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Abstract

A linear recursive procedure is one in which a

procedural call can activate at most one other pro-

cedural call. When linear recursion cannot be re-

placed by iteration, it is usually implemented with

a stack of size proportional to the depth of re-

cursion. In this paper we analyze implementations
of linear recursion which permit large reductions

in storage space at the expense of a small increase

in computation time. For example, if the depth of

recursion is n, storage space can be reduced tofi

at the cost of a constant factor increaae in run-

ning time. The problem is treated by abstracting

linear recursion into the pebbling of a simple

graph and for this abstraction we exhibit the

optimal space-time tradeoffs.

1. Introduction

Many high-level languages permit the use of

recursion and hence allow linear recursion in which

a procedural call can activate at most one other

procedural call. Linear recursion is usually
implemented with a stack when a compiler either

cannot or does not replace it with iteration.

The size of such a stack will grow linearly with

the depth of recursion and may in fact occupy much

more storage space than the procedure itself. In

this paper we investigate a general method t.o re-

duce the storage space required to implement lin-

ear recursion at the expense of computation time.

Our approach to this tradeoff issue is one intro-

duced by Paterson and Hewitt [1) and further

analyzed by Chandra [2].

A schema for linear recursion is given below in

which F is the procedure variable, p is a unary

predicate, h and f are unary functions, g is a

binary function and each is uninterpreted.

F(y): = Q p(y) then h(y) else g(y, F(f(y)) ) fi—

The semantics of such an expression are well under-

stood; F calls itself until the predicate i~s TRUE

and the call sequence is then reversed and F is

computed from inside out. We present a simpLe
(linear recursion) graph model of this sequence of

steps and show that execution of linear recursion

with limited storage space can be abstracted as a

!>pebble game “ on this graph. The pebble game models
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register (or memcn-y) allocation, and the placement

of a pebble on a node indicates that the value of

the function at that node has been computed and

placed in a register (or memory location).

We find the optimal space-time tradeoff for

Pebblings of the linear recursion graph and state
~hese r~sults in an easily underst~od”

example, if the depth of recursion is

pebbles are used, the number of moves

Tp(n), has the following behavior for

form. For

n and p

required,

large n:

i
d

/ P n ‘(P/l+p)

i

p << log2n

Tp(n) =

{

K1 n log2n p = K2 log2n

[

log2n

n log2p
p >> log2n

Here K1 is a function of K2. Thus , if p is on the

order of n~~k, Tp(n) remains linear in n which

implies that a large decrease in space can be

achieved at the expens~ of a small increase in run-

ning time. We also exhibit the class of algorithms

which achieve these optimal space-time exchanges

and show that at least one of these alg~rithms is

easily implemented.

In the next section, we develop the grap~ model

for linear recursion and in.che folluwing section,

Section 3, we derive the optimal algorithms and the

statement of space-time exchange. In Section .4 we

present a program implementation of “partial stack

algorithms u for linear recursion. Section 5 is

concerned with two implementation issues, one of

which is the determination of the amount of stor-

age space that needs to be allocated to achieve a

user or compiler space-time exchange.

Paterson and Hewitt [1] introduced the pebble

game and demonstrated i!or linear recursion that for
1+1/k

fixed temporary storage, time grows as n .

Chandra [2) demonstrated that the time must grow at

least this rapidly under these conditions even if

counters are also avaiLable. He also gave some

nonoptimal algorithms for linear recursion which

use small, medium, and large amounts of space. Our

contribution is to simplify the analysis, determine

the full class of optimal algorithms, derive in

simple terms the space-time tradeoffs and show that

they can be achieved with some simple algorithms.

We also observe that the prob’lem studied by
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Paterson, Hewitt, Chandra and us is really that of

replacing stacks by partial stacks in which missing

stack elements are recomputed. For this reason,

the techniques of this paper are also applicable to

some forms of recursion which are not strictly

linear.

