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1. Introduction and Backrourrd

Ten years ago Cheatham and Wegbrelt [4] proposed a transformational program development
methodology based on notions of top-down stepwlse program refinement first expressed by Dljkstra [ 10]

and Wirth [45 j. A schema describing the process of this methodology is given in fig, 1, To develop a

program by transformation, we first specify the program m as high a level of abstraction and as great a

degree of clarity as our programming language admits. This high level problem statement prog~am P IS

proved correct semimechamcally according to some standard approach (see Flovd and Hoare [ 15, 21 ]), Next,

using an interactive system equipped with a library of encoded transformations each of which maps 6

ccrrect program into another equivalent program, we select and apply transformations one at 2 time tc
successive versions of the program until we obtain a concrete, low level, efflclent Implementation version P’.

--------------------------------------------

T*
P ====> P ‘

problem implementation

statement version

Fig. 1 Transformational Programming Schema
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The goals of transformational programming are to reduce programming labor. tmprove program rehabdlty, and

uP9rade program performance In order for labor to be reduced, the effort requred to obtain P, prove It

correct, and derive P’ by transformation should be less than the effort required ,to code P from scratch. and
also to debug n Program reliability wdl be Improved If P can be certlfled correct, and lf each transformation

preserves program meanmg Finally, program performance WIII be upgraded if transformations are drected

towards increased efficiency,

Experimental transformational systems that emphasize one or more aspects of the methodology outhned

above have been Implemented by Cheatnam [51, Darllngton [3], Loveman [271, Standish [41], Feather [14]
Huet and Lang [11], and others However, all of these systems fall short of the goals, because of a number
of reasons that include,

1 Inaullity TO mechamze the checking of transformation appllcablhty conditions

2 reliance on large, unmanageable collections of low level transformations, and long arduous derivation

sequences

3 dependency on transformations whose potential for Improvmg program performance is

unpredictable

4 use of source languages msufflclently high level to accommodate perspicuous mltlal program

specifications and powerful algorvthmlc transformations

Yet, convincing evidence that thm new methodology WIII succeed has come from recent advances m

verlflcatlon, program transformations, syntax directed edlttmg systems, and high level languages These

advances, dlecussed below, represent partial sol~timm to the problems stated above. and could eventually be
integrated mto a single system

1 The transformational approach to verlflcatlon was lmoneered by Gerhart [19] and strengthened by

the results of Schwartz [39], Scherlls [36], Broy et al [2], Koenjg and Palge [26, 31] Blausteln [1], and
others Due mamly to Improved technology for the mechanization of proofs of enabling conditions that

justify application of transformations, this a~proach IS now at a point where It can be effectively used r a
system Such mechamzatlon depends strongly on program analysfs, and, m particular, on reanalyses after a
program IS modlfled Attribute grammars [24] have been showr to be espemal!y usefui r facd(tatmg

program analysls [23] Moreover, Reps [34] has discovered an algorlthm that reevaluates attributes m
optima! ume after a program undergoes syntax directed edlttmg crranges (as are allowed on the Cornell

Synthesizer E43]1 He has Impiemsmted hls algorlthm recently, ano has reported mtm success

2 There are encouraging lndlcatlons that a transformational system can be made to de~end mamly on

a small b~t powerfui collection of transformations applied top-down fashion to cmograms speclfled at various
levels of aostract[on from logic down to assembler We envlslon such a system as a farly Conventional

semiautomatic comprler m which classes of transformations are selected sem(mechanlcally m a predetermined
order, and are justrfled by predicates supplled mechanically bu: proved semlmanually Of particular Importance
ts nondetermlnlsm removal which as formulated b} Sharrr [40~ could Ieac to a technique for turning nawe,
nonctetermmstlc programs into deterministic programs with emergent strategies Such programs could then

be transformed automatically by fmlte dlfferencmg [13, 16, 17, 18, 29 30, 31] and jammmg [28, 31, 20]
(which we have Implemented) mto programs whose data access paths are fully determmed The SETL

optlmlzer could Improve these programs further by automatically cnoosing efflc,ent data structure

representations and aggregations

3 Of fundamental Importance to the transformations Just mentioned is the fact that they can be

associated w!th speedup predictions Fong and Unman [16] were the first to characterize an Important class

of algor!thmlc dlfferencmg transformations m terms of accurate asymptotic speedup predictions, eg, they
gave conditions under which repeated calculation of a set former {x m slk(x)} could be computed m O(#s) +
cost(k) steps By considering stronger condmons and special cases for the boolean valued subpart k, Paige

[31] later gave sharper speedup predictions (eg, either O(1) steps for each encounter of the set former or
a cumulatwe cost of O(#s) steps for every encounter) associated with another dlfferencmg method Both

Morgenstern [28] and Palge [31] prove constant factor Improvements due to their )ammmg transformations

(implemented by Morgenstern for the Improvement of fde processing, and by Palge for the optimization of
programs) Constant factor speedup has also been observed for data structure selection by the method of

basmgs bu? a supporting analytjc study has no? been presented [8, 37]

