Check for
Updates

=

Type Checking in an Imperfect World

Terrence C.

Miller

Applied Physics and Information Sciences Dept.

University of California, San Diego

La Jolla,

We present an algorithm for the
determination of run-time types which
functions in the presence of errors, and
show that it provides more information
than that obtained using a previously
published algorithm.

In Section 1 we define the problem and
state the requirements for a practically
useful type prediction algorithm. In
Section 2 we introduce a model programming
language and in Section 3 define type
inference rules for that language. Section
4 presents a type prediction algorithm and
Section 5 describes how to apply the
results to solve the problems stated in
Section 1. Section 6 presents an example
of our procedure and denonstrates how
previous work does not satisfy all
requirements.

1 - PROBLEM

A requirsment for the efficient
translation and execution of mnany
progranming languages is the ability to
predict at conpile~-tine the "types' of
variables and expressions. A type is
defined to be sone subset of all possible
guantifties that may be represented in the
language in question. Factors which czan be
used to differentiate types inclule rank
{number of dimensions), sizz, storags
representation, and the intended meaning
of the data. Type predictions can be used
in three ways:

1) To permit compilation instead of
interpretation of a language with
insufficient typing mechanisns. The
work of Miller [M] describes the
necessity of this facility as part of
an APL conpiler. In addition, even
languages with extensive declaration
facilities such as Pascal contain
problen areas which can not be
reasonably conpiled without type
prediction. An exanple is:

237

C-014
CA 92093

VAR

I,J: INTEGER;

K: SET OF INTEGER;
BEGIN

K’.:.[I...'J.]”

ENb;........

in which the set K is a set over

the integers. Tnis set poses a
considerable problem to any Pascal
conpiler which (as most do) represents
sets as a bit vector with a position
for each possible elenent [P7].

2) To permit generation of more efficient
code.

3) To permit elimination of redundant run-
time type checking. Bauer and Saal [B]
denonstrated the importance of this
for APL, and a similar situation holds
for value s2nsitive typs checking in
Pascal [P]."

W2 claim that to be practically useful a
type prediction algorithm must work in the
presence of errors, and generate
additional information as follows:

1) The type determination system must
identify type conflicts and locate

their source so that an appropriate
diagnostic can be issuedq.

2) For each type requirenent identified,
the system must also locate the -
earliest point in the execution of the
progran (or possibly before) at which
the satisfaction can be verified.

3) The system must differentiate between
requiremnents for legal execution and
predictions of the result of any
execution.

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 1979 ACM 0-12345-678-9…$5.00

http://crossmark.crossref.org/dialog/?doi=10.1145%2F567752.567775&domain=pdf&date_stamp=1979-01-01

We claim that the algorithm described
below meets these requirements. It is
derived from an earlier version presented
in M1. The form in which the algorithm is
described is derived from that used by
Kaplan & Ullman in [K]1, and we use their
results.

2. - MODEL PROGRAMMING LANGUAGE

The algorithm is stated in terms of a
model programming language. The basic
operations are an assigment statement
with the form:

Xy o= fune (X ,..,Xd)

where

Xi' s are variable names.
func is a function of degree d >= 0

and a predicate of the form:

pred(X XD

100
where

the Xi' s are variable names

pred is a boolean function of
degree d >= 0

& progran is a directed graph with the
following types of nodes:

1) Assigment nodes - which have in-degree
and out-degree equal to one and which
are labeled with an assigmment
statement.

2) 3tart node - (one and only one) which
has in-degree zero and out-degree
equal to one.

3) Stop nodes - which have in- degree one
and sut-degree zero.

4) Fork nodes - which have in-degrec one

and out-degree two and which are

labeled with a predicate.

5) Join nodes - which have in-degree two

and out-degree one.

A "program execution" is a path through
the program graph which begins at the
start node and ends at a stop node.

Ex pressions in a real programming
language are represented by creating
additional variables to hold the result of
each single operation (except for
assignment operations in the real
language, which use the variable
specified) , and modeling the expression as
a sequence of assigmment nodes.

238

Control structure in a real language is
modeled by converting it to an equivalent
I'...THEN....EL3SE... form which can be
modeled using the Fork and Join nodes. We
associate each of the edges leaving a Fork
node with a particular result of the
predicate (thus the predicate supplies
information for type predictions), but we
consider all paths as possible.

