and Optimization of Management /nformation System
Software PhD Th. MIT, Laboratory for Computer Science, Sep 1976.

29. Paige, R, and Schwartz, J T Expression Continuity and the Formal Differentiation of Algorithms Proc
Fourth ACM Symp. on Principles of Programming Languages, Jan, 1877 .

30. Paige. Robert formal Differentiation. UMI Research Press, 1981. Revision of PhD. thesis, NYU. June
1979 : '

31. Page, Robert. and Koenig, Shaye. "Finite Differencing of Computabie Expressions”” ACM TOPLAS 4. 3
{July 1982)

32. Paige Robert RAPTS - The Rutgers Abstract Program Transformation System Compiler Demonstratuon,
Symp on Compiler Construction, Boston

33. Paige, Robert. An Efficient Implementation of Finite Differencing Dept of Computer Science, Rutgars
University, Dec, 1982

34. Reps. Thomas Optimal-time Incremental Semantic Analysis for Syntax—directed Editors. Proc. Ninth
ACM Symp. on Principles of Programming Languages, Jan, 1982

86

35. Rosen, B. K Degrees of Availability In Program Flow Analysis, Muchnick, S., Jongs, N, Eds. Prentice
Hall. 1981, pp 55 - 76.

36. Scherlis, William L Program Improvement by Internal Specialization. 8th POPL, Jan, 1981.

37. Schonberg, Schwartz, and Sharir Automatic Data Structure Selection in SETL. Proc. Sixth ACM Symp
on Principles of Programming Languages. Jan, 1878

38. Schwartz, J T. On Programming: An Interim Report on the SETL Project, /nstaliments | and /.
CIMS, New York Univ., New York, 1974,

39, Schwartz, J T Correct Program Technology. Tech Rept Courant Computer Science Report Num. 12.
New York University. Dept of Computer Science, Sep. 1877

40. Sharir, M. Some Observations on Formal Differentiation. New York University. Dept of Computer
Science, 1980

41, Standish, Thomas An Example of Program Improvement Using Source-to-Source Transformations Univ.
of Cal at irvine, Dept of Information and Computer Science. Feb, 1876.

42. Tarjan, R E "A Unified Approach to Path Problems” JACM 28 3 (July 1981)

43. Teitelbaum, T. and Reps. T. "The Cornell Program Synthesizer: a syntax—directed programming
environment” CACM 24, 9 (Sep 1981}

44. Wegbreit, B "Goal-directed program transformation” /[EEE Trans. Software Engineering SE-2, 2 (June
1976) ‘

45, Wirth, N "Program Development by Stepwise Refinement” CACM 14, 4 (Aprit 1971). 221-227.

87