4 Essential to the whole transformational process IS a wide spectrum Rrogrammmg language (or set

of languages) that can express a program at every stage of development from the mltlal abstract specification
down to Its concrete Implementation realization Since transformations applied to programs written at the

highest levels of abstraction are likely to make the most fundamental algorithmic changes, It IS important to

stress abstract features r our language In addition to supporting transformations, the highest level language

dictions should support lucid inltlal speclflcatlons. verlficatlon, and even program analysts Of special
Importance IS SETL [38, 9], because its abstract set theorettc dlctlons can model data structures and



algorithms easily, because its philosophy of avoiding hidden asymptotic costs facilitates program analysm,

because its semantics conforms to finite set theory and can accommodate a set theoretic program logic, and

because it is wide spectrum, As is evidenced by the work of Schwartz, Fong, Paige, and Sharir, SETL is also
a rich medium for transformation,

Il. Main Results

The original contributions of our work are listed below

i. Our mam result is the implementation of a prototype transformational programming system that
incorporates several of the Ideas mentioned above This system. called RAPTS (Rutgers Abstract Program

Transformation System) [321. supports the semiautomatic development of reliable and efficient sohvare

using source–to–source program transformations for an abstract variant of the SETL language. Like the prior
transformational systems of Cheatham [4], Standish [41], Loveman [27], Darlmgton [3], and Feather [14]
RAPTS has modules to perform parsing, unparsing (i.e., prettyprinting), search, and transformation application: i?

can manipulate libraries of transformations, source programs, and program development states; RAPTS provides
2 variety of user aids, also, global control flow and data flow analysls are used to prove the apphcabihty
conditions of our transformations automatically However, our system emphasizes the strict stepwise
refinement of programs by successive applications of powerful correctness preserwng transformations that

can be selected, justified, and applied with a much greater degree of mechanization than other systems.

We have used RAPTS for experimenting wtth algorithm derivation, system construction, and automated

database processing. An important conceptual advantage m using SETL as both system implementation
language and source language is that RAPTS can be used to improve Itself, as was done for its dead code

elimination procedure. In Appendix lil we show how an meffictent but clear abstract specification of this
procedure is transformed mto a lower level SETL variant that runs m Imear time with respect to the use-to-

def links Moreover, the transformational approach to verification together with appropriate assert!on control
could be used within RAPTS to prove Itself correct

il. RAPTS uses a finite differencing method [33] that genarallzes John Cockes strength reduction

[61. and provides an efficient implementation of a host of transformations including Jay Earley’s ‘Iterator
mverslon’ [13]. Our differencing algorithm is an outgrowth of less effuent and less general algorithms due
to Cocke, Schwartz, and Kennedy [6 7] The reduction in strength algorithms found m [6 7] execute in

O(n) steps (where n is the number of nodes m the flow gZiDh of a program IOOPI for a single ~ass
However, their algorithm and also the algordhm used by Paige and Koenig [31] takes 0m**2) steps m the
worst case to compute, due to successive linear time passes over programs growing successively larger

Our new algorithm only ‘equres a single pass, and execu~es in Oh steps overali We obtain this

improvement by detection of all reducible expressions (that woula be detected w{thm multiple passes of the

classical algorithms) in advance of any transformational steps Our algorithm gains greater generality by

accepting differencing transformations as input Based on these differencing rules, we automatically determine

categories of variable modifications upon which we can detect expressions amenable to reduction Thus,

differencmg transformations can be apphed over a wider range of data types than prewously possible.

However, m thw paper we will stress the important application to set theoretic expressions, first observed by
Earley [13],

Fong [17] first presented an algorithm to implement a subset of Earley’s transformations, and her

approach varied frOm his and Cockes approach by using a deferred update strategy. She also gained more
information by analyzing program paths instead of loops However, her algorithm ran in ttme proportional to
e log e bit vector operations, where e is the number of edges in the program flow graph. Furthermore, like
the classical strength reduction algorithms, her algorithm must be reapplied over programs growing

successively larger. (As in the case of the classlcal algorithms, this problem !s due to the fact that reduction
of one expression f can make another expression g(f), which depends on f, reducible; as was first noted by

Cocke and Schwartz [6] and solved by Cocke and Kennedy [7], reduction of f can also introduce new
auxihary expressions that must be further reduced.) Even the improvement of Fongs algorithm by Tarjan

[42] and Rosen [35] to almost linear time in e bit vector operations per pass falls to make it a viable

competitor to the classical approach or our new improvement. It remams an mterestmg open problem

whether the path analysis approach introduced by Fong can be modified mto a single pass algorithm without

losing asymptotic efficiency. We conjecture that this problem can be solved affirmatively. Further

comDarlson o? her worh with ours can be found m [310

Like Fong and Unman [161 our application of set theoretic differencmg E based upon reasonable

condmons for ensuring asymptotic speedup Although our current implementation includes about 50 groups

of concrete differenctng rules [31], recent theoretical improvements provide for a much more compact
collection of meta–rules (see Appendix 1) that are as easy to specify and implement as our current rules, and
even more general than those proposed in [30].

iii. RAPTS can perform new and powerful set expression Jamming transformations implemented by a
hnear time algorithm [30, 31], A much more powerful algorithm than what is currently implemented and that

yields ‘optimal expression jamming’ is found in [20].
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iv We have designed (but not yet Implemented) a new way to mechanically estimate the asymptotic

speed of an algorithm derwed by transformation within FIAPTS. Related to this is the earlier work of
Wegbreit, who discussed a transformational system that mechanically analyzed the performance of Lisp
programs as they were Improved by transformation [44], Because we are observing programs specified at

a h!gher level of abstraction than Wegbreit, and because our transformations deal with more fundamental
algorithmic program Improvements, we obtain more global mformatlon.

v. We specify our mmal abstract program a? an unusually high level of abstraction beyond current

standard SETL. Illustrations will be included in the next section and Appendix Ill

vi RAPTS incorporates an Implementation of a class of abstract static to dynamic expression
transformations that generalize Earleys itera~or inversion, (See Appendix II for a samphng of these
transformations !