3. - TYPE INFERENCE

We associate with each edge of the
program graph information about the type
of each variable. The type information at
a given position is that infornation which
is valid when execution of the progran
takes that edge. For each edge j and
variable name Xk we have tw>d constant

functions - Pj(Xk) and RJ.(XK) -

giving an element t in the set
Tof all types.

The set T is the Cartesian product of
the power sets of the sets of all possible
values for each measure which may be
applied to a variable in the real
programming language in question. The type
t containing the enpty set as the
possible valuss of each measure is
written as #, and the type containing
all possible valuss is written as {.
However , in many cases we will be
concearned only with a small number of the
possible elements of a given power set and
will give those elements names (for
exanple the value of a variable may be
described as Integer, Real MNumber, or
Character without finer distinctions).
set of values for a particul ar measure
included in a type t is specified by <name
of measure> (t) .

The

P specifies predictions that a given
variable will have the specified type each
time program execution takes the given
edge. We use p to refer to the vector
whose elenents give the predictions at
each edge. R specifies requirements on
the type of a given variable which must be
met each tine program execution takes a
given edge, We use r to refer to the
vector whose elenents give the
requirements at each edge.

The set expressions for a measure may
contain property variables. These
variables are used as place holders for
type information not yat available. The
ex pressions are manipulated symbolically.
Associated with each variable Zk is a

set expression Ak giving all allowable
values for Zk'

3.1 - INFERENCE WITHIN STATEMENTS

Using property variables, it is
possible to specify the requirements and

guaranteed results associated with an
individual assigmment or fork node by
specifying types on the adjacent edges.
For example, the model and the Rank
conformability rules for the APL

ex pression A+B are:

Ay

Rank(P‘1(T1)) is Z1
Rank (R5(A)) 1is 0vZ;
Rank(R 5(B) is 0v7

[2: T1:=plus(a,B)

'3

where T1is a unjque, created variable
nane and where Z, 1s a unique property

variable whose valus may range over all
legal array ranks. A second example is the
Pascal fragment:

VAR

I: 0..19;°

J: 0..9;

K: 10..19;"
BEGIN

READ();

IF I<10 THEN J:=I ELSE K: =I;
END

where the IF statement is modeled as:

Value(R1(1')) is [0..19]
Value(PZ(I)) is [0..9]
Value(P4(I)) is [10..19]

: less(I, 10)

.2 - INFERENCE ACROSS STATEMENTS

For each node 1 containing an
assigment statement of the fom:

Xpr=fune(X,, ..., X)) d> 0
we define 2%¥d functioné:

TFl(Xk)(t) 1<=k=d

and
TBl(Xk) () 1<=KK=d

where the TF's specify predictions which
can be made about the type of the result
of the function based on predictions of
the type of an operand, and the TB's
specify the requirements which must be
placed on opsrand k in order to satisfy
requirenents placed on the result.

3.2."1 - FORWARD INFERENCE

Given a prediction of the types of the
variables before execution of a node 1, it
may be possible to refine the prediction
of the types of variables after execution
of the node. The new prediction f'l is

the union of the predictions f‘f

derived from each edge j entering that

node, and is applied (intersection with
the old prediction) to all edges leaving
the node. Te forward inference function
giving a new prediction for the type of

variable X is given as ff(Xk) which
is defined by:

Pj(Xk) if node 1 is not an
assigment to Xk

the intersection of all
’IFl(Xm)(Pj(Xm))'s if node 1 is

an azssignment to Xk with operand Xm

For convenience, we will define f‘ll(
to be @ for all edges k which do not
enter node 1.

3.%2.2 - BACKWARD INFERENCE

Given a requirement on the types of
variables which must hold after the
execution of a node 1, it may be possible
to refine the requirements which must be
imposed before the node executes. The new
requirements b] are the intersection of

tho se (b‘i) generated from each edge

j leaving node 1 and are applied on each
edge entering node 1. The backward
inference function giving a new

~requirement for the type of variable Xk

is given as b‘]](Xk) which is
defined by:

Rj(xk) if node 1 is not an
assigment or reference to

%

TBl(Xk)(Rj(Xk)) if node 1

is an assigment to Xk
and Xk is an operand

Ry (X,)
ATB) (X)) (R (X))

if node 1 is
an assigment to XO

with operand Xk and k #0

4 otherwise

For convenience we define blf to be

Z.for all edges k not leaving node 1.

