
Type Clecking in an lnperfect World

Tprrence C. Miller

Applied Fbysics and Information Sciences kpt.
C-014

U.~iversity of California, San Diego
La Jolla , CL 92993

We present an algorithn for the
determination of run-time types which
functions in the presence of errors , and
show that it provides more information
than that obtained using a previously
published algorithm .

In Section 1 we define the problem and

state the requirements for a practically
useful type prediction algorithm . In
Section 2 we introduce a model programing
1 anguage and in Section j define typ?
inference rules for that language. Section

4 presents a type prediction algorithm and
Section 5 describes how to apply the
results to solve the pro blms stated in

Section 1. Section 6 presents an exanple
~f our procedure and demonstrates how
previaus work does not satisfy all
requirements .

1 - PR03LEM

A requirement f~r the efficient

translation and execution of nany
prograflming languaqes is the ability to
predict at can pile-tine the “types” of
variables and expressions. A type is
defined to be sane subset of all possible
quantities that nay be r?pvesent%d in the
Iangua$e in question. Factors which can be
used to differentiate types incluie rank

(number of dimensions) , size , storage
represen~atlon , and the int?nded meaning
of
in

1)

the data. Typ? predictions can be us~d
thr?e w~ys :

To permit compilation instead of
interpretation of a language with
insufficient typing mechanisms. The
work of Miller [~] describes the

necessity of this facility os part of

an APL conpiler. In addition , even
languages with extensive declaration
facilities such as Pascal contain
problen areas which can not be
reasonably can piled without type
prediction . An example is:

VA R
I, J: INTEGER ;
K: SET 0? INTEGER ;

.
K:=[I. .U]

).

EN; .;....””..

in which the set K is a set over
the integers . Tflis set poses a
considerable pro blen to any Pascal
ccmpiler which (as most do) represents
sets as a bit vector with a position
for each possible elenent [P’].

2) ro pet-nit generation of more efficient

code .

3) To permit elimination of redundant run-
time type checking, Bauer and ,Saal [B]

demonstrated the inprtance of this
for ApL, and a siflilar situation holds

for value s?nsitive type checking in
Pascal [P].’

‘da claim that to be practically useful a

tYPe prediction algorittm must work in the
Presence of errors, and generate
additional information as follows :

1)

>)

3)

The type determination system musk
identify type conflicts and locate

their source so that an appropriate
dl~~nostic can be issued.

For each type requirement identified ,
Che system must also locate the
ear Liest point in the execution of the
progra~ (or ~ssibly before) at which
the satisfaction can be verified .

The syste~ must differentiate between
requiranents for legal execution and
predictions of the result of any

execution .

237

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.© 1979 ACM 0-12345-678-9…$5.00

http://crossmark.crossref.org/dialog/?doi=10.1145%2F567752.567775&domain=pdf&date_stamp=1979-01-01

We claim that the algorithm described
below meets these requirements. It is
derived from an earlier version presented
in [M]. The form in which the algorithn is
described is derived from that used by
Kaplan & Unman in [K] , and we use their
results.

2. - M ODEL PROGRAMMING LANGUAGE

The algorithn is stated in terms of a
model programming language. The basic
operations are an assignment statenent
with the form :

Xm:= func(X1, ... Xd)

where

X. ‘ s are variable names.

f;nc is a function of degree d >. 0

and a predicate of the form:

pred(X1,Xd)

where

the Xi’ s are variable names

pred is a boolean function of
degree d >. 0

A progrzn is a directed graph with the
following types of nodes:

1)

2)

3)

4)

5)

Assignment nodes - which have in-degree
and out-degree equal to one and which

are labeled with an assignment
statement .

Start node - (one and only one) which
has in-degree zero and out-degree
equal to one .

Stop nodes - which have in-degree one
and gut-degree zero .

Fork nodes - ‘which hav e in- degree one
and out-degree two and which are
labeled with a predicate.

Join nodes - which have in-degree two.
and out- degree one .

A “ Progran execution” is a path through
the program graph which beg ins at the
start node and ends at a stop node .

Ex pressions in a real programming
language are represented by creating
additional variables to hold the result of
each single operation (except for
aSSigtITent operations in the real

language, which use the variable

specified) , and modeling the expression as

a sequence of assignment nodes .

Cbntrol structure in a real language is

flodeled by converting it to an equivalent
IF. .. THE N. . .. ELSE... form tiich can be

modeled using the Fork and Join nodes. We
associate each of the edges leav ing a Fork
node with a particular result of the
pred icate (thus the predicate suppl ies

information for type predictions) , but we
consider all paths as possible.