2. RAPTS Illustrations

It Is. perhaps, most convement to explain the transformational capabilities of RAPTS by example, using

photo generated excerpts of an actual RAPTS derruatlon of to~ologjcal sorting (an example f!rst considered

by Eariey [13])

Before proceeding, the reader may find it helpful to consult the brief description of SETL operations

and their estimated computational costs (based on obvious hash table implementations for sets and maps)
gwen [n table 1.

-------------------------------------------------------------------------------
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0(1)
0(1)
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0(1)
O(n)

0(. ? % Ccst(aloc.1 1
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O(PS x Cost(k) )

O(FS X cost(k) )

0(. s + =tl
m~n(O(*sl. Oi *T))

0(?’s)

0(, .f)

TABLE : Complex {t> Est~mates o? Setl Operations

our initial algorithm specification inputs a set s and a set of pairs sp representing an Irreflexwe
transitive predecessor relation defined on s; as output, It produces a tuple t m which the elements of s are

arranged in a total order consistent wkh the partial order sp. sp maps each element x of s mto the set

sp {x} of predecessor elements The algorithm proceeds by repeatedly searching for the minimal elements of
the partially ordered set s, addfng such elements to the end of t, and then removmg them from
s Pretty printed in RAPTS, our initial program is,
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program topsort ;
1 read ( SP ) ;

2 print ( sp) ;

3 t := [1 ;
b s := domain sp + range sp ;

5 (while exists ainsl((sp {a] )* s)={})

6 t with := a ;

7 s less := a ;

end while ;

8 if s = { } then

9 print ( t ) ;

else
10 print ( O ) ;

end if ;

end program ;

The running time of the mmal program IS slow,, essentially O(#E*%21, which [s due to repeated search
for the minimal elements of s each cycle through the while loop Speeding up this program entails searching
for the mlnlmal elements only once, and maintaining the set of minimal elements by Inexpensive ‘differential’

computations within the while loop as s decreases This strategy for program improvement IS captured by a

basic program optimization method we call finite differencing

In order to facilitate finite differencing, we must first turn the code above into a normal form in which

set update operations are implemented in terms of element addklons and deletions, set intersections and

deletions are rewritten as set formers, etc. For our example, the system will carry out several local

transformations (selected from a production system of $Imple rewrite rules) Application of each

transformation is justified by an assertion specified by a SETL predicate. If the system can simplify the
predicate to ‘true’, the transformation m applied automatically, Otherwise, the system asks the user to
confirm the partly simplified predicate. (In all of our examples presented here, the system has proved these
predicates.)

The essential fragment of the normal form of the topological sorting procedure appears Just below,

(while exists a in { setlkl in s \ # { set142 in SP { setlbl ] I
set142ins]= O})
twith := a ;
s less := a ;

end while ;

Finite differencing will automatically transform the normal form algorithm mto an equivalent but more
efficient algorithm that uses the speedup strategy stated earner. In rough terms, differencing will perform
the following three steps based on Cockes reduction in strength schema [61.

i. Just before the while loop, insert code that evaluates the set of mmmal elements

{set141 in sl#{set142 in SP{ setlkl l\set142 in s]= O] (1)

and stores it into the variable ‘minset, We call this code the initialization for mmset

ii. Within the while loop where s is modified, insert code that recalculates mmset from its old value
so that it always stores the value of the set of minimal elements at the point (line 5) where it is computed
We call the code that updates minset the difference of minset with respect to the modification s /ess:= a

When the difference code is executed just prior to the modlflcatlon, It is called predifference code; when it
is executed just after the modification, it is called posto’ifference code.

.,.
Ill At line 5 replace the mmimal set, which is made redundant by steps (i) and (ii), with the variable

minset.

For this approach to improve program performance, the overall computational cost of calculating the
initialization and difference code in the transformed program must be less than the cost of repeated

calculations of the minimal set m the unoptimized program Our system makes this analysls based on classical

code motion assumptions (based on Cocke and Schwartz [6, 31]) and mechanical examination of the minimal
set (1) and the while loop wlthm the normal form of our algorithm before differencmg IS applied For this

example, the system will predict that dlfferencmg will yield asymptotic improvement m the cost of computmg

(1) (Note that Fong and Unman [16] reheal on weaker assumptions; see [31] for a comparison.)