8.'3 - INFERENCE ACROSS THE PROGR AM

3.73."1 FORWARD

Given the functions f‘}f we can

construct using the method given in [<1

a function F(x) mapping p to p whicl’}
generates the new inferences resulting
from a single parallel execution of every
step of the program. F(x) is the ;nner
product using set union 'and funct}on
application of the matrix F (f‘mj is

f‘i where edge m leaves from node 1)

and x. Given a safe prediction s,
generate a new prediction Fs(x) =

s n F(x). Starting execution of the
program with every variable undefined (x =
7) we generate final predictions under
the constraint of known information s by
applying x: :FS(X) until no change

we can

resul ts (Fs(x)) (least fixed point of
F.). Kaplan & Ullman [K] prove that this

procedure will terminate.
3.'3.2 BACKWARDS

in a similar fashion, given the

k

functions b1 we can construct a

function B(x) mapping r to r which
generates the new inferences resulting
from a single parallel execution of every
step of the program. B(x) is the inner
product using set intersection (not union)
and function application of the matrix B

(bmj
node 1) and x. Given a sufficient

requirement s. we can generate a new
requirement B¢(x) = s n B(x). Starting

is fi] wnere edge m enters

execution of the program_wich every
variable undefined (x = 1 Note: when the
program starts executing we have
established no requirenents) we generate
final predictions under the constraint of
known informmation s by applying x: =B¢(x)

until no change results (B (x)).
4," - TYPE PREDICTION ALGORITHM

The steps of the algoritim for
generating type predictions and
identifying necessary run-time checks are:

1) Translate the real program into the
model programming language.

2) Initialize all type predictions and
requirements to

3) Apply (set intersection) all inferences
generated within a single node.

4) Apply any information available from
declarations.

240

[S;]

5) If, after steps 3 and 4, there exist
predictions or requirements which have
not been fully specified, generate new
property variables to represent the
eventual value for each such location.
(In systens such as that described in
{M] which compile at first execution,
the values of sone property variables
may be available from inspection of
the values of the actual variables.)
Propag ation of these place holders to
other locutions will pemit
identification of the locations for run-
time checks and the point at which
information needed to compile parts of
the progran is available.

6) Apply the functions ¥ and B to the

programn. Since forward and backwards
propag ation do not interact, only one
application of each is necessary.

7) Simplify the set expressions

representing type predictions and
requirements, and assign values to
property variables. The property
variables connect the requirements and
predictions which were propagated
separately.

- INTERPRETATION OF TYPE INFORMATION

The distinction made between)
predictions and requirements allows the
identification of necessary run-time
checks and of type errors.

§.M - TYPE INCOMPATIBILITY

A type incompatibility at an operation
of the real program will be revealed at
the assignnent node of the model
corresponding to that operation by:

1) The predicted type of the variable
assigned to after execution of the
node contains the empty set as the
possible values of some measure.

2) The required type of one of the opsrand
variables intersected with its
predicted value before execution of
the node contains the empty set as the
possible values of some measure.

5.2 - TYPE CHECKING

Correct execution of the model progran

requires that at each edge and for each

variable the actual value be a menber of
the required type. If the type prediction

(making use of all information known about

the value of property variables) does not

guarantee this, run-time type checking is

necessary. The test can be specified as a

requirement on the value of a property

variable. The location{(s) at which the
test is required is the location(s) at
which the property variable appears and
which dominates (as defined by in [H]) the
node generating the requirement.

6. -« EXAMPLE sum{ x,y)

We now present a simple program in the X\y Real Integer Character
model programming language and apply our = Tt TT o e mme e e cecmcceemee
algorithm to it. The example chosen is the IntReal Error Error Error
same as that used in an earlier paper [X] eger Error Error Error
presenting a type prediction algorithm, Character Error Error Character

and we will compare our results to theirs. 6.2 - TYPE PREDICTION

6.1 - THE PROGRAM . sy s
The type inferences generated within

We analyze the following program : statements and the place holder variables
are:
E: STAR‘} Py(h) = Z
2 A, 1is Z] 2 &
3: A:=input P6(B) = Integer
P]O(A) = 22

R8(A) = 22U Real

A, is Z, n (Real ~ Integer) = &

Ryg(A) =124
Riz(B =17,

Ay is Ay is Zgn 24,{@

The across statement inference functions
are given by:

14: A:=sun(A,B) TF14 (A) and TFM(B):
5] x TF(%)
16: stoP ({ TTTITTTEToToosssses
Real Real
. Integer Real
where the variables A and B may be of type Chara%ter‘ Character
Real, Integer (a subset of Real), or
Character and the properties of functions
f1 and sum are defined by: TBy (A) and TB,, (B)
sum(x ,y) < TB(%)
x\y Real Integer Craracter TETETETSTPmoSssssos
""""""""""""""""""""""" ‘ Real Real
Real Real Real Error In?caeger In?:aeger
Integer Real Integer Error Character| Maracter
Character Error Error Character
X 1 %) .
____________________ TFg (A):
Real Integer
Integer Integer X TF(%)
Character Character e
Integer
We also demonstrate the effect of Chazacter‘
introducing type incamnpatibility into the IRetal IInAteger
exanple program by changing the definition nteger an egit“
of the function sum to be: Character aracter

241

TBq (4):

Real Real
Integer Real
Character| Character

TF3(A) = TB3(B) = TBS(A) =1

TFS(B) = Integer

Appl ying the above infomation yields:

edge P(A) R (A)
5 T g T 4T
4 Z] L5 v Real
6 A 1 Z 2 v Real
6 21 22 v Real
8 (Integer v (Z, u Real)
Character) n
Z2
10 (Iateger v (22 v Real)
Character) N n 73
Z2
12 (Iateger u 22 V Real
Character)n
2y
13 (Integer ¥ Z3
Character)n
Zs
15 2,01, 4
edge P(B) R (B)
T, T z T 4
4 & i
6 Integer Z4
8 Integer Zg
10 Integer 24
12 Integer 24
13 Integer ZL#
15 Integer 1

Type compatibility together with the

requirements Ak generate the following
values for property variables:

22 is Integer

23 is Real

Z, is Integer

using these values we obtain:

242

edge PLA) R(A)
LT /A
4 Zy Real
6 Za Real
8 Zy Real
10 Integer Real
12 Integer Real
13 Integer Real
15 Integer 1
edge P(B) R (B
"5 """"""" i; [
4 Z 1.
6 Integer Real
8 Integer Real
10 Integer Real
12 Integer Real
13 Integer Real
15 Integer 1

One run-time check is required to verify
that A is of type Real at edge 4.

When our algorithm is applied to the
erroneous version of this program, the
resul ts are:

edge P(A) R (A)
_..5 _______________________________
4 Zyg Character
6 Za Character
8 Zy Character
10 Character Character
12 Character Character
13 Character Character
15 Character
edge PTUB) R(B)
2
4
6 Integer Character
8 Integer Character
10 Integer Caaracter
12 Integer Character
13 Integer Character
15 Integer

A type conflict exists because of the
assigment made in node 5.

5.'3 = PREVIOUS WORK

The work of Kaplan & Ullman [Y]
presented an algorithm for making type
predictions. It assumes a correctly
executing program, and does not make the
distinction betwsen requirements and
predictions. We feel (as shown in the
exanple) that there exist circunstances in
which useful information is developed by
our algorithm and not by theirs.

Thez Kaplan & Ullman algoritim indicates
that:

loc. A B
8 Real Integer
13 Integer Integer

There is no indication that the type
Integer assigned to the variable B is a
prediction which will always be trus, but
that the types assigned to variable A in
positions 3 & 13 are requirements which
must be verified. Further, there is no
indication that satisfying the requirement
at 3 makes checking at position 13 un-
necessary.

In the case of the erroweous program,
the Kaplan & Ullman algorithm will
predict:

loc. A B
g8 Error Error
13 Error Error

wnich does not indicate the source of the
error.

7. = REFERENCES

[B] Bauer, A.M,, Saal, H.” J.", "Does APL
Really Need Run-time Checzking®',
So ftware-Practice and Ex perience,
4()129-138, (1974). .
[H]Hecht, M. S., Flow Analysis of
Computer Programs, Elsevier North
Holland, New York, (1977).

[X]Kaplan, M. A. and J. D.” Ullman, "A
General Schemne for the Autonatic
Inference of Variable Types", Fifth
ACM Synposiumn on Principles of
Programming languages, 1978."

™M] Miller, T. C., "Tentative Canpilation:
A Design for an APL Compiler", Pn.D
thesis, Dept. of Conputer Science,
Yale University, 1973.

[P1 conversations with several Pascal
compiler implementers, Workshop on
Systems Programning Extensions to
Pascal, Institute for Information
Systens, University of California,
San Diego, 1978.°

243

