
Edgar H. Sibley
Panel Editor

A music-description language designed to facilitate both electronic
communication and publication-quality printing of musical scores
incorporates a syntax for expressing concurrency and two-dimensionality
and pl,aces new demands on text formatters.

A LAUGUAGE FOR MUSIC PRIUTIIUG

JOHN S. GOURLAY

The process of transforming an original handwritten
musical score into the high-quality form required for
performance and publication is a time-consuming
and error-prone one. Still commonly a manual pro-
cess using engraving or lithography, music printing
has benefited little from recent technical advances
that have affected ihe rest of the printing industry.
Manual transcription of the original manuscript is
not only tedious and time consuming, but it also
introduces errors that must then be laboriously re-
moved by proofreading and manual correction of the
master. For orchestral compositions, the problem is
magnified since the original must be transcribed
twice, once for the conductor’s score and again as
separate parts for individual instruments.

At the same time, the typography for other types
of documents is becoming increasingly automatic. It
is now typical for newspaper journalists to forgo the
traditional typewriter and enter their stories directly
into a computer via a display terminal. Editors then
add headlines and electronically simulate page lay-
outs without the delays and errors inherent in type-
setting, cutting, pasting galley proofs, etc. Music

This work was partially supported by the National Science Foundation under
grant number IST-8514308.

0 1986 ACM 0001.0782/86/0500-0388 750

printing, of course, is a vastly more complicated
process, and it is this complexity that has prevented
its automation in a practical way. Recent innova-
tions, however, in applying computers to high-
quality typography for books and technical journals
make the problem of music appear much more tract-
able. It is now possible (but not common) for an
author of a mathematical paper to submit the text to
a publisher on a magnetic tape or disk. The pub-
lisher can then make any necessary editorial
changes through a computer terminal and print the
paper without incurring the costs of manual typeset-
ting and subsequent proofreading and correction.

The important thing is that this difficult problem
of properly formatting very complex mathematical
formulas can be handled almost totally automati-
cally at a level of quality that rivals the best manual
mathematical typography. Music may be even more
difficult than mathematics, but the analogies be-
tween the two are strong. Both involve the accurate
placement of very large and very small characters in
configurations where vertical alignment and spacing
are fully as important as horizontal. Done manually,
both require the attention of exceptionally qualified
compositors. In the light of the recent developments
in mathematical typesetting, it is clearly time to re-
consider the automation of music printing.

388 Communications of the ACM May 1986 Volume 29 Number 5

http://crossmark.crossref.org/dialog/?doi=10.1145%2F5689.5690&domain=pdf&date_stamp=1986-05-01

Computing Practices

Related Work
The large problem of computerized music printing
can be looked at in terms of three rather separable
components-input, communication, and output. The
input problem involves providing a mechanism by
which a composer realizes and makes permanent his
or her creation. Traditionally, this is done with pen-
cil and paper, taking the form of a quick rough draft
in traditional music notation. The communication
problem involves conveying the composition to col-
laborators, editors, or printers, again traditionally
served by the handwritten draft. The output prob-
lem involves converting the composition from the
form in which it is originally communicated into
correct, conventional, and publishable form. This is
generally accomplished manually by engraving or
lithography.

The use of computer hardware and software has
been proposed to speed or simplify these traditional
steps. It was the communication problem that was
attacked first because it was recognized early that
computers had the potential of doing much more
than simply printing music. The computer can be a
valuable tool also for music composition and per-
formance as well as analysis of musical styles. For
all of these purposes, musical compositions must be
representable in characteristically linear computer-
readable form. In order to communicate a musical
composition from one computer to another, or even
from one program to another, the two-dimensional
form of the music needs to be coded somehow into a
one-dimensional sequence of characters. Originally,
the communication media were punched cards and
magnetic tape. Now, descriptions of musical scores
are more likely to be communicated on floppy disks,
telephone lines, or coaxial cable, but the sequen-
tial nature of communication still requires the one-
dimensional encoding of the score.

The most successful work so far on the communi-
cation problem has been done by Bauer-Mengelberg
et al. [Z]. Their language, DARMS, was designed for
use as an input language for music-printing systems
as well as music-analysis programs. An important
contribution of DARMS was the representation of
music at an appropriate level of abstraction. For ex-
ample, in DARMS, one explicitly states the pitch and
time of each note, but not the exact Cartesian coor-
dinates of the note head; asking a composer to sup-
ply the coordinates of every symbol in the composi-
tion would clearly be demanding much more work
than required to manually engrave the composition.
Furthermore, this information is almost certainly a
waste of time and space for a program that does, say,
statistical analyses of meter. Unfortunately, by
“modern” standards of human-computer interface,
DARMS is a very difficult language because it uses

numbers and single-character abbreviations rather
than words recognizable by musicians.

Another even more difficult language is proposed
by Byrd [l] as part of his SMUT system. This lan-
guage requires the use of numeric codes in fixed
columns of punched cards, but this poor human in-
terface is explained by his intention of providing
merely an interface between a music-composition
program and a music-printing program.