The intuitive ideas behind the analysis are based on a declaion procedure for a class of expressions

for which the cost of computmg difference code relativa to certain kinds of parameter modifications is
asymptotically less expensive then the cost of full expression evaluations. We say that expressions belonging

to this clasa are differen?iab/e. To define the class of differentiable expressions, we first define a fitvte

collection of ‘elementary’ differentiable expressions and their associated difference code blocks whose

computational cost is comparatively small. As is shown in [31], the full class of differentiable expressions KS
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formed from composition of the elementary expressions and parameter substitution This extended defmmon

is justified by a formal calculus that constructs inexpenswe difference code for a nonelementary dlfferent!able

expression by combinmg difference code for the elementary differentiable expressions out of which n IS
formed

We now apply the preceding analysis to the mmlmal set (1) using the collection of basic set theoretic

differentiable expressions found m Appendix 1. Examination of the m!n!mal set calculation detects three

potentially differentiable subexpresslons,

newpred{setlhl] = {set142 in sp {Set]41] lset142 in S ]
numpred(setlbl) = # newpred {setlbl )

minset = {set141 in s I numpred(set 141) = 0]

that might permit efficient differencmg for the minimal set Unfortunately, neither newpred{set141) nor

numpred(set141) are differentiable, because we cannot form efficient difference code for them relatlve to the

arbitrary modifications in the free variable set141 that occur wlthm the while loop of the normal form

However, we can overcome thle problem using transformations (listed m Appendix 11! that handle

dynamic expression formation, a generalization of Earleys Iterator mverston Appl(catlon of transformation (4!

of Appendix II converts newpred{set141] into the following differentiable expression

newpred = {[x, yl in SP] Y in S]

which removes the troublesome free variable setkll, and stores values of newpred{set141} for all relevant
values of seti41. Likewise, transformation (26) turns numpred(set141) into the following expression that can

be malntamed dynamically at low cost,

numpred = {[x, #’newpred{x]]: x in domain newpreci}

Supported by the elementary differentiable expressions, newpred, numpred, and mlnset, the mirvmal Se?

ill is seen to be differentiable, and our system can proceed to carry OU: the main transformational steps that

will speed up the normal form of the topological sort, I.e.,

i. Store initial values Into newpred. numpred. and minset on entry to the while loop

il Update newpred, numpred and mmset Just prior to Ime 7 where s E modified m order to make
the computation of the mmmal set at hne 5 redundant

Consistent with prewous dwcusslon, we refer to the u~date code revolved in tash (ii) as the difference
of newpred, numpred, and minset with respect to the element deletion s less:= setll, and we form this

difference code using a kmd of ‘chain rule that combines the separate rules for formmg difference code
first for newpred, then numpred, and finally minset (I,e., from Inner to outer subexpression of the minimal

set).

We will illustrate the chain rule by proceeding with this example The predlfference of newpred

relatw’e to the modification s less= a is

(Forall set\48 in { x indomainsp I a in SP {x] }) (2)
newpred{set148] less:= a;

end forall ;

Observe that the predifference code (2) contains a costly embedded expression

succ{a} = { x in domain SP I a in sp { x } }

that we do not want to compute, However, the system will recognize that this expression can itself be
reduced by ‘second’ differencing, At the same time that the three other differentiable expressions are
detected, the system will recogmze that dlfferentlatfon of the dynamfc expression

succ = {[y,x]: x in domain sp, y in sp{x]]

can efficiently eliminate the costly static expression occurring within the difference code (2)

The predifference code for numpred relatlve to the change in newpred w,nhln (2 I IS simply

numpred(setlh8) -:= 1; (3)

The final step of the chain rule revolves forming the difference of mlnset relative to modifications in both of

its parameters, s and numpred, These predifference blocks are

comment: relative to changes in s (4)
if numpred ( a ) = O then

minset less := a ;

end if ;

and

78



(5)comment: relative to changes in numpred

if set148 in s then

if numpred ( set 148 ) = O then

minset less := setllt8 ;

elseif numpred ( set 148 ! = O + 1 then

minset with := set]48 ;
end if :

end if :

respectively The chain rule combines the preceding blocks of difference code to form the following

collectwe predifference of newpred, succ, numpred, and mmset with respect to s less= a

( forall set148 in succ { a j ) (6)
if set]48 in s then

if numpred ( set]48 ) = O then

minset less := set148 ;
elseif numpred ( set]48 ) = O + 1 then

rninset with := set148 ;
end if ;

end if ;

numpred ( set14& ) - := 1 ;

newpred { seti48 } less := a ;

end feral 1 ;

if numpred ( a j = O then
minset less := a ;

end if ;
.

Analysis of the overall cost of executing the block (6) rests on three easy observations

i. Based on the monotomcally decreasing sel s wlthm the while loop, we estlma~e tnat (6) is executed
O(#nsI times, where s !s the mmal value

i! B2sed on tne complexity estlmales statec In Table 1. the difference blocks !3}. ~4i. and !5) revolve
only constant fac~or costs. Sucn costs are subsumed by the costs of surrounding code and can be ignored

These examples illustrate the following general property

Definition An expression E = f(st IS strong/y corrlirwous with respect to modlftcatlons of the form ds IO s

if the cost of the difference code for E with respect to ds is 0(1)

Thus, mlnset IS strongly continuous wjth respect to indexed assignments to numpred and element deletlons to

s Also, numpred IS strongly continuous with respect to element addltlons and deletlons to newpred

iii. Repeated execution of the difference code for newpred

(Forall setlk8 in succfal)
newp-ed{seti48} less:= a:

end feral I ;

relatwe to each distinct element ‘a’ removed from the monotomcally decreasing set s. has an overall

asymptotic cost no worse than a single calculation of newpred ❑ {[x,YI in SP I Y in S1 at the i!~itial value
of s: i.e., O(#spl This example illustrates the followlng general property.