3. - TYPE INFERENCE

We associate wit’n each edge of the
program graph information about the type

of each variable. The type information at

a given psition is that in fovn ation which
is valid when execution of the program

takes that edge . For each ed~e j and
variable name $ w? have tw~ constant

functions - pj(Xk) and Rj(Yk) -

giving an elenent t in the set
Tof all types.

The set T is the Cartesian product of
the jmwer sets of the sets of all possible
values for each measure which may be
applied to a variable in the real
programming language in question . The type
t containing the anpty set as the
possible values of each measure is
written as ~, and the type containing
all ~ssible values is written as~.
H3wever , in nany cases :we will be
concerned only with a small number of the

wssible elenents of a given pwer set and
will give those elements names (for
exanple the value of a variable may be
described as integer, Real Mm ber, or
Character without finer distinctions) . The
set of values for a particular measure
included in a type t is specified by <nae
of measura> (t) .

P specifies predictions that a given
variable will have the specified type each
time program execution takes the giv en
edge . We use p to refer to the vector
whose elements giv e the predictions at
each edge . R specifies requirements on
the type of a given variable which must be

met each tine program execution takes a
given edge. W? use r to refer to the
vector whose elements give the
requirements at each edge.

The set expressions for a measure may
contain property variables. These
variables are used as place holders for
type information not yzt available. ‘he

expressions are inanipulatd symbolically .
Ass~ciated with each variable Zk is a

set eX press ion Ak g iv ing all allowable

values for Z
k“

3.’1 - INFERENCE WITHIN STATEMENTS

Using property variables , it is
possible to specify the requirements and

238

guaranteed results associated with an

individual assignment or fork node by
specifying types on the adj scent edges.

For ex an ple , the model and the Rank
conformability rules for the APL
expression A+B are:

\l
Rank! P’l(T l)) is Z1

2: Tl:=plus(A, B) Rank (R3(A)) is OOZ1

T
Rank(R 3(B)) is OVZ1

where TI is a unjque , created variable
nane and where Zi is a unique property

variable whose value may range over all
legal array ranks. A second exanple is the
Pascal fragment:

VAR
I: o.. 19;’
J: O. . 9;
K: 10. . 19;’

BEGIN
READ(I):
IF 1<10’THEN J: ❑1 ELSE K: =1 ;

END

where the IF statement is modeled as:

4
1 Value (RI(I)) is [0..19]

Value (?2 (I)) is [0..9]

2: less(I, lO)

b’

Value (P4 (I)) is [10..191

3(r/1 Y(F)
.2 - INFERENCE ACROSS STATEMENTS

For each node 1 containing an

as Sig~enk statement of the form:

‘m:= func(xl’”””’xd) d > 0

we define 2*d functions:

TFl(Xk) (t) I<=k<=d

and
TBl(Xk) (t) l<=k<=d

where the IT1 s specify predictions which
can be made about the type of the result
of the function based on predictions of
the type of an operand , and the TO IS

specify the requirements which must be
placed on operand k in order to satisfy
requiranents placed on the result .

3.’2.’1 - FORWARD INFERENCE

Given a prediction of the types of the
variables before execution of a node 1, it
may be ~ssible to refine the prediction
of the types of variables after execution
of the node. The new prediction f, is

the union of the pred ictions f!

derived fran each edge j entering that

node, and is applied (intersection with
the old prediction) to all edges leaving

the node. lhe forward inference function
giving a new prediction for the type of

variable XK is given as f~(Xk) which

is defined by:

Pj(Xk) if node 1 is not an

assignment to Xk

the intersection of all
‘IFl(Xm)(Pj(Xm))’s if node 1 is

an Sssignmcnt to Xk with opsrsnd X
m

For convenience, we will define f:

to be @ for all edges k which do not
enter node 1 .

.2.’2.2 - BACKWARD INFERENCE

Given a requirement on the types of
variables which must hold after the

execution of a node 1, it may be possible
to refine the requirements which must be
impsed before the node executes. The new

requiranents bl are the intersection of

those (b!) generated from each edge

j leaving node 1 and are applied on each
edge entering node 1. ~e backward

inference function g iving a new
requirement for the type of variable

$

is given as b~(xk) which is

defined by:

Rj(Xk) if node 1 is not an

assignment or reference to

%

TB1(Xk)(Rj(Xk)) if node 1

is an assignment to Xk
and Xk is an operand

Rj(Xk)

nTBl(Xk)(Rj(Xo))

if node 1 is
an assignment to X

o

with operand Xk and k $0

For convenience we define b ~ to be

‘~for all edges k not leaving node 1 .