This last consideration raises the possibility that a
good solution to the input and output problems
might eliminate the need for any serious attention to
the communication problem. This, implicitly, is the
position taken by those who have worked on the
input problem. An example of recent, very good
work on the input problem is Mockingbird [7],
a system based on an electronic synthesizer and a
powerful single-user computer (a Xerox Dorado).
Mockingbird allows a composer to enter a composi-
tion (for keyboard instruments only) by playing it on
the synthesizer keyboard. A staff bearing note heads
corresponding to the played keys is displayed on a
high-resolution video monitor, and the composer
must then manually (but with much software assis-
tance) add durations, beams, bar lines, etc. The re-
sulting composition can then be played back through
the synthesizer for evaluation, and printed on a laser
printer, yielding a publication-quality score. Mock-
ingbird would be of enormous value to a composer,
but even with the low current prices for conven-
tional hardware, Mockingbird, were it sold commer-
cially, would probably go for more than $100,000.
Needless to say, few composers could afford such a
device. Even if the price were to come down consid-
erably, Mockingbird’s lack of solution to the commu-
nication problem would remain a handicap. A
printed score must be produced at the composer’s
site, and if it fails to conform to a publisher’s re-
quirements as to size or spacing, the composer
would have to redo some of the work, produce an-
other paper original, and resubmit it to the pub-
lisher. Also, a collaborator at a different site, unless
he or she had identical hardware and software,
would have to work from the paper version rather
than the electronically manipulable form available
to the first composer. Although there are a number
of simpler, commercially available systems for per-
sonal computers that are similar in spirit to Mock-
ingbird, as a rule they suffer from typographical in-
adequacies such as low-resolution graphics, solely
horizontal beams and slurs, and poor note spacing.
Perhaps the best of these is Professional Composer
[9] for the Apple Macintosh-a system that can pro-
duce full orchestral scores, extract parts, and trans-
pose. Its typography, although relatively good, is still
not up to the standards of published scores, but even

May 1986 Volume 29 Number 5 Communications of the ACM 399

Computing Practices

if this is improved in future versions, the system will
still suffer from the device dependency and closed
architecture inherent in the Mockingbird model.

The output problem--the problem of producing
a printed score from a linear description like
DARMS-has been handled with varying success.
Because of the tremendous variation in the music
notations in use, especially by modern composers,
there are inevitably situations where every music-
printing program will be inapplicable. Rather than
exhibiting occasional defects, however, most pro-
grams are limited in other ways that severely limit
their utility. SMUT, for example, can handle only a
single voice per staff. Mockingbird handles arbitrary
chords and seve.ral voices per staff, but cannot pro-
duce orchestral scores. Characteristic of all music-
printing systems is their limited ability to mingle
text with music notation: Titles and composers’
names can often be printed only in fonts of poor
quality compared to the music notation they accom-
pany. Not all music printed by computer is of low
quality, however. The music-printing system imple-
mented by Smith [ZZI] produces printed scores of
quite high quality, but unfortunately, the system ap-
pears to work from an extremely detailed and primi-
tive music-description language.

Despite their drawbacks, these music-printing pro-
grams do reflect a great deal of effort and creativity
in handling the countless conventions that musi-
cians expect to be followed in printed music. Ross
[ll] has attempted to enumerate some of these for
manual music production, and Gomberg [3] has dis-
cussed ways of algorithmically producing the proper
effects in music-pri.nting programs. Specifically,
Gomberg discusses the algorithms he uses in his pro-
gram, which prints music from a DARMS descrip-
tion, but the algorithms are applicable to other
music-printing systems as well.

As mentioned in .the introduction, developments
in the field of text processing generally, and particu-
larly mathematical typesetting, have some relevance
to the problem of printing music. For example, the
text-formatting p.rogram called Scribe, developed by
Reid [lo, 121, embodies a unique and award-winning
philosophy in the design of its document-description
language. Specifically, the language attempts to
mimic, as nearly as possible, the appearance of a
manuscript “marked up” by an editor prior to type-
setting. The user imagines that a Scribe input file is
a typescript that has been marked up by an editor
with circles and marginal notes indicating special
fonts or other treatments of the text that cannot be
accurately reflected in a typescript. To remain
within the confines of a computer text file, however,
braces, (. . .), are substituted for the circles, and the
bracketed text is preceded by a command word to

replace the marginal note. In Scribe, for example,
one can type @chapter (. . .) to indicate that the
text within the braces is the title of a chapter. In the
final printed document, these words will appear in a
form suitable for the title of a chapter, regardless of
the capabilities of the output device being used. This
deceptively simple philosophy has led to a text-
formatting program that is remarkable both for its
ease of use and its independence of particular output
devices.

A second relevant development in nonmusical
typesetting is the program Metafont, written by
Knuth [5]. Metafont facilitates the construction of
fonts for computer typesetting by simulating the ef-
fect of moving a pen along smoothly curving paths
through points specified by the font designer. Re-
gions bounded by such paths can be filled in auto-
matically by Metafont, thus defining the shape and
weight of a character. The language with which one
describes characters to Metafont is very general, and
more importantly, with just one such Metafont de-
scription a designer can create a large family of fonts
differing in size, boldness, slant, etc. Moreover, this
takes only a matter of days rather than the months
or years it has taken in the past. The benefit of this
facility to music printing lies in the fact that in tradi-
tional music notation the extreme variability of
beams and slurs requires them to be a slightly differ-
ent shape in nearly every instance; access to a sys-
tem like Metafont would also allow a composer
using modern notation to construct these new sym-
bols quite easily.

The last and most important development is TEX,
another computer program designed by Knuth [6].
TEX is the extremely powerful typesetting program
alluded to earlier, which excels at mathematical
typesetting. Among its significant features are the
portability with respect to computers and output de-
vices, the built-in power to handle sophisticated
spacing and alignment problems, and its flexibility
(in fact, it contains within it a general-purpose pro-
gramming language). m endeavors to solve both
the communication and output problems for mathe-
matical typesetting; it has succeeded so well that it
has been adopted by the American Mathematical
Society as the basis for printing Mathematical Re-
views, and for the electronic exchange of mathemati-
cal manuscripts. For this reason and because of its
portability, TFJ is currently in use at many universi-
ties and at several commercial printers. It is worth
noting that, to facilitate the communication of com-
puter-readable mathematical texts, Knuth and the
American Mathematical Society, which in part
funded TEX’S development, have chosen to put the
TEX software in the public domain, making it essen-
tially free for any organization or individual who

390 Conmunications of the ACM May 1986 Volume 29 Number 5

Computing Practices

would like to use it. If TEx were to form the basis of
a good music-printing system, its wide distribution
and portability would make that music-printing sys-
tem available almost immediately to many univer-
sity music schools, composers, and publishers.

