
DECISIONS FOR “TYPE” IN APL*

W. II.. Gull
M. A. Jenkins

Dept. of Computing and Information Science

Queen’s University
Kingston, Canada

Abstract

The meaning of “type” in an APL

extended to contain nested arrays is dis-
cussed. It is shown that “type” is
closely related to the variety of empty
arrays of the same shape and to the
possible fill values needed in the “expand”
and “take” functions. Choices for fill
functions are systematically presented.
They are classified according to the
possibility of maintaining important
identities involving level-manipulating
functions in the case of empty arguments,
to their effect on other design choices
still to be made (the restriction to
homogeneous arrays and the definition of
the nature of basic data) , and to their
ability to express “type” in a natural
way.

1. Introduction

The APL community has been grappling
with the design of a recursive data
structure extension to the language for
several years. This paper is an attempt

to summarize the choices that must be
made in completing the design of such an
extension. The present controversy is
mainly concerned with three issues:

(i) Should one allow arrays whose items
are of different “type”, i.e.
“heterogeneous” arrays, or should
one restrict the extension to
“homogeneous” arrays?

(ii) Should the items of an array always
be arrays - which leads to a
“floating” system, where the basic
scalars contain themselves as
items -, or should one have two
sorts of objects, namely arrays and
basic data - which leads to a
“grounded” system?

(iii-) Should an empty array be completely
defined by its shape, or should

* The work in this paper was supported in

part by the National Research Council of
Canada, Grant A7892.

there be more than one - possibly many -
different empty arrays of the same shape?

The first two issues are discussed
extensively in [2] , where it is shown that
the universe of grounded heterogeneous
arrays (system-l-arrays) “contains” the
universe of floating arrays (system-O-

arrays) as a proper subset. A natural
mapping is constructed from the grounded
to the floating universe, and it is shown
to be onto but not one-to-one. Arrays in
the grounded universe that contain a basic
scalar in a sequence of nested rank-O
arrays and that differ only by the number
of such nestings coincide in the floating
universe; this effect is known as the

telescoping scalar phenomenon.

In [2] it is argued that a homo-
geneous subset of the grounded universe
provides all the capability required of a
data structure extension to APL and that
this subcase has the interesting property
of using the arrays of current APL as the
building blocks in creating multi-level
structures. A consensus on issues (i) and
(ii) has not yet formed within the APL

community; we leave their resolution to
other forums. Here, we concentrate on
(iii), an issue left unresolved in [2].
Our purpose is to explore the possible
decisions on (iii) and indicate the inter-
dependence of this issue with the decisions
on issues (i) and (ii) .

2. The concept of “type” in APL

The word “type” is used to mean many
different things in the programming lan-
guage literature. In Fortran and Algol
declarations bind identifiers to locations

or arrays of locations. “Type” is used in
a declaration to indicate the contents that
the location may hold. This may be viewed
as providing information about the repre-
sentation of data. In [1] Hoare gives a

much more general concept of type, which
Wirth has adopted in Pascal [9]. While a

“simple type” in Pascal is essentially the
same-conc~~t as Algol “type”, Pascal
allows the construction of new types
existing ones using the structuring

190

from

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 1979 ACM 0-12345-678-9…$5.00

http://crossmark.crossref.org/dialog/?doi=10.1145%2F567752.567770&domain=pdf&date_stamp=1979-01-01

mechanisms of powersetr record and fixed-
sized arrays. Thus , “type” in the Hc)are
sense provides information not only about
content but also about structure. In
recent work (Liskov [8]) the concept of
type has been further generalized to

“abstract data type”, in which a data
structure and operations on it are bc~und

into a module with access to the contents
of the data structure limited to that. pro-
vided by the operations defined as palrt of
the “data type”. Simula classes axe an
example of such abstract data types.

