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ABSTRACT 
Domain engineering aims to support systematic reuse, focusing on 
modeling common knowledge in a problem domain. Ontologies 
have also been pointed as holding great promise for software 
reuse. In this paper, we present ODE (Ontology-based Domain 
Engineering), an ontological approach for domain engineering 
that aims to join ontologies and object-oriented technology.   

Categories and Subject Descriptors 
D.2.13 [Software Engineering]: Reusable software – domain 
engineering. 

General Terms 
Design, Theory. 

Keywords 
Ontology, software reuse. 

1. INTRODUCTION 
In order to get the main benefits of software reuse, we need first to 
develop for reuse, so then we can develop with reuse. Domain 
engineering concerns developing for reuse, and ontologies can 
play an important role in this context. An ontology can promote 
common understanding among developers, and can be used as a 
domain model. 

However, one of the major drawbacks to a wider use of ontologies 
in Software Engineering is the lack of approaches to insert 
ontologies in a more conventional software development process. 
Since the current leading paradigm in Software Engineering is the 
object-oriented technology, to put ontologies in practice, we need 
an approach to derive object models from ontologies in order to 
derive widely reusable assets.  

 In this paper, we propose an ontology-based approach to domain 
engineering that considers two main phases: building ontologies 
and deriving object frameworks from them. Section 2 discusses 
domain engineering and why ontologies are useful in this context. 
In sections 3 and 4, we present our ontological approach to 

domain engineering and a study case in the software quality 
domain, respectively. Section 5 discusses related works. Finally, 
section 6 report our conclusions. 

2. DOMAIN ENGINEERING AND 
ONTOLOGIES 
Domain engineering concerns the work required to establish a set 
of software artifacts that can be reused by the software engineer. 
The purpose of domain engineering is to identify, model, 
construct, catalog and disseminate a set of software artifacts that 
can be applied to existing and future software in a particular 
application domain [1]. 

As pointed by Arango [2] in its forerunner paper, a domain 
engineering process should encompass at least three main 
activities: domain analysis, infrastructure specification and 
infrastructure implementation. 

Domain analysis involves identification, acquisition and analysis 
of domain knowledge to be reused in software specification and 
construction. The purpose of domain analysis is to produce a 
model of the problem domain. The domain model should serve as: 
(i) an unified source of reference when ambiguities arise in the 
analysis of problems or latter during the implementation of 
reusable components; (ii) a repository of the shared knowledge for 
teaching and communication; and (iii) a specification to the  
developer of reusable components [3]. 

However, generally, a domain model is not directly useful to 
operational reuse. There exists a gap between the kinds and forms 
of the domain knowledge in a domain model and the content and 
form of software assets that can be reused in software 
construction. To bring this gap, we need to build a reuse 
infrastructure. This infrastructure should support the efficient 
operation of a reuse system and should also be adapted to its 
technology [3]. 

The purpose of the infrastructure specification activity is to define 
the aspects of the problem domain that should be supported by the 
component repository in order to achieve the reuse system 
requirements. This involves selecting and organizing the reusable 
information, and determining how it should be packaged into 
components and how these components should be indexed. The 
result is an architecture that specifies the components that should 
be available to the reuse system [3]. 

This infrastructure specification, together with the semantics 
captured by the domain model, are the input to the infrastructure 
implementation step that actually produces and tests the 
components [3]. 
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In domain engineering, ontologies can play several roles. 
According to Uschold [4], “an ontology may take a variety of 
forms, but necessarily it will include a vocabulary of terms, and 
some specification of their meaning. This includes definitions and 
an indication of how concepts are inter-related which collectively 
impose a structure on the domain and constrain the possible 
interpretations of terms”. Thus, an ontology consists of concepts 
and relations, and their definitions, properties and constrains 
expressed as axioms. An ontology is not only an hierarchy of 
terms, but a fully axiomatized theory about the domain [5]. 

In a general point of view, applications of ontologies can be 
classified in four main categories, emphasizing that an application 
may integrate more than one of these categories [6]: 

• Neutral Authoring: an ontology is developed in a single 
language and it is translated into different formats and used 
in multiple target applications. 

• Ontology as Specification: an ontology of a given domain is 
created and it provides a vocabulary for specifying 
requirements for one or more target applications. In this case, 
an ontology can be viewed as a domain model. The ontology 
is used as a basis for specification and development of 
domain applications, allowing knowledge reuse. 