Definition, An expression E = f(s) m weakly continuous with respect to modifications ds to s if for every

mmmai length sequence of operations dsl,ds2,...,dsn (of the form ds) that constructs the final value 52 from

the m!tial value s1, the cumulative cost of all difference code for E with respect to all of the operations

dsl,...,dsn IS O(max(cost(f(s l)l,cost(f(s2))) + n). (Note that all of our speed estimates are based on the

heunsttcs gwen m Table 1.}

Thus, newpred m weakly continuous with respect to element additions to s.

Based on tne preceding analysis. the asymptotic cumulative cost of (61 E estimated at O($sp! whrch IS
an order of magnnude better than the overall COSt of the mmrma! set computation !1; lr~ the normal form

algorithm.

Based on Table 1 and the assumption that initialization of newpred, succ numpred. and minset can be
achieved by the straightforward assignments
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(7)newpred := {[x,y] in spl y in s];

Succ := {[Y,xI: x in domain SP, Y in SP{XII;
numpred := {[x, #neWpred{x]]: x in doinain newpred];
minset := {set141 in s I numpred(setlhl) = 0];

we estimate the preprocessing costs to be O(#sp), which justifies our prediction of asymptotic speedup

However, we gain a constant factor improvement over this naive initialization by jamming the implicit loops
within these set formers [31] The jamming algorithm implemented in RAPTS constructs newpred and

numpred m a single loop A deeper investigation of this important transformation and an improved algorlthm

is found in [20]

The speedup prediction Just presented IS based on analysls of the normal form algorithm, so that it

can be determined whether differentiation IS profitable prior to any differencmg tran.sformatlons are applied.
By analysis of tne normal form, It ts somettmes also possrble to estimate the asymptotic speed of the

transformed algorthm Based on the Table 1 estimates and detecrlon of the presence of monotomc set
growth within while loops (which can prowde an estimate for the loop repetition frequency), It Can be

determined that after the minimal set computation IS replaced by ‘mInset, ali code other than that which has

been introduced by differencmg and mltlallzation contributes no more than O(tisp) m overall cost Adding m
our estimates for cumulatwe differencing and mitdzat!on costs gives us an overall estimate of O(#sp) m
running t!me for the transformed algorlthm.

Further Improvement m ttme and especially space can be realized by performing dead code ellmlnation,
which exploits the increase in data independence resulting from differencing and jamming. Based on an
algorithm due to Kennedy [23, 31], our dead code elimination procedure detects all assignments to newpred
as superfluous The result of this final step is,

program topsort :

i
2

3

4

5

6

7

a
9

10

,<

12
i3

14
15

!6
17
18

19

20
21

22

23

24
25

26

2?

2s!

read ( s-p ) :

pr-lnt ( sp ) ;

t:= [l:

s = domain SP + range 5P ;

Succ := { } ,

( foi-a, l set149 In domain SP , set75C Ir, 5P { set149 ! 1

succ { set150 ? with := set 14% :

end ?Orall ;

numpred := { } ;

i fo. all [ set143 setlil 1 in sp J

,f set144 In s then

numpred ( 9et 143 ) + = ~ :

end lf :

end forall :

mlnset := { ) :

( forall set154 ~n s )

lf numpred ( Set154 ) = O then

mjnset w,th ,. set15d :

end (f ;

end forall ;

( wh~le exists a in rn>nsmt )

t with := a :

( forall set14a in succ { a ? )

if set 148 in s then

If numpred ( set 148 ) = O then

m]nset less := set 14a i

el self numpred ( set 148 ) = O + 1 then

mlnset with := set 148 :

end lf :

end If :

numt3reo ( set 148 ) - .= - :

ena forall :

If numpreti ( z ) = C then

mlnset less := a ;

end ,f ;

s less := a ;

end wh~le ;

ifs= {} then

print ( t ) ;
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else

29 print ( O ) ;

end If ;

end program ;

Our current Implementation outputs the code Just above after mechanical application of the preparatory
transformations, dynamic expression formation, finite differencing, jamming, and dead code elimmation. As m
evident from our example, these transformations treated together function prlmanly to automate the formation

of data access paths Since the Iangth of such paths traversed during execution IS strongly related to the

asymptotic running time of an algorithm, It IS not surprising that finite dlfferencmg and its ancillary
transformations yield asymptotic speedup. In addition to speedup the process just illustrated supports
verification The soundness of our transformations, along wtth a standard correctness proof af the initial

abstract algorithm, proves the correctness of the less perspicuous but more effmient equivalent algorithm
above

Further improvement will result from manually imtlated assertion propagation and easy syntactic
transformations. For example, we can introduce the assertion asser~ set144 m s Just before line 10 m order
to ellminate the extraneous membership test at Ime 10. It is also worthwhile to place the statements

assert set148 m s prior to line 19, assert numpred(set148) /= O just before 20, and asserl numpred(a) = O
Immediately before 24, and then exploit these assertions in obvious ways

Further automatic improvement by a large constant factor may be achieved by data structure selection
and aggregation [8, 37], transformations that should eventually be Integrated into RAPTS. However,

considerable extensions to the referenced method are needed to obtain the most desirable data structures for

our example (see Knuth [25]).