All of the languages discussed above
are “typed” languages, i.e. identifiers
are bound to objects of specific “tyFle”
by declarations. “Type” information is
used at compile time to verify that the

objects are properly typed and to generate
code that is specific to the “type” of the
objects being manipulated. Hence in a
typed language little information is re-
quired at run time. APL, on the other
hand, is a “typeless” language, i.e. there
are no fixed bindings between identifiers
and objects they can represent. That is
not to say that APL objects do not have
“type” attributes; each APL data object
is either an array of numbers or an array
of characters. Moreover, the information
concerning the shape of the array and the
“type” of its items must be carried with
the object at run time.

“Type” manifests itself in APL mainly
in the definition of the primitive func-
tions that have need of a fill item:
“expand”, “take”, and, in some APL imple-
mentations, “reshape”. It also plays an
implicit role in the domain constraints
of many of the primitive functions. The
“type” of a non-empty array may be viewed
either as describing attributes of the
entire array or as describing attributes
of some or all of the items of the array.
Either view is compatible with the non-
empty arrays of current APL, since all
arrays are homogeneous and only one-level
arrays exist. In [4} the two views of
“type” are examined in the context of
nested arrays, and it is shown that, if
“type” is a property of items, then
there can be only a single empty vector,
but if it is a property of the entire
array, then there can be an empty vector
corresponding to each “type”. (The same
rule applies for empty arrays of other
shapes.) In [21 only a single empty
vector is proposed, whereas in APL there

are two empty vectors, to (numeric) and
“ (character); hence, the proposal of
[2] is not a pure extension of current APL.
In the rest of the paper we are concerned
with finding an extension that preserves
the distinction between 10 and “, on the
assumption that only a pure extension of
APL will be acceptable to the APL co!nmuni-
ky . Thus, we explore the second choice
for issue (iii), namely that there will be
more than one empty array of each shape.

How many should there be? We are guided
in answering this question by the follow-
ing assumption, which we take as being
intuitively desirable: For every distinct
empty vector there exists a distinct fill
item.

We postulate the existence of two
functions defined for all arrays:

vacate A, denoted \A, whose value is the
empty vector with the same fill as A,

fill A, denoted aA, whose value is the
O-rank array whose item is used to fill
from A.

Then the above assumption may be stated

more precisely by the identities

(1) \\A *+ \A
(2) a\A ++ o.A
(3) \aA ++ \A

which state

(1)

(2)

(3)

From

vacating is idempotent,

the fill of an array is the same as
fill of its vacate,

the vacate of an array is the same
as the vacate of its fill.

these identities we have

ctaA ++ ci\ci\A by (2)
++ a\\A by (3)
-++ a\A by (1)
++ txA by (2),

which shows that fill is also idempotent.

The fill function provides a mani-
festation of the underlying attributes of
the array that are preserved into empti-,
ness. Thus, if one views this manifesta-
tion as one of “type”, then the meaning of

“type” in an extended APL will be deter-
mined by the choice of the set of values
that fill may take on.

3. The choices for fill in extended APL

The universe of nested arrays given
in [2] has to be redefined in order to
provide the larger set of empty arrays
that is required by the corresponding
values of the chosen fill function. First

we purge from the ~niverse all arrays that
are empty or contain empty arrays at some
nesting level. Then we add new empty
arrays corresponding to the fill values of
the non-empty arrays, building all arrays
that contain the new arrays as items,
extending the domain of the fill function
to them, and repeating that process as
long as new fill values occur. The result-
ing exkended universe can be described as
the smallest set U(CY,) that

191

.

contains each non-empty array of the
original universe,

is closed under non-empty array con-
struction by the structure and level
increasing ~rimitive functions of extend-
ed APL, “ “

contains a distinct empty array for
possible value of the fill fun;tion
each shape with at least one zero.

Characterization of Homogeneity and
Heterogeneity

each
and

Let us begin by trying to use fill to
characterize “homogeneity” . For a given
fill function ct we define an array to be
a-uniform if

aA ++ a fA ,

for every selection function f.