• Common Access to Information: an ontology is used to 
enable multiple target applications (or humans) to have 
access to heterogeneous sources of information that are 
expressed using diverse vocabulary or inaccessible format. 

• Ontology-based Search: an ontology is used for searching an 
information repository for desired resources, improving 
precision and reducing the overall amount of time spent 
searching. 

Although we are most interested in the use of ontologies as 
specification, i.e. as domain models, the other purposes are also 
important to domain engineering.  

The neutral authoring scenario is important, mainly when 
applications will be developed using different technology (e.g., 
objects and logics). This insight shows that we need to define 
different approaches to implement different reuse infrastructures, 
each one suitable to the corresponding system reuse technology.  

Common access to information scenario is essential to avoid 
misunderstanding among developers. It is vital for reuse tasks, 
such as adapting components and creating new assets based on 
existing ones, as well as for selecting black-box components and 
for providing access to shared data and services. 

Finally, an ontology-based search has great potential to improve 
structuring and searching in component libraries.  An ontology 
can be used for structuring and organizing the information 
repository (in our case, a component library). It may be used as a 
conceptual framework to developers think about this repository 
and formulate queries. Also it can be used to perform inference to 
improve the query [6]. 

Analyzing these scenarios, we can notice that domain engineering 
can take several advantages from the use of ontologies. However, 
an ontology-based domain engineering process must be flexible 
enough to consider all these scenarios.  

First, we need a systematic approach for building ontologies 
(domain analysis). Second, we need several approaches for reuse 
infrastructure specification and implementation, each one 
considering a specific reuse system technology. Since nowadays 
the object-oriented technology is widely used, we proposed an 
approach to derive object frameworks from ontologies. 

3. ONTOLOGY-BASED DOMAIN 
ENGINEERING 
In this section, we present ODE (Ontology-based Domain 
Engineering), an ontological approach to domain engineering, that 
considers ontology development (domain analysis), its mapping to 
object models (infrastructure specification), and Java components 
development (infrastructure implementation). 

3.1 A Systematic Approach for Building 
Ontologies 
Figure 1 shows the main activities in ODE’s ontology 
development process [5]. The dotted lines indicate that there is a 
constant interaction, albeit weaker, between the associated steps. 
The filled lines show the main work flow in the ontology building 
process. The box involving the capture and formalization steps 
enhances the strong interaction, and consequently iteration, 
between them. 

 

 

 

 

 

 

 

 

 

Figure 1 - Steps in the ontology development process. 
A brief description of the activities is presented below: 

• Purpose identification and requirement specification: 
concerns to clearly identify the ontology purpose and its 
intended use, that is, the competence of the ontology. To do 
that, we suggest the use of competency questions [7]. 

• Ontology capture: the goal is to capture the domain 
conceptualization based on the ontology competence. The 
relevant domain entities (e.g. concepts, relations, properties, 
role) should be identified and organized. A model using a 
graphical language, with a dictionary of terms, should be 
used to facilitate the communication with domain experts. 

• Ontology Formalization: aims to explicitly represent the 
conceptualization captured in a formal language. This 
language should be able to represent in a precise and 
unambiguous way the elements that model the existing 
domain entities. One should be able to write formal axioms 
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that constrain the interpretation of the structure formed by 
these entities. 

• Integrating Existing Ontologies: during ontology capture 
and/or formalization, it could be necessary to integrate the 
current ontology with existing ones to  use previously 
established conceptualizations. Indeed, it is a good practice 
to develop general modular ontologies, more widely 
reusable, and to integrate them, when necessary, to obtain the 
desired result. 

• Evaluation: the ontology must be evaluated to check 
whether it satisfies the specification requirements. It should 
be evaluated in relation to the ontology competence and 
some design quality criteria, such those proposed by Gruber 
[10]. It should be noticed that the competency questions play 
an essential role in the evaluation of the completeness of the 
ontology, specially when considering its axioms. 

• Documentation: all the ontology development must be 
documented, including purposes, requirements, textual 
descriptions of the conceptualization, and the formal 
ontology. A potential approach to document an ontology is 
to use a hypertext, allowing browsing along term definitions, 
examples and its formalization, including the axioms. The 
use of XML can be worthwhile. 