The pebble game has been investigated by several

authors. Hopcroft, Paul, and Valiant [3] have

studied the pebble game on a graph on N nodes and

show that they can be pebbled using space O(N/logN),

where the constant of proportionality depends on

the maximum in-degree of nodes. Paul, Tarjan

and Celoni [4] have shown the existence of arbi-

trarily large graphs for which every pebbling

strategy uses space Q(N/logN), and Pippenger

[5] has exhibited a graph onN nodes for which the

time T and space S satisfy

22=
N log2 &+ o(1)

so that more than linear time (in N) is necessary

to pebble the graph with space O(N/logN). Paul and

Tarjan [6] have shown the existence of graphs on N

nodes such that reduction in S by a constant factor

O(JR)
causes T to expand from O(N) to 2 . Savage and

Swamy [7] have derived tight upper and lower bounds

to the space-time exchanges for the FFT algorithm

on n inputs which show that the space-time product

is about 0(n2).

These results are derived for pebblings of

specific graphs. However, Grigoryev [8] has de-

rived lower bounds to the product ST for n x n

matrix multiplication modulo-2 and for multiplica-

tion of n-degree polynomials which are fl(n3) and

Q(n2), respectively, and which apply to any

straight-line algorithms for these problems. Tompa

[9] has similar results for superconcentrators,

which include bilinear algorithms for convolution,

and matrix multiplication for special matrices, for

grates [10] and for the discrete Fourier Transform.

2. A Graph Model for Linear Recursion

Given a linear recursive procedure F and an

input a, as defined above, F calls itself n times

where n, the depth of recursion, is the smallest

‘n)(a)) is True. (Hereinteger such that p(f

f(o)(y) = y and for n > 1,

It follows that

F(f ‘n)(a))

and in general for O S r <

F(f(r)(a)) = g(f(r)(a)

In a stack implementation,

f(n)(y) = f(f (n-l)(y)).

. h(f(n)(a))

n

, F(f(r+l)(a)))

the depth of recursion

is determined by successively calling F until the

predicate p is TRUE and pushing f ‘r)(a) onto the
stack for OS r < n-1.

When f is an invertible function, we can compute

f(r)(a) from f ‘r+l)(a) by

f(r)(a) = f (f‘1 ‘r+l)(a))
so that linear recursion can be replaced by itera-

tion, as indicated schematically below.

Y: =a

while p(y) # TRUE do y : = f(y) od— —

z: = h(y)

while y # a doy : = f-l(y); z : = g(Y,z) @
F(a) :=z—

Thus , if f is invertible, as in the following

example, then linear recursion can be realized in

a fixed amount of space.

Fat(n): = if n = O then 1 else n x Fac(n-l)fi— —— —

However, f may not be invertible, difficult to

invert or it may not be clear to a compiler (or

compiler writer) that it is invertible. We note

that every partial recursive function can be

realized by ALGOL-like programs which use linear

recursion and elementary functions.

We consider methods for exchanging space for

time that do not depend upon the specific inter-

pretations given to p, h, g, and f. Thus , these

methods will compute functions defined by linear

recursive procedures by simulating, perhaps with

repetition, the computations carried out in a stack

implementation. Figure 1 shows a very simple

directed acyclic graph Ln (called a chain) which is

the basis for describing the simulation of linear

recursion. Node r, 1S r S n, corresponds to

f(r)(a) by application of the function f, as in-

dicated by the directed edge from node r to node

r+l. In linear recursion the object is to compute

the items represented by the nodes in reverse

order, namely in the order f ‘n)(a), f(n-l)(a),

f( ‘-2)(a), . . . . f(2)(a), f(l)(a). In a stack

implementation these items are stored in increas-

ing order as they are computed, so they can be

retrieved directly. However, if too much space is

used by a stack, a partial stack can be retained

in which intermediate stack results are saved. This

requires the recomputation of results that have

been discarded. We call such algorithms as

“partial stack algorithms.”

The space-tiine tradeoff problem is now

abstracted as a pebble game on the chain L of
n

Figure 1. It is assumed that the depth of recur-

sion n is known. (This is easily determined in

fixed space, as indicated above for the case of an

invertible function f.) In the pebble game,

pebbles are placed and removed on the nodes of the

graph according to certain rules and when a node

is pebbled this indicates that the function

associated with that node has been computed and the

result has been placed in a register (or memory

location). Any input node can be pebbled at any

time and a non-input node can be pebbled only when

all nodes which have edges directed into that node

have been pebbled. Pebbles can be removed at any

time. We count only the moves made to place

pebbles on nodes.