Let aO denote the fill function of

current APL. Then all arrays of current
APL are so-uniform.

Let us divide the set of all non-

empty arrays with non-empty subarrays into
nine disjoint classes according to
Figure 1.

basic data are

numbers and

items are characters characters

all basic data R s T

all not basic data u v w

both, basic data x Y z
and not basic data

Figure 1. A Classification of non-empty arrays

In a grounded system the second row
“items are all not basic data” could
synonymously be labelled “items are all
arrays”, while in a floating system this
description qualifies every array. Thus ,
in a floating system the vertical dis-
tinction is of much lesser importance
than in a grounded system.

The non-empty arrays of the Gull-

Jenkins proposal ([2] , section 4) include
the arrays RuSUUUVUW of figure 1. The
fill function implicit in [2] is defined
as follows:

{

o ifAeR
al(B) A = ‘ ‘ if A e S

B if A E UUVUW ,

where B is <8, the O-rank array that con-
tains the (unique) empty vector ti of the
proposal. al(B) is undefined on empty
arrays.

The non-empty arrays of section 4 in
[2] are al(<~)-uniform and are called

homogeneous . The arrays in TuXUYUZ are
not a. (<@)-uniform and are called
heter~geneous.

All arrays in RuSUUUVUW are al(B)-
uniform for any choice of a non-basic
O-rank array B.

The development of section 2 above
suggests that we should postulate the
existence of three empty arrays of each
shape. While this choice is intuitively
appealing if the universe consists solely
of homogeneous arrays, it does not gener-
alize easily to a universe that includes
non-homogeneous arrays.

The fills for the homogeneous

grounded proposal classify R, S, and
UUVUW of figure 1, respectively. If we
wish to maintain compatibility with
current APL and have a homogeneous pro-

posal a “natural” subcase of a heterogene-
ous one, we must add either two new fills
that classify T and XUYUZ, respectively,
or add just one fill characterizing both
kinds of heterogeneity at once. Thus ,
either five or four fills must be pro-
vided for such a proposal. Neither choice
is particularly appealing. They both
involve adding more “artificial” empty

arrays to the universe, a point we ~iscuss

below.

In a floating system the classifica-
tion of arrays according to figure 1 does
not work well. Homogeneity is not easily
defined or preserved in a floating system,
and the purpose of ous classes is to make
the distinction between homogeneous and
heterogeneous arrays clear. The telescop-
ing scalar phenomenon implies that the
number of levels in an array is not a good
criterion for classifying arrays, and
hence any attempt to impose a definition

of type based on the nine classes above is
bound to be artificial.

Other Choices

Let us explore some of the remaining
possibilities for defining fill, The fill
function aO of present APL is such that
all arrays are so-uniform. It may be
asked, whether a fill function can be
found with respect to which all arrays of
a heterogeneous universe would be uniform,
too . In order to achieve this goal one
has to sacrifice a very fundamental
principle, namely that two arrays are
;qual ;f they
same items at
(principle of
empty array~

ha;e the same sha~e and the
all corresponding positions
extensionality for non-
More, [6]). Gi=g~

192

extensionality for non-empty arrays is such
a fundamental deviation from present APL
that we will not investigate such con-
structions any further.

Drawing upon the use of “type” in

other languages, we see that it makes
sense either to have the fill item typify
solely the content of a non-empty array
or, which is the more modern approach, to
typify both the content and the structure
of the array. Moreover, the typificat%
could be either local or global, i.e. the
fill could typif~ingle item of the
array, or it could typify all the items.
We will first concentrate on local fill-
definitions and present two extremes with
regard to the structure information pro-

vided.

In More’s array theory (see [7]) the

prototype concept is used to define a fill
which typifies both the structure and con-
tent of the first item. Thus , it is a
local structured fill. We can adapt the
prototype concept to APL as follows: Let
T be the function that maps a number to

zero and a character to blank. (If other
basic data types are added, then typical
items must be designated.) Extend T to all
arrays by applying T to the basic data
held in an array. Thus , TA is an array
with the same structure as A but with the
basic data replaced by the corresponding
typical items. Then we define for a non-
empty array A

~2~ ‘+ T(,-4)[1] .