A careful semiautomatic approach to select data structures for topological sorting has been worked

out by Katzenelson [22], who used clusters of abstract data types. Katzenelson observed that the most

difficult transformattonai step revolves showing how numpred and minset can share the same space. To solve
this problem, we use the following transformation which can be Justified mainly on syntactic grounds. Since
numpred IS pointwise monotonically decreasing to O within the whiie loop from lines 16 to 26 and since

numpred is only referenced when It m nonzero Just before Ime 22 we can release its space when it goes to
0. Note, however, that when numpredix) becomes O is exactly when minset = {x m SI numpredtx~ = 0} is

augmented by x Tne result of all these transformational steps yields the following data structures

base( I e. .unlversal set; lnunlpl.ed
ciomaln sp + range 5P SD m,nsel

~...-- ----------------- ---------------- ..-. -- . . . . . . . ..-- —.--. -.. ——-—. —

~
---------------------- ---------------- ..------ ..-. .-. .----- .-. -— —-—.-

1

x pO>n Te,- tc, numprea( . f or pO1n Ter to

5’? {.) 9Qv T e,emert of m>nssl qdeke

_.. __ —---------------- .--_-____--__--- -------------------------------

-------------------------------------- ------------------------------ J

SP {X} llst

--. - . . . .. ——-------------

L . . . . . . . . . . . . . . . . .

ointe-.s to base 1
It is worthwhile to elaborate on the approach used to estimate asymptotic program performance for

the topological sorting example. Most differentiable expressions m Appendix I are either strongly or weakly

continuous with respect to element addmons or deletions to set or map valued parameters. For example, all

elementary differentiable expressions except for (8) and ( 10) m Appenalx I are strongly continuous with

respect to the set S, strong continuity K also exhibited by expression ( 1) with respect to the set Q and by
expressions (3] ~4! (7) and ( ?O) wtn respect to the function F Weak contmultv can be observed m

ExpressIons (5) and (6) with respect to the set Q and m expresson ( 10i with res~ect to S Note that the

expression associated with newpred m the topological sort example !s of the form (5 I of Appendix 1, and
exhibits both strong and weak contmulty. Some properties of contmulty are formalized in the theorem below.

Theorem: i Strong continuity is closed under arbitrary composition.

Ii, Let E = f(s) be weakly continuous with respect to changes ds to s, and let ds 1,,..,dsn be any minimum
length sequence of operations of the form ds that constructs S2 from s 1. If all difference code for E with

respect to ds 1,...,dsn forms a mimmum length sequence of operations of the form dE that constructs f(s21
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from f(s 1), and if g(E! is weakly continuous with respect to dE, then g(f !s)1 IS weakly continuous with respect

to s. The cumulative cost all the difference code for g(f(s)) is O(max(cost(f (s 1)),c0st(f(S2)l +

max(cost(g(f (s 1)),cost(g(f(s2 ))))).

ii! If f(s) is strongly continuous with respect to ds, it is also weakly continuous with respect to ds

For an example of composmon of weakly continuous expressions, consider nested image sets. The Image

set expression E = f [s1 E weakly cormnuous with respect to element additions and deletions to s, and m a
program loop where s ts monotonically increasing (resp decreasing), so is the value of E after differencmg IS

applied Thus if we consluer the nested expression h [g[f [s111 in such a LOOP in which h.g. and f are
invariant, the cumulative cost of executing difference code within the loop after it m optimized IS estimated
to be O(#h+##g+#f).

We have used the preceding mechanical asymptotic tme estimates successfully on several algorithms

that include finding connected components m a graph, fmdmg the center of a free tree [31], finding all
nonterminals that derive the empty string in a context free grammar, computmg attribute closure, and

partitioning a flow graph into intervals

The Implementation of fmlte dlfferencmg wlthm RAPTS uses three main algorithms

I. de fmitlon of variable modification categories based on finite differencing rules;

ii detection of variables and differentiable expressions (In a program loop! that fall mto the categories

defined in step i

iii finite dlfferencing of the differentiable expressions with respect to the program loop

Details of these algorithms can be found in [33]. Step ii which is Ioglcally similar to the proced[]l e
presented in [30], passes through a postordering of a parse tree form of the program loop, At each node
a value number is computed [6, 12] to determine whether an expression is differentiable, and also whether

it has been encountered before The goal of this step is to determine all differentiable expressions, Some

of these are detected directly in the loop, while others occur as auxdlary expressions within differencing
rules The time complexity is linear In the sum of the parse tree sizes for the loop and the differentiable

expressions. Step iii uses two lists produced by step )[ a Ijst of places in the loop where each

differentiable expression occurs, and a 11s? of places each variable is modified. It rapidly replaces each
chfferentiable expression f by its associated variable name E w]thln the loop by a straightforward bottom up
procedure For each modification dx to a variable x on which some differentiable expression depends, the

collective pre- and postdifference blocks are formed with respect to dx and inserted around dx The time

complexity for this procedure is Imea. m the sum of the sizes of the inserted difference code anti the code
which !s eliminated as redundant

Conclusion

Interactwe syntactic edmmg systems such as the Cornell Synthesizer have successfully demonstrated a
program construction methodology that mitigates compile time error The Synthesizer speeds the process of
program construction by dynamically monitoring syntax and, to some extent, semantics while the program IS

entered interactively. Transformational programming is a proposed methodology that alms to elimmate run

time error, so that debugging would be unnecessary It seeks to speed the programming process by
mteractwely monitoring program correctness and efficiency during program construction