3. An Optimal Pebbling Strategy

The problem of computing a function defined by

a linear recursive procedure with depth of recur-

sion n has been reduced to the pebbling of the

nodes of the graph Ln of Figure 1 in the order n,

n-1, n-2, ..,, 2, 1 while honoring the dependencies

indicated by the directed edges. If p pebbles are
allowed, we let T (n) denote the number of times

P
pebbles are placed on nodes to complete this task.

(Pebble removals are not counted. ) We note that if

node r has a pebble on it when it is to be visited,
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the visitation is not counted in Tp(n). The number

of steps to visit as well as pebble is no more than

Tp(n) + n-p.

Consider the case in which one pebble is used to

pebble Ln. This pebble must be placed successively

on nodes 1,2 ,...,n to pebble node n. Once this is

done, the problem is reduced to pebbling the nodes

of L in reverse order. Thus ,
n-1

Tl(n) = n + Tl(n-l)

and since Tl(l) = 1, this reduces to

Tl(n) = n(n+l)/2.

The case in which two pebbles are used is more

interesting and indicates how the general case

should be approached. As two pebbles advance into

Ln there will be several points in time at which

one pebble is on a node i and another on node j

where j > i+l, that is, there is a gap between

them. If the pebble on nodei is removed before

it could be used to make another advance intc~ the

graph, then the pebbling is non optimal because

over some portion of the graph the algorithm will

have made use of only one of the two pebbles.

This same argument applies to two adjacent pebbles

on Ln when there are more than two pebbles, namely,

in an optimal algorithm the pebble on the nocle with

lower index is not removed after a gap develc~

between them until it is used to make a

subsequent advance.

Consider a time-optimal pebbling of Ln with p

pebbles, p< n. There will be a point in time at

which p pebbles are on Ln and such that the pebble

on the node of lowest index, say r, will be held

in place while the remaining p-1 pebbles are used

to pebble the subgraph of nodes r+l,r+2,.. .,n in

reverse order. Since the pebble on node r is

used for this advance, the problem is equivalent

to pebbling Ln-r with p-1 pebbles. After nodes

n, n -1, . . . . r+l and r are pebbled, the p pebbles

are used to pebble nodes 1,2, ...,1-1 in reverse

order. Since r is chosen optimally, we have

Tp(n) = min (r+Tp(r-l)+Tp-l(n-r)) (1)

l= r< n-p+l

since r moves are necessary to bring a pebble to

node r. We call this node a splitting node

because it divides the pebbling problem into two

subproblems.

To solve this recurrence we introduce a

binomial number system. Given a positive integer
p > 2 (to be interpreted later as the number of

pebbles), for each positive integer N there are

unique non-negative integers m and A such that

N=S
p-l,m

-t-I,, o<lss -1
p-2,m+l

where

s
q,m “ (:1)

The uniqueness of these integers follows from the

monotonicity of S with m and the following
p-l,m

identity

s s +s
q,m+l = q,m q-l,m+l

(2)

The number system can be extended to the case P=l,

which is important below, if we set S-l m = 1.

Then when p=l we have ,E=O and m=N. Als;

s
p-1,2

= p+l so if p ~ Nwe have m=l and L=N-l.

Theorem 1: For all. p ~ 1, the minimum number of

placements of pebbles required to”pebble the chain

Ln of n 2 1 nodes with at most p pebbles, Tp(n),

satisfies

Tp(n) =~~ (m-l)S + m(,l,+l) (3)
p-l,m

where lSmand051i <s - 1 are the
p-2,m+l

unique integers such that

n=S +,e
p-1.,m

Proof: The proof is by $ndu~t+on m n and p.

(4)

Basis: ~)

b)

The basis

The case of p=l, namely

T1(n) = rL(n+l)/2 = m(mi-1)/2

has been established above which agrees

with (3).

For p ~ n, Ln can be completely pebbled

in n moves so Tp(n) = n. Alao, m=l and

j=n-1 in this case, which agrees with

(3).

states expressions for Tp(n) on those

boundaries which are shown in Figure 2.