Note that this implies

TA ++ >Q2<A ,

This definition of a local structured fill

a2
is independent of the decision on issue

(ii), and 0.2 -uniformity implies homo-
geneity (but not vice-versa).

~* P reduces a large collection of
empty arrays. At the other end of the
spectrum we can define a fill to simply
characterize the content of arrays. We
define a local unstructured fill CL3 rec-
ursively to be O if its first item is a
number, to be t T if it is a character,
and to be the fill of its first item
otherwise.

There are many choices for a 10C~ll

fill function that lie between the

unstructured a and the fully structured

~; however, 8one seems a more suitable
dc oice since the amount of structure infor-

mation preserved is arbitrarily determined.

We now turn to global fill functions.
The function T above typifies the content
and struckure of an array globally; how -

ever, it cannot be used as a fill func:tion
since it is not an extension of cto. Eloth
extensions of al(B) described above are

global fill functions. The one with five

values also provides one-level structure
information, since it distinguishes basic
arrays from others. The one with four

values does not have this property,
because arrays in T and in XUYUZ have the

same ‘fill.

A definition for a global unstructured

fill can be made by adding an artificial
O-rank array to the universe. Then a of
a non-empty array is defined recursiv~ly
to be O if all its items are numbers or
arrays with fill O, to be ‘ ‘ if all its
items are characters or are arrays with
fill ‘ ‘r and to be n otherwise. Note that
the idempotency restriction of fill requires
that R must be an “alien” array, i.e. one
that cannot be constructed from the uni-
verse of recursive arrays with numbers and
characters as basic data. The additional
one or two fill arrays required for the
extensions of al must also be “alien” in
this sense. The properties of such alien”
arrays are not completely determined by
the fill function. For example, the item

of B may be considered a basic datum.

Then in a floating system Q ++ <R, whereas
in a grounded system D +++ <X for any array
x. Another choice in a grounded system is
to define E! ++ <\H.

Haegi [3] defines a universe similar

to that of the homogeneous proposal of [2] ,
where the (implicit) fill function is an
al(~), introducing an alien array H that

has the property

El behaves like the NIL of Lisp.

In this sectiod we have investigated

only a few of the many possible fill-
definitions, but we feel that the omitted
ones are even less appealing than some of
the ones we have presented.

4. Evaluation of the Choices

On what basis should we choose among
the fill functions defined in the previous
section? One way is to examine important
identities that hold for non-empty arrays
and see if they extend to the empty arrays
associated with each choice. A second
approach is to evaluate how the choice of
each fill function affects or is affected
by the decisions made on issues (i) and
(ii) . Finally, we may compare the fill
functions with respect to their ability
of expressing “type” in a natural way.

Identities

We define a monadic function f to be
scalar if indexing commutes with f, i.e.

(f A)[II; . . .;~ll] ++ f AIIl;Ifl]

for all suitable indices 11” “IN.,...,

193

If f is a scalar monadic function, then
for any array A and any fill function u
the identity

holds for any positive integer K. Should
this identity hold for K ++ O? Assuming
that KfA ++ \A when K ++ O the identity
reduces to

f\aA ++ \fcxA ,

and using identities (2) and (3) of section
2 we have

f\A ++ \fa\A .

We can express this in words as

Postulate 1: The result of the applica-
tion of a ;calar function f to any empty
array is the same as the empty array
obtained by vacating the result of apply-
ing f to the fill of the empty array.

If we accept this principle, it leads
to an interesting identity for the scalar
function “raise” I (defined in [2]), which
is the result of applying the “by-scalar”
operator “~ of [5] to the seal function <,
i.e.

&4 ++ “(<A .

“Raise” is the scalar function that co-
incides with the “seal” function on O-rank
arrays, e.g.