As pointed above, during ontology capture, we need a graphical 
language to improve the communication with domain experts. We 
have proposed LINGO [5] as a graphical language for expressing 
ontologies. LINGO basically represents a meta-ontology, and 
thus, it defines the basic notations to represent a domain 
conceptualization. That is, in its simplest form, its notations 
represent only concepts and relations. Nevertheless, some types of 
relations have a strong semantics and, indeed, hide a generic 
ontology. In such cases, specialized notations have been 
proposed. This is the striking feature of LINGO and what makes it 
different from other graphical representations: any notation 
beyond the basic notations for concepts and relations aims to 
incorporate a theory. This way, axioms can be automatically 
generated. These axioms concern simply the structure of the 
concepts and are said epistemological axioms. Figure 2 shows 
part of LINGO notation and some of the axioms imposed by the 
whole-part relation. These axioms form the core of the 
mereological theory as presented in [8].  
 

 

 

 

 

 

 

 

 

 

 

Figure 2 - LINGO main notation and some axioms. 

Besides the epistemological axioms, other axioms can be used to 
represent knowledge at a signification level. These axioms can be 
of two types: consolidation axioms and ontological axioms [5]. 
The former aims to impose constraints that must be satisfied for a 
relation to be consistently established. The latter intends to 
represent declarative knowledge that is able to derive knowledge 
from the factual knowledge represented in the ontology, 
describing domain signification constraints. 

Someone could argue that another graphical language is 
unnecessary. Cranefield and Purvis [9], for example, advocate the 
use of UML as an ontology modeling language. We partially 
agree with their arguments, but we decided not to use some 
existing graphical language due two main related reasons. First, 
an important criterion to evaluate ontology design quality is 
minimum ontological commitments [10]. Based on this principle, 
a graphical language in this context must embody only notations 
that are necessary to express ontologies. This is not the case of 
UML and majority graphical languages available. Second, since 
an ontology intends to be a formal model of a domain, it is 
important that the language used to describe it has formal 
semantics. Again, this is not the case of the majority graphical 
languages available, including UML. However, we cannot ignore 
that UML is a standard and its use is widely diffused. Moreover, 
there are efforts to define UML semantics, such as pUML [11]. 
Based on that, we are also studying to define a subset of UML 
that can play the same role of LINGO following the same thread 
of [9].  
We advocate, based on our experience in ontology development, 
that the approach described easies the development of ontologies, 
specially in those aspects concerning minimum ontological 
commitments criterion. However, when considering ontology as a 
specification, this striking feature is also a problem, since the 
ontology is built generally in a high abstraction level to be directly 
reused in software development. We have experimented to reuse 
ontologies in the development of knowledge-based systems, 
information systems (using object technology) and hypermedia 
systems. In all cases, we identify a need to lower the abstraction 
level of our ontologies to actually put them in practice. To deal 
with this problem, we have been working in ways to create more 
reusable assets from the ontologies. Next, we present our 
approach to derive object-based artifacts from ontologies. 

3.2 From Domain Ontologies to Objects 
If we want an object-based reuse infrastructure, we need an 
approach to derive objects from ontologies. We developed a 
systematic approach that is composed of a set of directives, design 
patterns and transformation rules [12]. The directives are used to 
guide the mapping from the epistemological structures of the 
domain ontology (concepts, relations, properties and roles) to 
their counterparts in the object-oriented paradigm (classes, 
associations, attributes and roles). Contrariwise, design patterns 
and transformation rules are applied in the mapping of ontological 
and consolidation axioms, respectively. The application of these 
guidelines is supported by a Java Set framework that implements 
the mathematical type Set [12]. 

To derive objects from domain ontologies, it is worthwhile to 
adopt a formalism that lies at an intermediate abstraction level 
between first-order logics and objects. For this purpose, we used a 