Project Goals
The primary goal of the music-printing project
under way at the Ohio State University is to develop
a computer system that produces publication-quality
printed music with all the flexibility of good text
formatters. Of secondary, but still great, importance
are the complementary goals of portability and mini-
mal hardware, which will ensure low cost and en-
courage wide availability. With current technology,
maintaining low cost works to discourage the exten-
sive use of interactive graphics, but not wanting to
deny graphics to those who can afford it, we have
decided to provide a graphical editor for music nota-
tion as an option.

At the center of the basic system (Figure 1) is a

User,
a

Video
music
editor

music-description language. A description of a piece
of music can be created and changed by a user with
a small budget (Userp) using an arbitrary text editor.
Another user with the means for a bit-mapped
graphic display and greater computing power (Usera)
can operate on the same piece of music, but in this
case the actual score rather than merely a textual
description of it. In both cases, a printed copy of the
composition is obtained by passing the textual music
description to the music-formatting software.

In this scenario, the electronic communication of
musical scores between composers, performers, and
publishers will be possible, as will systematic
changes to scores, such as extraction of parts and
changes of key. Also, the delays and expense associ-
ated with proofreading and correcting scores for
publication will be minimized. It is easy to envisage
the eventual adoption of such a system as a standard
by a musicians’ organization in very much the same
way as the American Mathematical Society has
adopted TEX.

Textual
music
description

Music
formatter

User,

1

Text
editor

May 1986 Volume 29 Number 5 Communications of the ACM 391

Computing Practices

FEATURES OF THE MUSIC-DESCRIPTION
LANGUAGE
At Ohio State, the music-printing project (called the
MusiCopy Project] has progressed to the point where
we have defined a music-description language that
is ready for implementation and testing. This at-
tempt to capture musical scores in a textual form
has led to a language with a number of novel fea-
tures from both the computer science and music
points of view.

An Abstraction
The importance of the music-description language in
this project cannot be overemphasized. The pres-
ence of an ordinary text file representing a printed
piece of music facilitates the electronic commu-
nication of scores between dissimilar computers and
between users with unsophisticated equipment.
More importantly, though, the music-description
language provides ian abstraction of the ultimate
printed music that is very important to formatting
and communication.

The primary characteristic of a correct abstraction
for docuqent formatting, whether textual or musi-
cal, is that qbjects be coded according to their func-
tion in the document rather than their position in
the document. With this kind of coding, we are able
to insert or delete sections of a document and have
the remaining contents move around automatically
on the page and from one page to another to prop-
erly compensate for the changes. In a textual docu-
ment, this requires that the software know that cer-
tain pieces of text are section and chapter headings
so that they can be treated differently from the run-
ning text of the document. This kind of functional
coding also allows us to change our minds about
page size or the number of columns and expect the
text to be rearranged accordingly.

Beyond these general kinds of changes, there are
special kinds of changes that are unique to music
printing. A tremendously time-consuming activity
for music copyists is the extraction of parts, in effect
producing two equivalent copies in different formats
for every piece of music they prepare. One copy of
the piece, for conductors and scholars, simultane-
ously shows the perfprmances of all the instruments
used in the piece. The other copy, for performers,
consists of separate sheets of music for each per-
former. Another frequent systematic change is trans-
position, the raising or lowering of all the notes by
the same amount. This is part of the extraction of
parts for certain “transposing” instruments, and it
can be done to accommodate singers whose vocal
ranges differ from the range required by the original
piece. Another use of computer-readable music de-
scriptions that is less critical, but was nonetheless

kept in mind in the design of the language, is me-
chanical performance. Although there is no inten-
tion in the near future to try to replace orchestras
with computers, it is hard to imagine a better way to
“proofread” a score than to let its composer hear an
approximation of its ultimate human performance.
Extraction of parts, transposition, and performance
are systematic changes that can be done mechani-
cally only if the representation of the score contains
explicit information about performers, keys, and
pitches.

Therefore, a good document-description lan-
guage is a necessity for a good computerized text-
formatting system, and a good music-description lan-
guage is required for flexible computer printing of
music. This is not to deny the obvious benefit of
immediate visual feedback on the appearance of a
book or musical score. As was already pointed out, a
visual music editor is a planned part of the music-
printing project, but the music-description language
must be complemented, rather than replaced, by the
elegant input system.

Other Language Features

Declarative Rather Than Procedural. The declarative
versus procedural debate is often heard concerning
programming languages, but rarely concerning other
kinds of computer languages. Music descriptions in
most, if not all, previous music-description lan-
guages must be understood as incremental se-
quences of instructions much like computer pro-
grams. Understanding what a particular instruction
means in the middle of such a music description
requires mentally interpreting the entire sequence
preceding the instruction in question. Such proce-
dural languages are easy to implement, but are hard
to understand. By contrast, our new declarative lan-
guage describes the music as a static object in a
hierarchical fashion, by assembling several notes
into a measure, and then assembling several such
measures into a musical phrase, for example. In
such a language, every syntactic expression has a
well-defined meaning as a smaller or larger musical
object, and the amount of contextual information
required for a complete understanding of the expres-
sion is very small-comparable to the depth of the
hierarchy rather than the length of the description.
This is exactly the Scribe philosophy, but extended
to music description.