Al 2 3 ++ (<1),(<2),<3 .

Postulate 1 then implies that

since the result of a is always a O–rank
array, and hence

fto ++ \<o ,

and

Thus, postulate 1 implies that

unless

\<lJ ++ \<? ! .

In a grounded system seal and raise
are the fundamental level increasing
functions, and unseal > and lower & are
the corresponding level decreasing
functions. The identity

><A ++ A

holds for all A, and

holds for all non-empty A.

Should the latter identity also hold for
empty arrays? If SO, then ~ must be one-
to-one and hence

which implies

and hence

Thus , we might consider

Postulate 2: &AA ++ A for every array A.—

Figure 2 gives the values of the fill
of <O and <f ‘ for the four fill functions
we have defined.

I I I a<’ ‘ ICY,<o

i I I ‘aal(B) B B

a2 I <0 <’ ‘
——

0 !1
‘3

0 !!
a4

I I I I

Figure 2 Table of fill values

The table illustrates that postulate
2 fails for al(B) (for any B) but holds
for a2, a3 and

a4”

The raise and lower functions play a
fundamental role in the grounded system,
being used to perform data structure trans-
formations that add or remove a level to
the structure of the array but do not
alter the contents. The functions can be
generalized in a number of ways. In [5]
slice-raise, denoted I~A, is defined to
yield an array whose items are slices of
A. I is used to denote the axes of A
along which slices are to be taken. Thus ,
each item of IAA has shape (pA)[Il and the
shape of IAA is determined by the remainin9

axes . For example, if A is 2 3 4P124,

then 1 3LA is a vector of 3 items, each

with shape 2 4. The slice-lower function
is defined by

I&A ++ B
if and only if there is a unique B such
that A ++ I~B.

This implies I&I~A ++ A for every non-empty

194

array A. If we extend the latter identity
to empty arrays, we have the following
generalization of postulate 2:

Postulate 3: I~I~A ++ A for every array A
and I sati~fying A/IELppA.

The importance of postulate 3 depends
on how one views the use of multi-level
data structures in extended APL. If
transformations of the form accompli~shed
by slice-raise are used as a programming
device to ease the expression of algorithms
applied to slices of an array, then it may
be important that such transformations are
one-to-one. [51 shows that the present
axis operator can be defined in terms of
such transformations and this may suggest
that postulate 3 is more fundamental than
one would at first suspect. Of the fill
functions we have defined only G2 pre-
serves enough information to permit slice-
raise to be defined to be one-to-one,,

The development of the identities in
postulates 2 and 3 has been done in the
grounded system. However, similar level-
manipulating functions exist in a flcbating

system, and the same considerations a~pply.

Interdependencies

The second criterion for evaluation
of the choices for a fill function is the
relationship of each choice for issues (i)
and (ii). Let us begin with (i). If the
arrays of APL form a heterogeneous uni-
verse LJ, then we can ask whether there
exists a homogeneous subset H that has a
natural embedding in U. (Th~s is
primarily of interest–in a grounded
system, since it is difficult to preserve
homogeneity in a floating system.) In
particular we would expect for a vector
V6H

(I+pv)+v e ~ ,

i.e. overtaking preserves homogeneity.
The extensions to al can be defined to
have this property, but a2 has it too.
Neither a

8

nor a4 have this property,
since wit

a3

3+(<1 2),<’ABC’ ++ (<1 2),(<1 2 3),0
(which is in set X of Figure 1).

and with Ub

3T(<1 2),<tABCt ++ (<1 2),(<’ABC’),El .

This implies that if the arrays of
APL are chosen to be homogeneous (in the
sense of being a -uniform) , then only a
may be considere~ as an alternative cho.?ce
for the fill function, since overtake
would be undefined for a

3
and a

4“

The evaluation of the fill functions
relative to decision (ii) is not independ-
ent of decision (i) , as the above discuss-

ion indicates. We can note nevertheless

that a2, a and
a4

are suitable for

either a f~oating or grounded system if
homogeneity is not an issue.