concept  relation 

(A1) ∀x  ¬partOf(x,x) 
(A2) ∀x,y  partOf(y,x) ↔ wholeOf(x,y) 
(A3) ∀x,y  partOf(y,x) → ¬ partOf(x,y)        
(A4) ∀x,y,z  partOf(z,y) ∧ partOf(y,x) → partOf(z,x) 
(A5) ∀x,y disjoint(x,y)  → ¬∃z partOf(z,x) ∧ partOf(z,y) 
(A6) ∀x  atomic(x)  → ¬∃y partOf(y,x)  
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hybrid approach based on pure first-order logic, relational theory 
and, predominantly, set theory. The choice to create a language 
mainly based on set theory was highly motivated by an important 
issue: set theory is a complementary extensional perspective to the 
intentional nature of first-order logic. For example, let the 
intention of the concept mortal be "A mortal is an entity whose 
life ceases in a point of time". The logic predicate mortal(x) states 
that x is a mortal and, therefore, the characteristics defined by the 
intention of this concept applies to x. It also (implicitly) states that 
x ∈∈∈∈ Mortal, i.e. to the set of all elements in the considered world 
to which the intention of the concept applies.  In an object-
oriented perspective, if x is an instance of Mortal, it means that x 
belongs to the Mortal class, i.e. to the set of all instances that 
share the same properties and the same definition. 

In our approach, concepts are defined as sets, and, as mentioned 
before, the statement x ∈∈∈∈ Person commits x to the concept 
Person, both intentionally and extensionally. 

 Another fundamental building block in the LINGO meta-
ontology is the relation primitive. This primitive represents a 
semantic link that exists among concepts. In our approach, 
relations are mapped to the synonymous primitive in set theory. In 
set theory, a n-ary relation can be defined by the n-tuple R = 
(C1,C2,...,Cn, p(x1,x2,...,xn)), where each Ci represents a different 
set involved in the relation and p(xi,) is a functional predicate 
open in n variables that maps each element from the cross-product 
C1 ×××× C2 ×××× ... Cn in a true or false value. In this case, the set R* 
(solution set) is the subset of C1 ×××× C2 ×××× ... Cn whose members ei 
all satisfy the predicate p(ei). From now on, the propositional 
function p(x1,x2,...,xn) will be used as synonym of the n-tuple that 
defines the relation, assuming that it is defined in some cross-
product C1 ×××× C2 ×××× ... Cn. 

Figure 3 shows an example of a binary relation that links the 
concepts Person and Organization in a context of Enterprise 
Modeling. In this figure, age is a property of Person. The 
equivalent description of the contract relation in set theory is 
contract = ((Organization, Person, contract(x,y)). 
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universal; ∃ - existential; ∃! - exists one and only one) to form the 
core of the formalism employed in this work.  

In order to extend this core formalism, some additional functions 
were defined. The two most important among them are the 
functions set relational Image (Im) and the element relational 
image (Im+). The definitions1 of Im and Im+ are given as follows: 

Im+(_,_): X ×××× (X ⇔⇔⇔⇔ Y) →→→→ ℘(Y)     

Im+(x,R) = {x:X,y:Y | ((x,y) ∈∈∈∈ R*) •••• y }            

∀∀∀∀ a:A,b:B,R:(A ⇔⇔⇔⇔ B) b∈∈∈∈Im+(a,R) ↔↔↔↔ a ∈∈∈∈ Im+(b,R~)   

Im(_,_): ℘(X) ×××× (X ⇔⇔⇔⇔ Y) →→→→ ℘(Y)          

Im(S,R) =  ∪∪∪∪a ∈∈∈∈    S  Im+(a,R)    

Using the relation of figure 3 as an example, a possible valid 
image set could be: Im+(Org1, contract) = {John, Paul, Mary} 
and, consequently, Im+(John,contract~) = {Org1}. It is important 
to notice that, as stated by the axioms above, the set Im function 
distributes over the element Im+ function, i.e., 
Im({John,Mary},contract~) = Im+(John, contract~) ∪∪∪∪ 
Im+(Mary, contract~).  

The use of cardinality constraints of type (1,1) in this example 
implies that ∀∀∀∀ p: Person #Im+(p,contract~) = 1 and cardinality 
constraints of type (1,n) implies that ∀∀∀∀o:Organization 
#Im+(o,contract) ≥≥≥≥ 1. 

The axiom below completes the formal definition of our set-based 
language providing the semantics of the selection operator in this 
context. In this definition we assume the set Φ as the superset of 
all basic types, such as, ℵ, ℜ, Boolean, Strings, and so on.  