One desirable consequence of the declarative phi-
losophy of the language is its block structure. In the
mind of the musician, and in the music-description
language, a piece of music consists of a sequence of
musical ph!ases (groups in the music-description
language), each of which is composed of several

392 Communications of the ACM May 1986 Volume 29 Number 5

Computing Practices

FIGURE 2. A Typical Musical Phrase

shorter phrases, down to individual notes or chords.
One such musical phrase might be a series of “long
grace notes,” small notes that require different
typography than the ordinary notes of the piece.
The appropriate syntax to indicate this would be
longgrace (. . .) where the description of the
grace notes is enclosed in parentheses preceded by
the keyword longgrace. Everything between the
parentheses is typeset as grace notes, and upon com-
pletion of the grace notes, the notational conventions
that prevailed before the grace notes began are re-
stored. This kind of group can appear in larger
groups and can contain smaller groups. A reasonable
example of a contained group in this case would be
a beamed group of notes (i.e., notes, such as 8th or
16th notes, connected by bars to indicate their dura-
tion). These nested groups save the musician the
trouble of remembering to do and undo all the
changes that might be required to set grace notes or
beams in a more procedural language.

Two-Dimensional. Respecting the fact that printed
music is two-dimensional, the music-description
language allows the copyist to fill in the parts of the
score both horizontally or vertically. The line of
music shown in Figure 2, like lines from most
scores, consists of several staves that are bound to-
gether vertically by a bar at their left end, and that
continue horizontally across the page. The horizon-
tal dimension symbolizes the progression of time;
the symbols lined up vertically represent events that
take place simultaneously. In what order should the
notes of this piece be recorded in a textual music
description? The answer is that the best order de-
pends on the musical context. Therefore, our music-
description language allows the music copyist to
choose one of two modes of entry, row by row or
column by column (where a column is one measure

May 1986 Volume 29 Number 5

wide), and to switch from one to the other at arbi-
trary points in the piece.

In the case of the musical phrase shown in Figure
2, the top staff contains the notes that are to be sung
(and conceptually the words themselves), the second
staff represents the notes to be played by the pia-
nist’s right hand, and the third staff the notes to be
played by the left hand. Assuming these were de-
clared to have the names words, right, and
left at the beginning of the description, the follow-
ing two forms would be equivalent ways of entering
the first two measures of this line:

block
[words (measure(...) measure(...))
right (measure(...) measure(...))
left (measure(...) measure(...))]

block
[measure (words(...) right(...)

left(...))
measure (words(...) right(...)

left(...))]

The first of these forms fills in the measures row by
row while the second fills them in column by col-
umn. (In both examples, the use of brackets is op-
tional, and the order of the staff names is arbitrary.)

Expressive of Concurrency. From the point of view
of programming-language design, the music-
description language is unusual in that it must allow
for improperly nested blocks to respect the fact that
in music many things go on simultaneously, and the
times at which they start and stop can be inter-
leaved arbitrarily. Slurs, for example, frequently ex-
tend from the middle of one measure to the middle
of the next, a situation that can be described as
follows:

Communications of the ACM 393

Computing Practices

measure (. . . begin [slur] . ..)
measure (... end [slur] . ..)

In this example, measure (. . .) defines a block, as
does begin [slur] . . . end [slur 1. The fact that
the first measure ends before the slur that began in
it ends is no problem in music and therefore must be
within the capabilities of the music-description lan-
guage.

Expressive of State Changes. Despite the advantages
of an entirely block-structured language with nicely
nested scopes, other features of music printing force
us to deviate from this model. As a group, these
features have come to be called changes (not to be
confused with c:hanges in jazz), which are best char-
acterized by changes of key signature. When a new
key signature appears in the middle of a score, it is
understood that it replaces the previous key signa-
ture permanently, not temporarily as it might
if it signaled entry into a nested block. Notationally
speaking, one does not ever return to the old key
signature. Rather, one replaces the new key signa-
ture with yet another that might happen to be the
same as the original. For changes of this sort, the
music-description language provides commands that
cause permanent changes to ihe interpretation of the
music description,

A special case of this kind of state change is a
change of meter. The convention in music is that
meter changes rnust occur simultaneously for an en-
tire orchestra, not just for one instrument. The ques-
tion of how to handle this syntactically was resolved
by appealing to a protocol that might be useful in
a graphical music editor. If a copyist were editing
a score visible on the screen of a computer work-
station, it would seem reasonable to select a meter
signature from a palette at the periphery of the
screen and drag it to a point on the score. When
released, one would expect it to insert itself there
and replicate itself at the same point in time in all
the other staves. An analogous behavior was adopted
for the music-description language, where such a
global change is syntactically similar to a local
change (e.g., a key change), but its effect propagates
to all staves, regardless of the staff in which it falls,

Verbose, But with Abbreviations. The music-
description langua,ge is verbose in the sense that it
uses long, meaningful words rather than short ab-
breviations to in.dicate the structure of the music.
The intention is that a music copyist using the sys-
tem should find many of the keywords meaning-
ful and need to learn as little new vocabulary as
possible.

At the same time, the language allows users to
design their own system of abbreviations by declar-

ing them at the beginning of the music description.
For experienced users, this can compensate for the
verbosity built into the basic vocabulary of the lan-
guage. More important, like subroutines in a typical
programming language, the abbreviation mechanism
can be used to clarify and make more accurate the
use of repeated elements in a piece of music. If a
chord, melody, or rhythm is used often throughout a
piece, the user will be able to give it a name at the
beginning of the music description and then use that
name repeatedly throughout the piece. For example,
in a piece with many occurrences of four consecu-
tive quarter notes of the same pitch, the music de-
scription can be made easier to read and shorter by
including the definition

define quarters pitch
((4;pitch) (4;pitch)
(4;pitch) (4;pitch))

at the beginning of the piece and by using
quarters ~4 to get four middle Cs and quarters
D4 to get four Ds. This is handled by a macroproces-
sor; quarters is the name of a macro with one
parameter called pitch, and quarters ~4 ex-
pandsinto (4;~4) (4;~4) (4;~4) (4;~4).