RAPTS is a novel implementation of a prototype transformational system that represents a synthesis of
old and new ideas, It incorporates new algorithms (Its dlfferencing algorlthm ts an improvement over classical

strength reduction used m conventional compillng systems) and new transformations. We have used RAPTS to

derwe many simple algorithms such as the one Just presented For a more complicated example see
Appendix Ill. We have Introduced a straightforward mechanism for estlmatmg the speedup that results from
finite differencmg and the speed of a differentiated algorithm prior to differentiation Important followup
work to thvs would be to determme condmons unde”r which these initial performance estimates are preserved
by a conventional complexity measure after conventional data structures are chosen to Implement the sets and
maps occurring within the differentiated aigorlthm,

Appendix 1, Differentiable Set Expressions

Listed below IS a small, but ‘fairly complete, collection of elementary set-theoretic meta–expressions
that can be maintamed efficiently by dlfferencmg We assume that each set former in this collechon can also
be expressed m terms of multi-lterators, which generalize cartesian product, e.g.,

{e(X, Y): X in S, Y in T(X) I K(X, Y)}

Although the difference rules associated with each elementary expression are not shown, they follow
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easily from standard distributive laws. Out of these meta-expressions and corresponding difference rules,
the more concrete and numerous elementary expressions and efficient difference rules found in [31] can be

derwed,

1.

2.
2.

A,

5

G

7

8

S+Q

(X1n SIB(Xl}
(X in S I F(X) = T) where T IS an Integer valued

constant , F IS Integer valued.

{X In s [ F(X) /= T; h>here T >S an Integer valueo

constant , F is Integer vclued.

{X ,n S \ e(X) in Q}

{X tn s \ e(X) notln Q}

{Y, 1P S \ F(X) relop R) whet. e F[S] IS dense on the interval of Integers

containing the range of R values: F must be > nKeger val ueci;

t.e lop can be any of the Combat. ,so”s ., >,.=,>=

{> In s ~ F(X) relop R} where F[S] IS ‘sparse on the interva? of integers

Conta, nlng the range of R values, or when F and R can be

real ; In th~s case, we also maintain the following two

auxil ,ary expressions:

V = SO RTED(F IS]) AND

K = !JIN){I In [!, ,*V . 1] I NOT (V(I) . R))

9. {e(Y) x in s}

10 F[S]

11. *S

!2. .,1s where + represents arl thmet lC sum

Appendix IL DYNAMIC EXPRESSION FORMATION

Below we present rules based on Eariey’s iterator inversion [ 13] and Paiges method of discontinuity

removal [30], for transforming static set formers and other set theoretm expressions into a form swtable

for efficient dynamic modification Each basic expression f given below depends on free variables q,q 1,q2,..

that can undergo such modifications that disallow efficient dynamic maintenance of the value of f. However, f

can be profitably maintained dynamically by eliminating its free variables and using a dynamic expresmon f

associated with f in the table below. Note that f stores the values of f {q} for all useful instantiation of

q

5tat1c ExDresslon El,namlc Express Ion

1. {J ,n G(q) I B(X))

2. {X ;n s I F(x) = q)

3. {X In G{q2) I F(X) = ql}

J. {Y in G{q) I X In Q?

5. {X ]n s I X ln F{q??

6. {X In G{ql) \ X In F{q2!)

7. {X In G{q! I F(X) In Q)

8. {X In S \ F(X) In H{q))

9. {X In G{ql) \ F(X) In H{q2)?

IG. {x In G{a! I X notln Q}

11. {1 1n5 I X notln F{q))

12. {X >n G{ql) I X notln F(q2?)

13. {X in G{q) I F(X) notln Q>

14 {a in S I F(X) notln H{q))

15 {x ,n G{cI1} IF(X) notln H{q2})

16, {7 In 5 ~ q ,n F{ X})

‘,7.{> in G{u2’ ! a< r, F{>)!

18 {) in G,o I > < R;

!9 {X ,nS I > < Ftql)

23. {X In G{al} I X s F(q2))

21. {Y ,n G{q) I F(x) < R)

22. {X in S I FIx1 < H(q)}

23. {x ~n G{ai} I F(x) < H(q2))

24. {F( XI: X In G{q)}

25 F[G{q}l

{[ V,X] In G I B(X))

{[ F(X ),X]: X in S)

{[[ F(XI, VI ,X]: [V’, X] ;n G}

{[>, v] InG ~ V ?n Q}

{[ X,Y] I“ F I y ,r, s}

{[[x. YI, zI [x, z] In G. v ?n domain F I z in F{>,!}

{[ Y,X] In G I FIX) in 0}

{[ Y. x], Y in domain H. x ,n doma, n F I F(x) ~n H{!,,}}

{[[ Y.z]. x]:[Y. xI In G, 1 In domain H I F(x) In H{>,?)

{[x, V] In G \ Y not, n 0>

{[y, x]: y in Ciomaln F. x In S I x notln F{ Y))

{[[ Y.z I.x I [y, x] ln G.z in domain F lx not, n F{2}}

{[ Y.X] in G I F(x) notln Q!

{[y ,x] y In domain h, Y in S I F(x) nOt\n H{y}?