σσσσ(_,_,_,_):℘(X) ×××× (X →→→→ ΦΦΦΦ) ××××(ΦΦΦΦ ⇔⇔⇔⇔ ΦΦΦΦ) ××××    ΦΦΦΦ →→→→ ℘(X) 

σσσσ(X,R,O,z) ={x:X,y,z:ΦΦΦΦ | ((x,y)∈∈∈∈R*) ∧∧∧∧((y,z)∈∈∈∈O*) •••• x} 

The selection operator takes as parameters: (i) a set X (e.g. 
Person); (ii) a property (function) existent between X and the a 
subtype of ΦΦΦΦ (e.g. age, where the subtype of ΦΦΦΦ is ℵℵℵℵ); (iii) a 
relation (operation) defined for the specific subtype of ΦΦΦΦ (e.g., ≥≥≥≥); 
(iv) and an instance value of ΦΦΦΦ (e.g., 20). Organization  

Person 

age: W 

  contract 
1,1
ure 3 - Example of a binary relation. 

portant to notice that the relation contract defines 
 the set Organization to the powerset of Person. 

, for each (x,y) in Contract*, x ∈∈∈∈ Organization 
. Therefore, to navigate in the opposite direction, 
e reverse mapping defined by the inverse relation 

me essential operations are defined to express the 
en sets (such as ⊂ - subset; ∪ - Union; ∩ - 
 difference and ℘ - power set), properties of sets 
, restriction on relations (~ - inverse relation) and 

en sets and their members (∈ - Membership) [12]. 
 this, we use the basic logic operators (∧ - 
 - disjuntion; ⊕ - exclusive disjunction; ¬ - 
onditional; ↔ - biconditional) and quantifiers (∀ - 

Since we have defined this set-based formalism to support 
ontology to objects mapping, the first step in our approach is the 
complete axiomatization of the domain theory using this 
formalism. 

Once defined the Set-based axioms, we can initiate the object 
mapping. First, we should consider the epistemological aspects 
captured by LINGO. Concepts and relations are naturally mapped 
to classes and associations in an object model, respectively. 
Properties of a concept shall be mapped to attributes of the class 

                                                                 
1 One shall notice that the symbol ⇔⇔⇔⇔    (used as in Α⇔Β) is a meta-

mathematical construct that represents the set of existent 
relations between the sets A and B. Differently, the symbol ↔↔↔↔, 
represents the logical biconditional. Moreover, although the 
symbol →→→→  is used both for functions definition and for logical 
implication, its semantics shall be made clear by the usage 
context.       



that is mapping the concept. In the example of Figure 3, Person 
and Organization would be mapped to classes, and age would be 
modeled as an attribute of Person.  

Although this approach works well in most cases, it is important 
to point out some exceptions: 

• some concepts can be better mapped to attributes of a class 
because they do not have a meaningful state in the sense of 
an object model; 

• some concepts should not be mapped to an object model 
because they were defined only to clarify some aspect of the 
ontology, but they do not enact a relevant role in an object 
model; 

• relations involving a concept that is mapped to an attribute 
(or that is not considered in the mapping) should not be 
mapped to the object model. 

 A class defines a formation rule for its instance and, therefore, 
can be seen as a set. Consequently, the classification relations in 
the formalism do not require any specific implementations, i.e. 
relations such as a ∈∈∈∈ A, are totally resolved by the programming 
language typing mechanism through the creation of an object a of 
type A. Likewise, subtype-of relations among concepts can be 
directly mapped to generalization/specialization relations among 
classes. However, it is not the case of Whole-Part relations. The 
UML notation for aggregation does not guarantee the fulfillment 
of the mereology theory constraints. To deal with this problem, 
we developed the whole-part design pattern [12]. 

For the mapping of relations, there are some issues that still must 
be discussed. As shown in Figure 3, there is a relation contract 
between the concepts Person and Organization. In our approach, 
this relation is translated to an association between the 
corresponding two classes in the object model and both classes 
have a method contract(). In this case, with the invocation of 
method contract() in an object o1 of type Organization, 
it is possible to have access to all the people that work at o1. This 
resulting set is formally specified by the formula 
Im+(o1,contract)). Likewise, the method invocation in a Person 
instance p1 returns its employer Organization, or, 
Im+(p1,contract~). The returned type of the relation methods 
depends directly on the cardinality axioms associated to the 
relation. For instance, since in the scope of the contract relation 
an Organization may employ several Persons, contract is 
mapped to a Set variable in the Organization class and, 
hence, this is the type returned by the invocation of the 
synonymous method on this class. 