High-Level with Escapes. The language is designed
to allow music descriptions at the same high level of
abstraction used by musicians copying or studying
scores. That is, a piece of music is described in terms
of pitches, durations, slurs, and crescendos, etc., and
not in terms of x-y coordinates, spacing, and beam or
slur shape. It is the music-printing software that
chooses shapes and spacings that properly represent
the concepts in the musician’s mind. This is admit-
tedly a heavy burden to place on the software,
which cannot be expected to replace or replicate the
aesthetic judgement of an experienced music copy-
ist. The software will make occasional mistakes, and
therefore escapes from the high-level abstraction to
the details of typography are possible. For example,
beam (.. . I will usually suffice to create a beamed
group of notes, but in the rare case where the beam
is placed awkwardiy, one may enter something like
beam 2-3 (... I, where the numbers indicate the
vertical positions on the staff at which the beam
should begin and end.

TEXT-FORMATTING REQUIREMENTS
The immediate plan for the music-printing project is
to prototype the system around TRX, even though
neither TRX nor any other currently available text-
formatting system is very well suited to all the prob-
lems of music printing. For the prototype, the special
problems of music can be solved most rapidly by
writing pre- and postprocessors for TRX, although a

394 Communications of the ,4CM May 1986 Volume 29 Number 5

Compufiq Practices

long-range goal is to develop more general text-
formatting software to underlie the music-printing
system.

An obvious requirement for an underlying format-
ter is that it have the full capabilities of a good text
formatter. Published music almost invariably con-
tains a significant amount of ordinary text, not only
in titles and lyrics, but also in tables of contents,
commentaries, and other front matter. A music text-
book, with small segments of music intermingled
with paragraphs of text, should not be beyond the
capabilities of the music-printing system.

A feature of special importance to both text and
music typesetting is the ability to find optimal line
and page breaks. Most text formatters simply put as
many words as they can on a line before moving on
to the next, possibly creating uneven word spacing
from one line to the next. TEX attempts to find a
series of line-break points that minimizes the need
to stretch word spaces over the entire paragraph. In
text, this results in noticeably better paragraphs. In
music, where it is customary to “cast off” the mea-
sures of a piece into full lines, with no short line at
the end of a piece, optimal line breaking is manda-
tory. Sometimes music printers even go a step fur-
ther and cast off a score to fill some number of
whole pages. Not even TEX will perform optimal
page breaks in a way that permits this kind of for-
matting in one try, although the TF,X algorithm is
better than that used by other text-formatting pro-
grams. Excellent results have been obtained experi-
mentally by Plass [8] using TEX’S optimal line-
breaking algorithm to find page as well as line
breaks; with an algorithm like this, music could be
cast off into whole pages in one try.

More specific to music formatting is the ability to
superimpose text on a background. In music, the
staff lines and perhaps the clefs and bracketing at
the left margin are best thought of as a background
upon which the music is printed. The problem, how-
ever, is more complicated than merely overstriking
the music on a fixed form because the background
of staves must conform in ways that may vary from
page to page. The first page, for example, might re-
quire an indentation of the first line to make room
for the names of instruments, and the last page may
not have a full complement of lines. Anywhere in
the piece, extra space may be needed between
staves to make room for conflicting notation.
Roughly speaking, what is needed is a kind of back-
ground that can stretch and break to a new line
following the layout of an arbitrary foreground. An
incidental benefit of such a feature in a text format-
ter would be a convenient mechanism for producing
struck-out text in legal and legislative documents.

The musical features that have probably been

the greatest impediment to mechanizing music
printing are the extended beams and slurs. Because
the spacing of notes is so flexible in music, a fair
premise in designing a music formatter is that no
two beams or slurs are alike. The rules for choosing
the positions and shapes of these figures are beyond
the scope of this paper, but given that their param-
eters can be determined, we need a formatter that is
capable of drawing smooth curves and straight lines
as if with pens. A graphics preprocessor like the PIC
preprocessor for TROFF [4] would not be suitable
because the parameters of the graphics will depend
critically on decisions made later in the formatter. A
more integrated approach is necessary, which would
pay off not only in music printing, but also in the
printing of calligraphic writing systems like Arabic.

A last feature expected of the ideal music format-
ter is a sophisticated mechanism for aligning and
spacing tables. In a measure of music, the notes that
begin on the same beat are aligned vertically and are
followed by space that is roughly proportional to
their duration. Seen in this way, constructing a
measure of music is very much like constructing a
table, where the columns correspond to the beats at
which the notes begin, and column widths are fig-
ured from the notes’ durations. Complexity arises,
however, when it is not always simple notes that
appear in these columns. Some notes have sharps or
flats preceding them or dots following them, but
should nevertheless be aligned on the center of their
note heads. Words that are to be sung are aligned
somewhat left of their notes. Ideally, these protru-
sions to the left or the right of the note heads should
not take space of their own, but should occupy the
space present due to the durations of their note and
the previous note. If the duration space does not
provide enough room, however, the note spacing
must be opened up to avoid overstriking. TEX’S
primitives for table building do seem to allow this
kind of complexity, but only with great effort. A
challenge for the next generation of text formatters
is providing simple primitives that allow this kind of
alignment.

CONCLUSION
The foregoing paper has discussed a language whose
primary purpose is the description of musical scores
for the purpose of high-quality printing. The appen-
dix that follows defines in detail the current version
of the language. Implementation of a music-printing
system based on this language is proceeding, but
even in the absence of an implementation, it is
hoped that the emphasis here on appropriate ab-
straction, communication, and device independence
has been useful to others interested in all kinds of
computer languages.

May 1986 Volume 29 Number 5 Communications of the ACM 395

Computing Practices

APPENDIX: DEFINITION OF THE LANGUAGE

As is customary in defining a computer language,
the sequence of characters that is input to the
music-printing system is b:roken into a sequence
of relatively short tokens. Roughly speaking, the
tokens are the smallest meaningful elements of
the language and are analogous to the words of a
natural language. The rules for recognizing the
tokens of the music-description language are
given below in the section headed “Microsyntax.”
The rules of syntax by which tokens are assem-
bled into phrases, and phrases assembled into
larger phrases to ultimately obtain a music de-
scription, are discussed under “Syntax and Se-
mantics.” The meanings of the various compo-
nents of a music description are given informally
in the paragraphs immediately following the syn-
tax of the components.