Inductive Hypothesi~: If Tp(n) is given by (3)

for alllsn<pwhenp< P-1 and forl SnSN-1

when p=P, then TP(N) is also given by (3).

Figure 2 also shows the order in which the

induction sequence is carried out. We now state

the conditions under which the minimum of equation

(1) is achieved.

Let
G(r) = r +Tp(r-l) +T P-l(n-r) (5)

Then.

Tp(n) = ‘rein G(r) (6)

l= r< n-p+l

Consider the forward difference

7G(r) = G(r+l) - G(r)

= 1 +VTp(r-l) -VT P-l(n-r-l) (7)

Then, the minimum in (6) is achieved at a value of

r such that vG(r) > 0. Therefore, we further

evaluate vG(r).

Since 1< r < n-p+l and p ~ 2 we invoke the

inductive hypothesis and use (3) to evaluate the

forward differences in (7). TO do this we let

(u,h) where u> O, 0< h< SP-2,U+1-1 and (v,i)

~-3,v+1-1, be the uniquewhere v>0,05 i:< S

pairs of integers such that

r.s +h
p-l,u

n-r = s -l-i
p-2,v

(8)

Clearly, from (4) we have

s +1=s +s
p-l,m

+ h+i (9)
p-l,u p-2,v

which will be used later.

The forward difference VTp(r-l) is easily seen

to be u when h > 1 (and r-1 k SP-l,u) and can also
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be shown equal to u when h = O by straightforward

manipulation of binomial coefficients. Similarly,

vTp-l(n-r -1) is equal to v. Summarizing we have

vTp(r-l) = u, 05h<S -1
p-2,u+l

vTp-l(n-r-l) = v, O<i<s -1
p-3,v+l

We will also encounter the forward differences

vTp(r-2) and VT P-l(n-r) and we have

(u h>O

vTp(r-2) = (

( u-1 h=O

(V+l i=s -1
p-3,v+l

VT ~-l(n-r) = ~

b i<S -1
p-3,v+l

as a direct consequence of the above analysis.

From these observationa and (7) we have that

vG(r)=l+u-v (lo)

and since

vG(r-1) = 1 + Tp(r-2) - T P-l(n-r)

we have

I
u-v h>O, i=S -1

p-3,v+l
(ha)

l-l-u-v
VG(r-1) =

h>O, i<S -1
p-3,v+l

(llb)

u-v-1 h=O, i=s -1
p-3,v+l

(llC)

u-v h=O, i<S -1
p-3,v+l

(lId)

As indicated above, the set of integers {r]

which minimize (6), the optimal splitting nodes,

satisfy VG(r) 2 0 although not all such integers

minimize this expression. We consider two classes

of integers which minimize (6) and satiafy VG(r) > 0,

name ly

A = {r,r+llvG(r) = 0]

B = {rIvG(r) 2 1, vG(r-1) S -1]

The integers for which VG(r) z 1 and VG(r-1) > 1

do not minimize (6) while those for which

vG(r) 2 1 and vG(r-1) = O fall into A.

Consider r e A such that vG(r) = O; then from

(lo)

VG(r)=l+u-v=O

or v = u + 1. From (9) and the identity (2)

we have

s + j = Sp-l,u+l + (h+i)
p-l,m

and since

OS h+is SP ~,u+l-l +

we conclude that

u = m-1, v = m, ()<

Consider next the case

s -1=s -2
p-3>v+l p-2,u+2

h+i=LSS -2
p-2,m+l

of r e B; here we have

U-V ~ O and VG(r-1) < -1 and the only case for
both conditions hold is (llc). This requirea

(12)

which

u=v, h=O,i=S
p-3,v+l-l

and from (2) and (9) we have

s +.8=s
p-l,m

+s
p-l,u + ‘p-2,u

-1
p-3,u+l

=s
p-l,u ‘sp-2,u+l

-1

from which it follows that

u =m, v =m, J = S -l, h=O,i=S
p-2,m+l p-3,m+l-1

(13)

Thus , if J = Sp.2,m+1 -1 there is exactly one value

for r that minimizes G(r), namely, r = S
p-l,m’

while ifO<A<S -2 then the minimizing
p-2,m+l

value of r satisfies S Sr5S -1.
p-1,m-1 p-l,m

It remains to use the minimizing values for r

in (5) to show that the minimum is indeed Tp(n).