Once mapped the epistemological structure, we should consider 
consolidation and ontological axioms. To address the 
consolidation axioms mapping, we developed a design pattern 
(consolidation pattern) whose purpose is to describe preconditions 
that must be satisfied or properties that must hold so that a 
relation could be established between two objects [12]. 

Finally, it is necessary to map ontological axioms to the object 
model. Methods are derived from ontological axioms, using a set 
of transformation rules, partially presented below.  

T0: ∀∀∀∀ x:X, ∀∀∀∀ y:Y r1(x,y) ↔↔↔↔    y ∈∈∈∈ C ⇒⇒⇒⇒ 
 Im+(x, r1):Type = C, such that if # Im(x, r1) = 1  
 then Type = Y else Type = Set 

This rule states that the type returned by the method that 
implements the function in the derived class depends on the 
cardinality of the relation. Hence, if x is related to only one 
instance of Y, the returned value shall be of type Y, otherwise, it 
shall be of type Set, in the case a set of Y. 

T1: Im+(x, r1)   ⇒⇒⇒⇒  x.r1()  

T2: Im+(y, r1~) ⇒⇒⇒⇒  y.r1()  

T3: r1(x,y)        ⇒⇒⇒⇒  x.r1() 

T4: r1(x)           ⇒⇒⇒⇒  x.r1() 

A relation r1 between two concepts X and Y is mapped to 
methods in the corresponding classes. Given an instance x, the 
invocation x.r1() returns the set of objects from Y associated to x 
in the relation r1. 

T5:  A SetTheoryOperation a  ⇒⇒⇒⇒   
A.SetTheoryOperationImplementation(a) 

This rule deals with the translation between the essential set 
theory operations and the corresponding method implemented in 
the Set class. For instance, the set theory expression A ∩ C is 
translated to A.intersection(C), where A and C are instances of the 
class Set.   

T6: Im(A, r1)  ⇒⇒⇒⇒  Set.Im(A," r1") 

This rule promotes the replacement of the Set Relational Image 
function by the corresponding syntax through which it is 
implemented in the Set class.  

T7: x.r1():Y ≡ C ⇒  public class X 
 {      

public Y r1( ) 
   { 
       return C;              
        }   
    } 

Finally, this last rule directly translates the axiom written in the 
left side to the corresponding Java implementation syntax. All the 
existing references to the instance x in the scope of set C (to 
which x belongs) are replaced by the Java reserved word this, 
so that references to methods of the same class can be made. 

4. APPLYING ODE IN SOFTWARE 
QUALITY DOMAIN 
We have been using ODE in several domains, such as software 
process modeling [12], software quality and video on demand. In 
this section we present partially its application in the software 
quality domain. 

As pointed by Crosby, cited by Pressman [1], “the problem of 
quality management is not what people don’t know about it. The 
problem is what they think they do know”. Before we can devise a 
strategy for producing quality software, we must understand what 
software quality means. But this is not an easy task. There are 
several information sources (books, standards, papers, experts, 
and so on) using many different terms with no clear semantics 
established. There is not a consensus about the terminology used, 
what causes misunderstanding and several problems in the 
definition of a quality program. To deal with these problems, we 
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developed an ontology of software quality. Several books, 
standards, and experts were consulted and a consensus process 
was conducted. 

4.1 A Software Quality Ontology 
Due to limitations of space, we present only part of this ontology, 
concerning the following competency questions: 

1. Which is the nature of a quality characteristic? 

2. In which sub-characteristics can a quality characteristic 
be decomposed? 

3. Which characteristics are relevant to evaluate a given 
software artifact? 

4. Which metrics can be used to quantify a given 
characteristic? 

5. To which paradigm a quality characteristic is 
applicable? 

To address these competency questions, the concepts and relations 
shown in Figure 4 were considered. As shown in this figure, a 
software quality characteristic can be classified according to two 
criteria. The first one says if a quality characteristic can be directly 
measured or not.  A non mensurable characteristic must be 
decomposed into subcharacteristics to be computed by the 
aggregation of their subcharacteristic measures. A mensurable 
characteristic can be directly measured applying some metric. The 
second classification enforces that product characteristics should 
only be used to evaluate software artifacts. Finally, there are some 
quality characteristics that can be useful only to evaluate 
processes or artifacts developed following some paradigm. 
Artifact and Paradigm are highlighted since they are concepts 
from the software process ontology [5], which were integrated 
with the quality ontology been presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 - Part of the software quality ontology. 