The syntax of the music-description language is
given in a fairly standard form of BNF. Terminal
symbols, including keywords and punctuation
marks, are printed in a typewriterlike font, for
example, row, (, and ;. Nonterminal symbols are
printed in roman and enclosed in angle brackets.
A superscript plus (+) indicates that the previous
symbol or braced expression may appear one or
more times; a superscript asterisk (*) means that
the previous expression may appear zero or more
times. Braces may also enclose a vertical stack of
expressions, indicating that any one of the items
in the stack may be chosen. Square brackets en-
closing an expression mean that the expression is
optional, and, more generall.y, those enclosing a
stack of expressions indicate that any oile or none
of the items in the stack may be chosen.

Microsyntax
The tokens of a music description are words, num-
bers, tests, and punctuation marks. A word is a se-
quence of letters that is always the longest possi-
ble sequence that does not contain nonalphabetic
characters. There are several special kinds of
word tokens that are distinguished by their differ-
ent uses in the grammar. The broadest group of
words is the names (e.g., staff names and voice
names). Any word may be used as a name, and
this choice is indicated in the grammar with the
symbol (word). Another group of words are key-
words, which mark the beginning of specific parts
of a music description. These words (e.g., system
and staff] are written out explicitly in the
grammar in a typewriterlike type. Three more
categories of words are collectively known as note
names, and called {simple note), (discretionary

accidental), and (mandatory accidental) in the
grammar. The syntax of these note names is given
in the following short grammar, and their mean-
ings are described in connection with their use in
the next section:

(simple note) +
AlBlClDtEtFiGlalicldlelflg

(discretionary accidental) +
(simple note) (discretionary tail)

(mandatory accidental) +
(simple note) (mandatory tail)

(discretionary tail) +
ff[flnlslss

(mandatory tail) +
FFlFlNlSlSS

A number is a sequence of digits, possibly con-
taining a decimal point, and also the longest pos-
sible such sequence of digits. Number tokens are
indicated in the grammar as (number) and have
the following microsyntax:

(integer) + (digit)+
(number) + (integer)

I (integer). (integer)
I . (integer)

(digit) 3 0i~12l~i41~l6l7181~
A text is a sequence of characters enclosed in

double quotes. Texts are used to introduce words
for titles, lyrics, dynamics, etc., and to provide an
escape from the music-description language to the
underlying text-formatting system upon which
the music-printing system is built. The latter fa-
cility is for the purpose of selecting characters
from special fonts, doing unusual positioning, etc.
If it is necessary to use a double quote within a
text, it must be represented by two consecutive
double quotes; in the grammar, these are denoted
by (text).

Punctuation-mark tokens include any of the
printable, nonalphanumeric characters in the
ASCII character set, except for decimal points
within (number)s and percent signs. In the gram-
mar, these are shown explicitly in the typewriter
font.

Spaces, tabs, new lines, and comments may ap-
pear anywhere between tokens. A percent sign
marks the beginning of a comment indicating that
the percent sign and the rest of the line it is on
are ignored.

In the grammar given below, there are many
rules that specify the use of balanced parentheses
around a series of simpler components. In any

396 Conmunications of the ACM May 1986 Volume 29 Number 5

Computing Practices

such case, the balanced parentheses, (. . .), may
be replaced by balanced square brackets, [. . .],
balanced angle brackets, (. . .), or balanced
braces, 1. . .) . In cases where the left parenthesis
is preceded by a word, for example, row (. . .) ,
the alternative construction begin (row) . . .
end(row) may be used.

Macros
Although the music-description language is ver-
bose by design, it has a facility for defining and
using abbreviations, which takes the form of a
simple macro language. Formally, macro defini-
tions and uses have the following syntax:

(macro definition) +
def ine(macro name)(parameter name)*

(balanced token list)
(macro use) +

(macro name) (parameter) *
(macro name) + (word)
(parameter name) + (word)
(parameter) +

(nonparenthesis token)
I (balanced token list)

(balanced token list) ---f

(nonparenthesis token)
(balanced token list) 1 *)

A macro definition is initiated by the keyword
define followed by a name for the macro. After
the macro name is an optional list of names to be
used to indicate parameter substitutions. Follow-
ing this is the list of tokens into which the macro
should expand. This list is enclosed in paren-
theses, and all parentheses within it must be
balanced.

A macro is used, or expanded, whenever the
(macro name) token is encountered after its defi-
nition. (Strictly speaking, it is expanded only
when it is found outside a macro definition or
parameter.) If the macro definition included no
(parameter name)s, then the expansion token list
simply replaces the macro name. More generally,
if the macro definition has n (parameter name)s,
then an expansion replaces the macro name and
n additional tokens or parenthesized token lists.
The expansion is constructed by scanning the ex-
pansion token list for occurrences of (parameter
name) tokens and replacing them with the corre-
sponding parameter token or token list. In both
kinds of replacements, whether replacing a pa-
rameter name or a macro name, one set of enclos-

ing parentheses is stripped off before the replace-
ment is made. After a macro name and its param-
eters have been replaced, scanning for macros be-
gins anew at the beginning of the replacement,
allowing macros to use or define other macros.

This macro facility could be enhanced to in-
clude conditional expansion and nested scopes if
its use in the music-description language war-
rants it.

Syntax and Semantics
In the following definition of the music-description
language, the language is described in small
pieces; for each piece of the language, its syntax is
given first as a small number of BNF rules, and
the meanings of the syntactic objects thus defined
are described immediately afterward in a para-
graph or two.