{[[ Y.z]. x]:[Y. x] In G.z ~n Uomaln H\ F(x) notln H(z))

{[ Y. X]: x In S. Y In F(>i\

{[[ U. X], W] [W.>] Ir, G, L’ r FiA:

{[ A.,] lnG I Y <R}

{[ Y.x I: y in Uoma]n F, Y In S I x < F(y)}

{[[ Y.z I.x I: [Y. xI ?n G. z in doma>n F I x < F(z)’

{[ X.Y] in G I F(Y) < R)

{[ Y. x]: Y In Uomaln H, x In S I F(x) < H(Y)}

([[ Y.z] .x]. [s .x] in G. z In aomaln H I ‘(xl ~ H(z))

{[ Y. F(x)I: [Y. x] in G)

{[ Y.x]: [Y. z] ,n G. x in F(z})
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26, FF {q} {[Y, .F{.Y}], Y in doma)n F;

27, ./ F{q} {[x, ,/ F{ X}], >, ln DOt”!AIN F)

where . represents arltnme T1c sum

Appendix Ill. Differencing Applied to Dead Code Elimination Within RAPTS

:. Below IS an ,n,t~al abstracl algop>thm SPeclf YlnY z POr Y1On

~f the dead code e] ,m I nation PPOCeUUPe useU W>ttl, n RAPTS The

set crit ,s the set of crltlcal statements (Inltlallj Oe?lned to be the

p~lnt statements of a program) The algorlthm works b. .eoez Ted>, l

ad~,ng to Crlt the set 0+ >nstructlons tnat can affect tne value 0+

variable uses w,thln C1-lt Until crl: nc Iongei_ grm>z

luses {q? IS the set of variable uses w.ttnln statement Q

usetodef {u) IS the set of al: Variable de fin, t,ons tna: can reach

var~able use u

,nstof (d) IS the statement assoc~ateo wlKn a variable def>n:?,on d

compound(q) IS the Compounu statemen7 )mmed)atel! conta, n,ng st2tement

c1

program dead :

read ( Instof usetoaef ,uses compouna cr>t I

2 ( converge )

: Crlt + := ( lnstof [ usetoaef [ luses [ crit ] ] ] + compound [

Cr’lt ] ) :

end :
\

4 D.>nt ( cr]t ) :

eno’ :

IT IS k’lthln Tne norms-, fern beloh tns: 14 d,$ferent>aole exDressl On%

are aeTec Ted. Includlng Ist and 2nd a>? ference expressions. Anal ys>s

cie Te. m,nes that the maus ,nsto? usetoae?, ]uses, and c>mp~uno

a-e z: 1 tueakl~ Cent, n”ous w,tt vesoect ta element aod?:,ons ,n

their set Vzlued arguments. that weav Cortlnultb ,s closed for

the Se expressions. and flna? 1 y, that the Cumulative COS? of a,+ ference

cooe 15 estimated to be

0(, lnstof+, usetodef +=luses+ ncompoundl,

whlct >S dom> nated b) O(eusetodefl. Th, s est, mate IS the same for

,-,-,~la,,;zat,on costs, It IS easy :a see th&?t after dlfferenclng,

tne rema, n,ng costs are proport]onai to the sum of the ,nput and

output sizes.

program dead :

read ( Instor , usetodef IUses cormouns crIt ) :

‘2 ( wh]le ex)sts se?ll jr { set10 >n ( Ins To? [ usetodef i luses

c.i* 1 1 1 ~ COmPOund [ c~~t 1 ) I set10 notln cr, t ) I
3 cr, t With := setll :

end Wh,,le :
~ pr, nt ( C1-lt ) :

enu :

[

b+?er Olfferenc>ng and aeac! code el, m,rmt, on, the malt’. loop of the

algo!-? in.> aPDea F% below Note that 4 out of the 14 d, fferent, aDle

exp. esslons have been el Iml nated as useless. The passage from step

1 to 3 IS done comD1etely automatically wlthln RAPTS.

35 ( wn,le ex, sts setll >n ne~, nsts )

36 ( for-all set15 Tn ,uses { setll } \ nusep~ed ( set15 1 = O )

37 ( forall set118 ?n usetodef { set15 ) ~ ndefpred ( set118 ) =



38

39

40

41

42

43

42

45

46

47

48

50

51

52

53

54
55

56

57

58

59

60

o)

( forall set123 ln lnstof { setl18 } I nlnstpred ( set123 )

=0)

If set 123 not~n comps then

If set 123 natln Crlt then

newlnsts wltn . set 123 ;

end ?f :

Instpnts With = set 123 ;
enci I+ ;

Insts with := set 123 :

end feral 1 .

( forall set130 ln lnstof { setl18 ) )

nlnstpreu ( set 130 ) + = 1 ;

ena feral 1 :

end feral 1 :

( fora?l set127 In usetoaef { set15 ) )

ndefpred I set 127 ) + ,. i :

end feral 1

end feral 1

( feral 1 setl 10 jr’ compound { setl 1 ? I ncompred ( setl 10 ) = O

)

If 3etl10 notln lnsts tnen

If setllo not>n C?IX then

newlnsts wltn = setllo :

end If :

lnstpnts wltn = se7110 :

end lf :

Comps with .= Setllo

end forall :

I forall setll~ In compouno i setli ? )

ncomored ( setli.I ) + = 1 :

end forall ;

( forall set139 In 1use5 { setll } J

nusepred ( set 139 ) - =i.

end forall :

>f setl i ,n lnstpnts then

new~nsts less = setll ;

end if ,
.

CP1t with = setll :

end while ;
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