239

8.’3 - INFERENCE ACROSS THE PROGRAM

3.’3.’1 FoRWARD

Giv en the functions f: we c an

construct using the method given in E<]

a function F(x) mapping p to p which
generates the new inferences resulting
from a single parallel execution of every
step of the progr an. F(x) is the inner
prodmt using set union and function
application of the matrix F (flmj is

f: where edge m leaves from node 1)

and x. Given a safe prediction s, we can
generate a new prediction Fs(x) =

sff F(x). Starting execution of the
program with every variable undefined (x =

P) we generate final predictions under
the constraint of known information s by
applying x: = F.-(x) until no change

results (~~(x)) (least fixed mint of

F~) . Kaplan & Unman [K] prove that this

procedure will terminate .

3.’3.2 BACKWARDS

in a similar fashion , given the

functions b; we can construct a

function B(x) mapping r to r which

generates the new inferences resulting
from a single parallel execution of every
step of the progr an. B(x) is the inner
product using set intersection (not union)
and function application of the matrix B

(bmj “is f; where edge m enters

node 1) and x. Given a sufficient
requirement s . we can generate a new
requira-nent B~(x) = s o B(x). Starting

execution of the program_ wich zvery
variable undefined (x . ~ Notz : when the
program starts executing we hav e

established no requirements) we generate
final predictions under the constraint of

known information s by applying x: ❑B~(x)

until no change results ($:(X)) .

4. ‘ - TYPE PREDICTION ALGORITHM

The steps of the algorithn for
generating type predictions and
identifying necessary run-time checks are :

1) Translate the real program into the

model programing language .

2) Initialize all type predictions and
requiranents to .

3) Apply (set intersection) ill inferences
generatexl within a single node .

4) Apply any information available from
declarations .

5)

6)

7)

5.’

If , after steps 3 and 4, there exist
predictions or requirements which have
not been fully specified , Senerate new
property variables to represent the
eventual value for each such location .

(In systems such as that described in
[M 1 which compile at first execution ,
the values of sane property variables
may be available from inspection of
the values of the actual variables .)
Propagation of these place holders to

other loc~tions will permit

identification of the locations for rufl -
time checks and the point at which
information needed to compile parts of
the progran is available .

kpply the functions $ and $ to the
progran. Since forward and backwards
propagation do not interact, only one
application of each is necessary.

Simplify the set expressions

representing type predictions and
requirem ents , and assign values to
property variables. The property
v ariables connect the requirements
predictions which were propagated
separately.

and

- INTERPRETATION OF TYPE INFORMATION

The distinction made between
predictions and requirements allows the

identification of necessacy run-time
checks and of type errors .

5.7 - TYPE INCOMPATIBILITY

A type incompatibility at an operation
of the real progran will be revealed at
the assigmnent node of the model
co~responding to that operation by :

1) The predicted type of the variable
assigned to after execution of the
node contains the empty set as the
possible values of sone measure .

2) The required type of one of the opsrand

variables intersected with its
predicted value before execution of
the node contains the enpty set as the
possible values of some measure.

5<2 - TYPE CHECKING

Correct execution of the model progra.n
requires that at each edge and for each
variable the actual value be a menber of

the required type. If the type prediction

(making use of all information know about
the value of property variables) does not
guarantee this, run-time type checking is
necessary. The test can be specified as a
requirement on the value of a property
variable. The location(s) at which the
test is required is the location(s) at
which the property variable appears and
which dominates (as defined by in [H]) the
node generating the requirement .

240

6. - EXAM PLE Sum(X,y)

We now present a simple program in the
lmodel programming language and apply our
algorithm to it. The exanple chosen is the
sane as that used in an earlier paper K]
presenting a type prediction algorithm ,

and we will ccm pare our results to theirs .

6.’I - THE PROGRAM

We anal yze the following program :

2

b’

3: A:. input

4

5: B:=5

YJ
8

9: A:= fl(A) 12

10
/

11:

9
13

14: A:=sum(A, B)

15

16: STOP

where the variables A and B may be of type
Real , Integer (a subset of Real) , or
Character and the properties of functions
fl and sum are defined by;

sum(x ,Y)

xl y Real In teg er Caaracter

!3eal Real Real Error

Integer Real Integer Error

Character Error Elror Cnaracter

x f 1(x)
-------- ----,. - -----

Real Integer
Io teg er In teg er

Character Character

W~ also demonstrate the effect of

introducing type incanpatibility into the
exanple program by changing the definition
of the function sun to be:

xl y Real Integer Character
--------- ------ ------ ------ ---

Real Error Error Error
Integer Error Error Error

Character Error Error Character

6. ‘2 - TYPE PREDICTION

The type inferences generat~ within
statements and the place holder variables
are :

P4(A) ❑ Z’l

A1isz, ##

P6(B) . Integer

‘1 O(A) ‘Z2

R8(A) = Z2U Real

A2 is Z2 n (Real - Integer) =@

55(A) = Z3U Z4

‘13(A) = Z3

’13
(B) z Z4

A3is A4is Z3n Z4#$

The across statement inference functions
are given by:

TF14 (A) and TF14
(B):

x

i

TF(X)
--------- ------- --

Real Real
Integer Real

Character ~aracter

‘B14
(A) and TB14 (B)

.

x

I
TB(X)

------- --------- --

Real Real
Integer Integer

Character (%aracter

TF9(A):

x

1
TF(X)

--------- ---------

IYI teg er
Character

Real In teg er
Integer Integer

Character Character

241

TB9(A):

x

/

TB(X)
------ .---------_-

R~al Real
Integer Real

Charact?r (haracter

TF3(A) = TB3(B) = TBcj(A) .1

TF5 (B) . Integer

Appl ying the above in formation yields :

edge P(A) R(A)
------------- ------------- ------ ---

2 @ ‘L

4
‘1 Z2W Real

6 Z1 Z z v Real

6
‘1

Z2 u Real

8 (Integer u (Z2 u Real)

Character) o

‘2
10 (Integer u (Z2U Real)

Character) 1> n Z3

‘2
12 (Integer U Z2 u Real

Character)fl

‘2
13 (Integer u

‘3
Character)fl
.
‘2

15 Z3U Z4 4.

edge P(B) R(B)
------------------ ----------- -----

? d 1

4 H i
6 Integer

‘4
8 Integer

‘4
10 In teg er

‘4
1~ Integer

‘4
13 In teg er

‘4
15 Integer !l_

Type compatibility together with the
requirements Ak generate the follo wing

values for property variables:

‘2
is Integer

Z3 is Real

Z4 is Integer

edge PIA) R(A)
------ ------ ----------------------

~ @ ‘L

4
7-4 Real

6 Z4 Real

8 Z4
Real

10 In teg er Real

12 Integer Real
In teg er Real

;; InteZer i

edge P(B) R(B)
---------------------------- ------

2 !l-

4 5 1.

6 Integer Real
8 Integer Real

10 In te~ er Real
Integer Real

:; In teg er Real
15 Integer !

One run-time check is required to verify
that A is of ty~ Real at edge 4.

When our algorithm is appl ied to the
erroneous version of this progran , the
results are :

edge P(A) R(A)

~

4 Z4 Character

6 Z4 Character

8
‘4

Character

10 Character Character

12 Character Character
13 Character Character

15 Character

edge PI B) R(B)
-------------- ----------- -------- -

2
4
6 In teg er Character

8 Integer Character

10 In teg er Character
12 Integer Charactsr
13 Integer Cqaracter
15 Integer

A type confl ict exists because of the
assignment made in node 5.

5.’3 - P RE Vr O[1S ‘.1ORK

The mrkof Kaplan & Llllman [K]
presented an algorithn for making type

predictions. It assumes a correctly

executing progran , and does not make the
distinction between requirements and

predictions. We feel (as shown in the
exanple) that there ex ist circumstances in
which useful information is developed by
our algorithm and not by theirs.

using these values we obtain :

242

The Kaplan & Unman algoritkn indicates
that :

10C . A B
---------- ------ --------- ---------

3 Real Lnteger
13 Integer Integer

There is no indication that the type

Integer assigned to the variable B is a
prediction which will always be true, but
that the types assigned to variable A in
positions 3 & 13 are requirements which
must be verified. Further , there is no
ind ic at ion that satisfying the requirem ent
at 3 makes checking at ~sition 13 un-
necessary.

In the case of the erroneous program ,
the Kaplan & Unman algorithn will

predict:

10C . A B
------ ------ ------ ------ ------ ----

9 Krror Error
13 Error Error

waich does not indicate the source of the
error .

7. - REFERENCES

[B 1

[El 1

[r{]

[’”l 1

[Pl

Bauer, A.M. , %al , H.’ J.’, “Does APL
Really Need Run-time Checking”,
Software-Practice and Experience,

%0129-138, (1974). ,

Hecht, M. S., Flow Analysis of.— —--- - —
Computer Programs, El sev ler lbrth———————
Holland ,

---——
New York, (1977).

Kaplan, M. A. and <J.’ D.’ Unman, “A
General Schene for the Autunatic
Inference of Variable ~pes” , Fifth
ACM Synpcsiwn on Principles of
Progranning Languages , 1978.’

Miller, T. C. , “Tentative Cc!npilation :
! Esign for an APL Compiler” , I% .D

thesis, Dept . of Con Puter Science,
Yale Wiversity, 1979.’

conversations with several Pascal
compiler implementers, Workshop on

Systems Programming Extensions tO
Pascal , Institute for L~ formation

Systems, University of California ,
San Diego, 1978.’

243