Typifying global attributes

A third way to measure the usefulness
of a fill function is to determine how well
it expresses “type” in the sense of a
global attribute describing both, structure
and content of an array. al and its five-
valued extension either give content
information (for arrays in RuSUT) or give
structure information (for the other arrays)
but not both.

‘3
and a lose any structure

information. However, the remaining fill
function, a2, although defined locally, can
be used to’ yield global content and
structure information. We noted in section

3 that

TA ++ >U2<A .

More [7] calls T the ~ function, and we
see that the choice of U2 as the fill
function allows us to construct ~.

5.

1.
and

Conclusions

We have seen the following:

The distinction between homogeneous
heterogeneous arrays is interesting

only in the context of a grounded system.
In this context a2 and the extensions of

al(B) to ~ introduce “artificial” arrays;
hence a2 seems preferable if the choice
for (i) is heterogeneous. However, if the

choice for (i) is homogeneous, the decision
between an al(B) and a2 depends on the
importance one attaches to uniformity and
simplicity relative to preserving postu-
lates 1 to 3. The NIL-like properties of
D make ~1(~) an interesting choice in this

restricted form of an APL extension.

2. The resolution of (iii) using a2

permits the extension of important
identities to empty arrays and is inde-
pendent of the choices for issues (i) and
(ii) . Neither a3, ab, nor the extensions

of CY~ can preserve postulate 3, although

a3 and ~4 P reserve postulate 2.

3. and ah can be used if structural

prop~~ties are deemed to be less important.
is preferred, since it introduces no

:~rtificial,,
arrays.

Figure 3 summarizes these conclusions.

195

P
Issue (ii)

Issue (i)

HOMOGENEOUS

HETEROGENEOUS

FLOATING GROUNDED

1st al(~)
2nd a2

1st
2nd

‘2
C41(B)

extended
3rd a3
4th CY,h

Figure 3. Preferences for Fill Function

In conclusion we note that a , the
fill function that corresponds to2More’s
prototype function in [7] , appears the
most suitable candidate for defining the
empty arrays of extended APL, unless the
extension is restricted to homogeneous
grounded arrays.

6.

[1]

[2]

[3]

[4]

[5]

[6]

References

Dahl, O.J., Dijkstra, E.W. and
Hoare, C.A.R. Structured Programming.
Academic Press, London and New York
(1972) .

Gull, W.E. and Jenkins, M.A.
Recursive data structures in APL.
To appear in Comm. A.C.M. (1978) .
Also available as Technical Report

77-58, Computing and Information
Sciencer Queen’s University, Kingston,
Canada.

Haegi, H.R. The extension of APL
to treelike data structures.
APL Quote Quad 7, 2, 8-18 (1976).

Jenkins, M.A. and Michel J.
On types in recursive data struc-
tures: A study from the APL
literature. Proceedings of the
Third Jerusalem Conference on Infor-
mation Technology, August 1978.
Also available as Technical Report
77-59, Computing and Information
Sciencer Queen’s Universityr
Kingston, Canada (1977).

Jenkins M.A. and Michel J-
Operators in an APL including nested
arrays. Submitted to APL Quote Quad.
Available as Technical Report 78-60,
Computing and Information Science,
Queen’s University, Kingston, Canada
(1978) .

More, T. Jr. Axioms and theorems for
a theory of arrays. IBM Journal of
Research and Development 17, 135-175
(1973) .

[7]

[8]

[9

More, T. Jr. Types and prototypes in

a theory of arrays. Technical Report

G320-2112, IBM Cambridge Scientific
Center (May 1976).

Liskov, B. and Zilles, S.

Programming with abstract data types.
SIGPLAN Notices ~, 4, 50-59
(April 1974).

Wirth, N. The programming language

Pascal. Acts Informatica, ~, 35-63
(1971) .

196