This task is left to the reader.
❑

We extract some additional information from this

theorem that will facilitate the construction of a

partial stack algorithm for linear recursion.

Corollary. If r. is a splitting node of L n then

it satisfies the following conditions:

Case a) For S <n~s
p-l,m

-2
p-l,m+l

s
p-1,m-1 s ‘O% ‘p-l,m-l’

s 5 n-r. S S -1
p-2,m p-2 ,m+l

Case b) If n = S -1
p-l,m+l

then
‘O = ‘p-l,m’ and ‘-rO = ‘p-2,m+l

-1

We now identify a single, simply computed

integer r
1

which is the label of a splitting node

of L
n“

Lemma 1. The integer rl defined by

‘1 = max(Sp-l,m-17 n-S +1)
p-2,m+l

(14)

satisfies the conditions of the above corollary.

Proof The conditions of the corollary can be—.
stated as bounds on r

o’
when S

as shown below.
p-l,msn= ‘P-l,M+l-2S

s sro<S -1,
p-1,m-1 p-l,m

n-S +l~ro <n-S
p-2,m+l p-2,m

It is easy tO demonstrate that rl, the larger of

the two lower bounds satisfies both upper bounds.

When n = S -1, n-S +1=s
p-l,m+l p-2,m+l p-l,m

so that

‘1
=s

p-l,m
, which is the optimizing value of r

o

in this case.
❑

We now examine a number of implementation issues.

4. Partial Stack Algorithms

The space-time exchange that will be obtained

from a partial stack algorithm will be determined

by the number of temporary stack locations p

available and the depth of recursion n. We post-

pone until another section a discussion of this

exchange and present here a program for the

realization of an optimal partial stack algorithm.

Our program will use the rule given in Lemma 1 for

the selection of a splitting node.

The recurrence of equation (1) defines a
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partial stack algorithm when 2S p< n-1. It

consists of pebbling up to a splitting node r
1

with

a pebble being left on this node followed by a

pebbling of nodes r1+l,r1+2,. ..,n in reverse order

with p-1 pebbles and then a pebbling of nodes

l,2,...,r1- 1 with p pebbles. If p = 1, the single

pebble strategy is used to pebble nodes 1,2,. ..,n

in reverse order. If p 2 n; a standard stack

algorithm is optimal.

The partial stack algorithm that uses rl~ as a

splitting node where

‘1
= max(S n-S

p-1,m-1’
+1)

p-2,m+l
(14)

is given below in pseudo-ALGOL. The determination

of p, the size of the partial stack and the calcu-

lation of integers m and 1 are discussed in the

next section. Observe that once the depth of re-

cursion n is known f ‘n)(a) and h(f ‘n)(a)) :ire

available so the problem reduces to computing

f(l)(a),f ‘2)(a),. ...
f(n-l)(a) in reverse order or

to the pebbling of Ln-l. Comments are shown in

brackets.

[Determine the depth of recursion,.n, and com-

pute h(f ‘n)(a) ).]

Y: =a; n:=o

while NOT(p(y)) do y: = f(y); n: = n+l od

= h(y); d: =~1
—

[De~~rmine p; compute M, and Sp-l,m SUCh that
Sp-l,m= d= Sp.l,m+l -1.1

S:=s
p-l,m

[Observe that Sp-l,m+I = (m+p)s/m. ]

[Use the single pebble strategy if p=l,, a full!
\stackif p~d and thepartial stack algorithm~

! otherwise.
!..

~ P=l then call SPL(d, a, F)

~ ~>d then cm STK(d,, a, F)
!-== PS1’K@,a,m,p,s,F) fi fi

[:~b~;l~owing procedure computes F with one
——

Procedure SPL(d,a,F)

w
i: = d. ,z:=a

while i#Odoj: = i; while j +()*—
z: = f(z); j: = j-1. od;

i: = i-1; F: = G(z,F~@

F: = G(a,F),

end

[Th~ollowing procedure computes F with a

complete stack.]