From LINGO notation, the following epistemological axioms can 
be derived: 
(∀ qc) (nmensqc(qc) → qchar(qc))   (E1) 

(∀ qc) (mensqc(qc) → qchar(qc))   (E2) 

(∀ qc) (prodqc(qc) → qchar(qc) )   (E3) 

(∀ qc1, qc2) (subqc(qc1, qc2) →  ¬ subqc(qc2 , qc1))  (E4) 

(∀ qc1, qc2) (subqc(qc1, qc2) ↔  superqc(qc2 , qc1))  (E5) 

(∀ qc1, qc2, qc3) (subqc(qc1, qc2) ∧ subqc(qc2, qc3) →  
subqc(qc1 , qc3 ))    (E6) 

(∀ qc) (mensqc (qc) ↔ ¬ (∃ qc1) (subqc(qc1, qc)))  (E7) 

(∀ qc) (nmensqc(qc) → (∃ qc1) (subqc(qc1, qc)))   (E8) 

(∀qc,m)(mensqc(qc) → (∃ m) (quant(m, qc))  (E9) 

(∀qc,a)(prodqc(qc) → (∃ a) (relev(a, qc))     (E10) 
where the predicates qchar, nmensqc, mensqc and prodqc 
formalize the concepts of quality characteristic, non mensurable 
quality characteristic, mensurable quality characteristic and 
product quality characteristic, respectively, and the predicates 
subqc/superqc, quant and relev formalize the whole-part, 
quantification and relevance relations, respectively. 

Axioms (E1) to (E3) are derived by the subsumption theory. 
Axioms (E4) to (E7) are some imposed by the whole-part relation. 
Finally, axioms (E8) to (E10) are given by cardinality 
constraints.Several consolidation axioms were defined, such as: 

(∀qc,qc1)(subqc(qc1,qc)∧ prodqc(qc)→ prodqc(qc1))  (C1) 

This axiom says that if a product quality characteristic (qc) is 
decomposed in subcharacteristics (qc1), then these 
subcharacteristics should also be a product quality characteristic. 

Also several ontological axioms were defined, such as: 

(∀qc) ¬(∃p)(applicability(qc,p)→  pdgInd(qc)   (O1) 

This axiom states that if there is not a paradigm to which a quality 
characteristic qc is applicable, than qc is paradigm-independent. 

4.2 Object-based Domain Reuse 
Infrastructure 
From the ontology presented, we derived a framework, shown in 
Figure 5, following the approach described in subsection 3.2. 

All classes derived directly from the ontology are prefixed by the 
character “K”, indicating that their objects represent knowledge 
about the software quality domain. The remainder classes are from 
the Whole-Part design pattern used. The Whole class, for instance, 
is a handler that maintains a reference to the parts associated to 
this whole. The interfaces IWhole and IPart must be implemented 
by the concrete classes (respectively KNonMeasurableQC and 
KQualityCharacteristic). The methods whole() and part() on these 
interfaces provide access to its respective handlers (Whole and 
Part). 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 - Part of the Knowledge Package. 

The consolidation axiom (C1) was implemented by the method 
addSuperQC, using the consolidation pattern [12], as shown in 
Figure 6. 

addSuperQC (KNonMeasurableQC: qc): boolean 
{ 
 boolean result = false; 
 if (result = (qc.isProductQC && this.isProductQC)) 
 { 
  superQC.add(qc); 
  qc.addSubQC(this); 
 } 
 return result; 
} 

Figure 6 - Consolidation axiom mapping. 
The ontological axiom (O1) was translated to the set-theory 
formalism and mapped to method pdgInd(), following the 
transformation rules, as follows: 

1.∀∀∀∀qc:QualityCharacteristic pdgInd(qc,True) ↔↔↔↔ 
   #Im+(qc,applicability) = 0  O1 

2. qc.pdgInd():Boolean ≡≡≡≡ #Im+(qc,applicability) = 0   
   1,T0 
3. qc.pdgInd():Boolean ≡≡≡≡ (qc.applicability().card()) = 0 
              2,T1,T5 
4. public class KQualityCharacteristic  
 {      3,T7 
  public Boolean pdgInd() 
  { 
  return(this.applicability()).card()== 0); 
  } 

 } 

where method card() returns the number of elements of a given 
set, and is defined in the Set class [12]. 