(piece) + (heading) (section) +

[

title (text) *
(heading) + poet (text)

composer (text) I

(section) + (system)(block)+

The music-printing system deals with one
(piece) on each run. A (piece) might be a full
piece of music, but it also might be a single move-
ment. The criterion for what constitutes a (piece)
is that it should begin with a title of some sort at
the top of a page. The title and any other textual
material that are to appear at the top of the first
page are constructed in the (heading). The (text)
associated with title is centered at the top of
the page, and the poet and composer (text)s
are below it, left and right adjusted, respectively.
A (section) is a portion of the score printed on a
uniform system of staves. A piece of music that is
to be printed without any changes of system may
be written in a single (section); (system) defines
the characteristics of the system on which the
(section) is to be printed.

(system) + system((bracket)+)
(bracket) + bracket((brace)+)

1 (brace)
(brace) 3 brace(print names)((staff)‘)

1 (staff)

Basically, a system consists of a number of
staves. The staves, however, may be joined at the
left margin into large groups with brackets and
into smaller groups with braces. Therefore,

May 1986 Volume 29 Number 5 Communications of the ACM 397

Computing Practices

(system) is described as a series of (bracket)s,
each of which is described as a series of (bracejs,
each of which, in turn, is described as a series of
(staff)s. A (brac’ket) or (brace) written without
the keywords bracket or brace is printed
without any bracketing symbol at the left of the
line. In spite of the order in which things are
specified in the music-description language,
braces are printed to the left of brackets. All the
staves of a system are connected by a bar line at
their left ends. Additional bar lines have exactly
the same extent as (bracket)s. The symbol (print
names) represents names to appear to the left of a
braced group of staves, a full name for the first
line of the piece and an abbreviation for subse-
quent lines.

(staff) 4
staff (staff name}

(print names) (format) (voice) *
1 tempo

(voice) + voice(voice name)
(staff name) -+ (word)
(voice name) --+ (word)

Every (staff) has a (staff name) that is used to
refer to the staff from other parts of the music
description. The (staff name) is also automati-
cally the name of a voice on the staff, which may
be used in addition to, or in the absence of, any
explicit (voice)s .in the staff description. Like a
braced group of staves, a (staff) has optional
(print names} that are printed to the left of each.
line of the score. .A (staff) written simply as the
keyword tempo marks one of perhaps several po-
sitions in the system at which tempo and re-
hearsal marks are to be placed. These spaces in
the system can be thought of as staves with no
lines; things can be placed on all of them simulta-
neously by referring to the special (staff name}
tempo. If there are no explicit tempo staves in
the system definition, one is assumed to exist
above the first staff in the system.

s i ze {number)
$8

(format) 4
topspace (number)

L I

bottomspace (number)
1 ines (number)

Using (format) in a (staff) definition allows the
user to control ,the appearance of a staff. The key-
word s i z e is followed by a numeric staff size,
the largest being 0, the smallest being 8, and
default is 3. The keywords topspace and
bottomspace specify the amount of white space
above and below the staff. The space is given in

units equal to the staff line spacing for the chosen
staff size. The default for both topspace and
bottomspace is 3. The keyword lines allows
the copyist to specify the number of lines in the
staff; the default, of course, is 5. The number of
lines may be zero, in which case the staff is invis-
ible on the page. It will, however, occupy space,
and notation may be placed on it. This option is
intended for lyrics and perhaps for dynamics in
the center of a grand staff. It is also used im-
plicitly for the special tempo “staves.”

(print names) --f
fullname (text) *
abbreviation (text) 1’

The names of staves and braced groups that
appear in the left margin of the printed score are
specified as (print names). The f ullname is
printed on the first line of the score, and the
abbreviation is printed on all subsequent
lines. If either one or both are omitted, the corre-
sponding places on the score are left empty.

(block) -, block((row)+)
1 block((column)+)

A (block) is a rectangular chunk of score that
includes all the staves of the system, vertically,
and one or more measures, horizontally. The
measures of a (block) may be filled in either row
by row or column by column, whichever is more
appropriate musically.

(row) --+
(voice name)((measure entry)+)

(measure entry) +
measure((measure))

If a (block) is to be filled in row by row, the
rows, which correspond to voices, can be supplied
in any order. Each (row) begins with a (voice
name); following the (voice name) are the
(measure)s that belong to that voice in left-to-
right order. The (row) with the largest number of
measures defines the width of the (block), and
any (row)s that have fewer (measure)s are given
trailing empty measures to make all (row)s the
same length in the {block).

{column) + measure((voice entry)+)
(voice entry} + (voice name){{ measure))

If a (block) is to be filled in column by column,
the columns must be supplied in left-to-right or-
der. Within a column, which is always one mea-
sure wide, the measures may be supplied in any

390 Conlmullicatiom of the ACM May 1986 Volume 29 Number 5

Computing Practices

order. Each (measure) with a (column) is pre-
fixed by a (voice name), and any voices that are
not mentioned are left empty in that column. The
width of the (block) is the number of (column)s
in the block.