Procedure STK(d,a,F)

@@l
i: = d-1; z: = a

while i # O do z: = f(z); PUSH(z);—
i: = i.1 Od

z: = f(z); i: = d-1; F: = G(z,F) —

while i # 0~ z: = POP; F: = G(z,F);

i: = i-l Q

F: = G(a,F)

end

~cedure PSTK(d,a,m,s,p,F)

[s= d< (m+p)s/m-1]

J?Saw
.

[If p=l,z~he single pebble algorithm is optimal.]

if p = 1 then call SPL(d,a,F); return fi— —— —— —

[

If m=l, then S =1 and S -l=p so
p-1,1 p-1,2

I<d<p and the full stack algorithm is used. 1
‘if—m=l then call STK(d,a,F); return fi— —, — — .

The splitting node r=max(s ,d-S
p-1,m-1

+i

>s ‘1 when m>2.
p-2,m+l

- p-l,m-l–
If r=S then

p-1,m-1

Is <r-l<s
I p-l,m-2–

-1 and if r>S
– p-1,m-1 p-1,m-1

then S <r-l~s -1. In either case
p-l,m-l– p-l,m

~sP-2,m~ ‘-r~~Sp-2,m+l-l. We use the identi-

1

ties S =s(m-1)/(m+p-1), S
p-1 ,m-1 p-2,m+l =

splm, S = sp/(m+p-1) and S
p-2,m p-l,m-2 =

((m-2)/ (m+p-2) )Sp-l,m-l

s.L:=s(m-1)/t(m+p-l); su:=sp/(m+p-l);m.P,:=m-l;

PU:=P-1: u::=d-s(p/m)+l:

~sjz.u then r:=s,t;”f~=m~l; sj:=s,t(mj)/(mMp)

s-r : ‘u
i:=r;d :=r-l; du:=d~;

[dl~O, du~ 1]

[Pebble up to the splitting node.]

while i # O do z:=f(z); i:=i-1 od— —

l_

Nodes r+l, 1r+z,...,narePebbledfollowed
by nodes 1,2, ..., r+l unless r=l.

call PSTK(du, z, m, SU, pu, F);

if dJ=O then f:=G(a,F) else call—— ——
~TK(dj, a, ml,, s1, p, F) fi end.—

The number of times that this algorithm computes

‘r)(a) for some l_ _a function f <r<n is n+Tp(n-l)

because the first loop that computes n computes

each of these functions once and the remaining

portion of the program pebbles the graph corre-

sponding to the functions f ‘l)(a), f(2)(a), ...,

f(n-l) (a) , since f ‘n) (a) and h(f(n) (a)) are com-

puted by the first loop. For each computation of

f(r)(a) for some Isrsm-1, there is a fixed upper

bound on the number of additional functions that

are computed, assignments that are made and tests

that are performed.

In the next section we examine the dependence

of Tp(n) on p and n. We also examine ways to

compute m, J and S from n. This information
p-l,m

can be used to compute p based upon user or com-

piler defined criteria.

5 . Implementation Issues

The number of moves required to pebble Ln with

p pebbles, Tp(n), is given in Theorem 1 and is

seen to be a linear fufiction of n for values of

n between S for m’=l,2,3, . . . . Atn=S
p-l,m’ p-l,m

we have

Whenp=2, n

for large n.

p~fin and

Tp(n) = A (m-l)n
p+l

(15)

=(m+l)m/2, m~fi and

Tp(n)~ (~/3)n
3/2

Also, when m=3, n=(p+2)(p+l)/2,

Tp(n) ~ 2n
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for large n. If m=4 the coefficient of n is in-

creased to 3 and p is reduced to about ~. These

results demonstrate the strong reduction in space

that can be achieved at the expense of a small in-

crease in running time.

From (15) it is clear that the size of m largely

determines the gap between n and Tp(n) since

p/(p+l) lies between 2/3 and 1 when p>2. Thus ,

if m is to be bounded from above this—will deter-

mine p if n is known. On the other hand, we may

wish to bound p at the expense of m or perhaps

attempt to achieve a balance between p and m.