5. RELATED WORK 
There are several domain engineering methods described in the 
literature, such as FODA, RSEB and ODM. FODA [13] (Feature 
Oriented Domain Analysis) emphasizes descriptions of domain 
features as a way of capturing commonality and variability 
information. Features are captured in a feature model with 
semantics roughly equivalent to an AND-OR graph. However, the 
semantics of feature is not precisely defined, i.e. it is not formally 
clear what is meant by “feature” [14]. 

RSEB (Reuse-driven Software Engineering Business) [15] is a 
systematic model-driven approach to domain-specific, object-
oriented software reuse. Use case models are central to all steps in 
RSEB. However, as pointed by Griss et al. [15], RSEB is 
incomplete with respect to domain analysis, since its domain 
analysis activities are distributed across various processes and 
RSEB does not provide explicit concepts/feature models. To solve 
this problem, the FODA’s feature model was adapted to RSEB, 
originating FeatuRSEB [15]. The feature model is used as a 
catalog of feature commonality and variability and it is similar to 
a data dictionary (in domain engineering context, a domain 
terminology dictionary). 
In ODM [14] a domain can be any “realm of discourse” where 
commonality and variability of multiple exemplars are examined. 
The core ODM model describes the conceptual and organizational 
processes that occur in such a modeling context. A goal of ODM 
is to define the core domain modeling process in a manner 
independent of assumptions about the specific modeling 
representation used. ODM uses a multi-modeling approach based 
on a mathematical formalism, called Sigma. In Sigma, the 
“feature” relation is formally defined as an essential property for 
its associated concept (a necessary condition). A concept is 
adequately modeled when its set of related features provides both 
necessary and sufficient conditions. 
Comparing these methods with our approach, we should observe 
some aspects: 
• Many methods commit a priori with a technology, mainly 

object technology. Like ODM, our ontology-based approach 
to domain analysis aims to be independent of reuse 
technology. 

• Methods like FODA and particularly RSEB, which is use-
case centered, are very interested in capturing domain 
functionality instead of capturing domain conceptualizations.  
In ODE, we agree with Guarino [16] who defends the thesis 
of the independence between domain knowledge and 
problem-solving (task) knowledge. So, in a domain ontology, 
we do not capture task knowledge. To deal with domain 
functionality, we are studying task ontologies and how to 
integrate them with domain ontologies in a more general 
reuse approach. 

• Most methods do not define formal axioms to constrain the 
interpretation of terms. The feature model in FeatuRSEB, for 
example, resembles a data dictionary. In ODE, we advocate 
that formal axioms must be explicitly defined. This is very 
important for automated tools. 
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• In ODE, we are most interested in capturing domain 
conceptualizations. So, a model of concepts is the main 
output of ODE’s domain analysis step. We do not explicitly 
treat features. As ODM, we think that features can be 
described as properties and axioms (conditions in ODM’s 
vocabulary). 

There are also several works that are related to some part of our 
approach. Uschold and King [17] proposed what they called “a 
skeletal methodology for building ontologies”, defining a small 
number of stages that they believed would be required for any 
future comprehensive methodology. In this sense, the method here 
proposed followed some of their guidelines and stretched it 
towards a more systematic approach for building ontologies. In 
[18] a set of design patterns for constraint representation in 
JavaBeans components is presented. Constraints are equivalent to 
what we call consolidation axioms and our approach to implement 
these axioms is also based on design patterns. However, these 
axioms represent only a subset of the knowledge that must be 
made explicit at the ontological level. Thus we need other 
mechanisms to capture, for example, ontological axioms, such as 
the transformation rules we have proposed. 

6. CONCLUSIONS 
Ontologies have great potential to be used as a domain model. In 
this paper we presented ODE, an ontological approach to domain 
engineering, matching ontologies and objects, and we showed its 
application in software quality domain. We argue that using ODE, 
we can put ontologies in practice. We have tested ODE in 
different domains and we have obtained good results. 
Since several steps of ODE can be at least partially supported by 
automated tools, we are working on a tool, an ontology editor, 
that supports ODE. 
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