Thus, we explore the relationships between m, p and

nwhenn=S
p-l,m”

The function

[)

m+p -1

n. (16)

P

is symmetric in p and m-1 and monotone increasing

in both. Thus > it is easy to show from the

following inequalities [10, p. 530] that the

smaller of p and (m-1) is no larger than 2 log2n

when n>4. (Here, N=m+p-1)—

Here l~k~N-1, N~2 and H(x) is the entropy

function.

H(x) = - x log2 x - (1-x)log2(l-x) (18)

Since n is one term in the binomial expansion of

(1+1)
m+p -1

, we have

m+p -1
n<2

or that the sum m+p-1 is at least log n.
2

more, from (17) if m and p a~e comparable

(19)

FuKther-

in size

and n is large, it follows that they are both

comparable to log n.
2

Thus, we consider three

cases when n is large

m<<p s m << log2n and

p<<m ~ p << log2n

p comparable to m - p/(m+p-l)=L, O<h<l

and examine Tp(n).

..

we have

()(m+p-l) (m+p-2)---(m) > m p
n=

P: - :,

which is also a good approximation when p << m.

This implies
llp

m<pn

and by the symmetry of n in (m-1) and p we have
l/(m-1)

p+l ~ (m-l)n

which is a good approximation when m << p. Re -
working this equation we have

log2n 10g2n
.—(m-l) 5 log2p - 10g2(m-1) log2p

we have

(2 1+1/p
v
p+l

p << log2n

Tp(n) ~,

, n log2n

p ‘> log2nL.
%2P

In the remaining case, when p is proportional to

log2n, we use (17) to “approximate n. If

for O<k<l and if n is large, then taking loga-

rithms we have

log2n ~ (m+p-1) H(L) ‘P*

which implies that p is proportional to

Then,
l-h

Tp(n) ~ —
H(h)

n log n
2

when

.~

p = H(k) 10g2n

log2n.

The expressions i/H(h) and (l-h)/H(k) are shown

Figure 3.

Summarizing, we find that Tn(n) grows as

in

l+l/p for p Small, nlog n/10~ p fOr Ppn ‘> log2n

and as nlog n if k is neither near zero (p << m)

nor near l(m << p), that is, for p proportional to

log2n. The three different rates of growth of

Tp(n) with n can be selected by choosing p as a

function of n which grows more slowly than log2n,

such as ~~ or a constant, more rapidly than

log2n,
2 1/5

such as (log2n) orn, or which grows in

proportion to log2n, respectively. The actual

value of p may also be determined by an upper

limit on temporary storage space.

Once p is chosen, the next step is to determine

m and S such that
p-l,m

s <n<s
p-l,m – p-l,m+l

(20)

By a previous argument, the smaller of p and m-1

is no larger than 2 log2n for n~4, hence S
p-l,m

can be computed in at most 8 log2n multiplications

or divisions from one of the following two

expressions :

s
(m+p-l)(m+p-2)--- (m)_ —

p-l,m = P:

(m+p-1) (m+p-2)---(p+l)—
m!

In fact, many fewer multiplications may suffice if

either p or m are very small. To compute m, start
m at n (note that S = m) and use binary search

o,m

by halving m until (20) is satisfied. This will

take 0(log2n) steps so the entire process can be

done in 0(log2n) steps.

and the approximation holds when m << p. Since
m << p if p ~~ log2n (note that m+p-l~log2n),
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6. Conclusions

Linear recursion has been modeled as a pebble

game on adirected graph which is asimple chain of n

nodes, n the depth of recursion. We have exhibited

the class of optimal “partial-stack” algorithms for

this pebbling problem and have derived simple

explicit expressions for the time-space tradeoff

for linear recursion. We have also given a simple

program for implementing an optimal partial stack

algorithm and we have studied the asymptotic be-

havior of the time-space tradeoff function for the

purpose of providing rules for selection of the

amount of space that should be used to achieve

various degrees of performance.

While linear recursion occurs frequently in

practice, other forms of recursion do also. For

example, if H is a procedure defined by linear

recursion and F is the procedure defined below

then F is not linear.

F(y): = if p(y) then h(y) else G(H(y), F(f(y)))—

However, the partial stack algorithm described

above can be used to realize H and F if individual

stacks are used for each. Also the same could be

said of other forms of recursion. It is not known,

however, whether this approach will yield optimal

or near optimal programs.
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