(measure) ---f (group)+
(group) ---, (chord)

1 (local change)
1 (global change)
I (group head)+((grow)+)

A (measure) in its simplest form is just a series
of notes, chords. and rests, all of which are in-
stances of the nonterminal (chord), which is de-
scribed below. The total duration of these notes,
chords, and rests should add up to the duration of
a measure. The music-printing system will warn
users about violations of this rule, but will not
prevent the music from being set. In addition to
notes, sotie measures will contain changes of key
signature, clef, etc., which typically occupy space
in the measure, but do not contribute to the dura-
tion of the measure. These changes are instances
of the nonterminals (local change) or (global
change), depending on whether their effect is
over a single staff or the entire system. The third
kind of object that can occur in a (measure) is a
(group), which itself most likely contains several
notes. A (group) describes a series of notes that
are grouped together musically, for example, with
beams or slurs. The (group head) indicates the
kind of group, and because notes may be both
beamed and slurred, among other things, it is pos-
sible to attach several (group head)s to one
(group).
(group head) + longgrace

lshortgrace
1 multiple

(number):(number)
1 stemsup
lstemsdown
lstemsboth
I beam

[(beam shape)]
lprimarybeam

[(beam shape)]
I slur

[(slur shape)]
1 tie

[(slur shape)]
1 crest

[(staff degree)]
1 dim

[(staff degree)]

I overlay
(overlay shape)

(overlay shape) + [start(text)]

[stop(text)]
[(staff degree)]

(beam shape) + (staff degree) -
(staff degree)

(slur shape) + [(staff degree) -]
*(staff degree)

A (group head) can indicate-with the key-
words longgrace and shortgrace-whether
the notes enclosed in the (group) are long or
short grace notes. In either of these cases, the
notes of the group are set in the proper small size
according to their durations, but the full grace
note group contributes no duration to the enclos-
ing (group) or (measure).

A (group) headed by multiple occupies a du-
ratiqn reduced by the ratio following the key-
word. In addition, the notes of the group are
bracketed, if necessary, and the first number of
the ratio is printed with the group. For example,
multiple 3 : 2 defines a triplet. The total dura-
tion of the notes within a multiple group must
be a multiple of the first note of the ratio.

The keywords stemsup, stemsdown, and
stemsboth indicate the direction in which
stems should point in the group. The default state
of affairs is stemsboth, indicating that stem di-
rections depend on the staff degree of the note
heads. These can be nested, so that the copyist
can create a temporary region of stemsboth
within a larger region of stemsup.

The keyword beam means that the grouped
notes should be beamed together, where the
number of beams is determined by the durations
of the notes within the group. Likewise, the key-
word slur indicates that the notes should be en-
closed in a slur symbol. A group beginning with
tie is similar to slur except that all chords
within it must be the same and that the notation
produced follows the convention for ties.

The keyword primarybeam is used to enclose
several beam groups, indicating that the primary
beam of the several groups should continue from
one group to the next. If pr imarybeam has a
(beam shape), the enclosed beams may not have
one: their shape is forced by the primary beam.

The keywords crest and diin construct the
appropriately extended wedge-shaped symbols
that will span the grouped notes.

May 1986 Volume 29 Number 5 Communications of the ACM 399

Computiiig Practices

The keyword overlay introduces any
other extended dynamic or tempo mark. The
(,overlay shape) allows the composer to fully de-
fine the symbol by giving starting text, ending
text, and the type of leader with which to connect
them.

For crest, dim, and overlay, the figure is
placed under the staff unless its position is indi-
cated explicitly by (staff degree).

The optional (beam shape) and (slur shape)
fields exist to allow the copyist to force beams,
slurs, and ties into shapes or positions that differ
from the ones the music-printing system would
choose. A (beam shape) consists of two (staff
degreejs, which are taken to be the left- and
right-end points of the beam farthest from the
note heads. The beam will connect these two
points, and the stems will stretch or shrink as
necessary to reach the beam. A (slur shape) con-
sists of a series of one or more (staff degree)s,
which are taken to be evenly spaced points
through which the slur or tie should pass.

(chord) + ((duration);

(text) (stafi degree) *
(pitch) 1

[;((text)(staff degree))+)
1 ((duration))
I((duration)null)

(duration) + (integer).*
(staff degree) + (number}

A (chord) may represent more than its name
implies. In its full generality, a (chord) defines a
vertical stack of symbols that may or may not be
connected by a stem. The information after the
first ; lists the symbols (and their staff positions)
to be connected by a stem; $3 stem, however, is
only present if it is appropriate for the (duration).
This field is used for note heads, primarily, and
the notation of (pitch) is provided to simplify
this. The information after l.he second, ; lists addi-
tional symbols th,at are to be present, but not con-
nected to the stem. This fie1.d is used for accents
and lyrics. Two special cases have their own syn-
tax-rests and null rests. A (chord) consisting
only of a (duration) in parentheses generates a
rest, whereas the form containing the word null
generates nothi.ng but the right amount of empty
space for the given duration.

A (duration) may be zero or any power of two,
followed by any n.umber of dots (periods). A
(chord) with a duration of zero contributes noth-
ing to the duration of the enclosing group, and

dots in this context change nothing. A nonzero
duration indicates the kind of note head to be
printed and the presence or absence of a stem:
1 for a whole note, 2 for a half note, 4 for a
quarter note, etc. Dots after these duration values
add to the note’s duration in the conventional
way.

A (staff degree) is a number indicating the
number of staff spaces above or below the center
line of the staff, at which the associated symbol
should appear. Positive numbers mean above, and
negative numbers mean below. If the staff has an
even number of lines, the “center” line is the
lower of the two central lines. If the staff has no
lines, distances are measured from the center of
the space occupied by the staff.

(number) sharps

trebleclef

tenorc lef
percussionclef

1 begin{ group name)

((grow head)1 I
(end(group name)

(group name) -+ (word)

A (local change) changes the key signature or
the clef of the current staff, or begins or ends a
(group) in the current voice. The latter option
allows groups to overlap without being nested,
and to cross bar lines.

A key signature may be either a standard pat-
tern of sharps or flats, in which case one of the
first two choices is used, or it may be any pattern
of sharps, flats, and naturals, in which case they
are given as an explicit list of pitches. A clef must
be specified before a key signature. Any one of
the five standard clefs may be chosen by name.
This may someday become a special case of a
more general mechanism.

Note that a mismatched group, where, for ex-
ample, a slur begins in one measure and ends in
the next, is treated syntactically as a pair of (local
change)s, the first a begin and the second an
end.

(global change) -+
meter(number)/(number)

May 1986 Volume 29 Number 5

lbarline

double
final
leftrepeat
righkkepeat
rightleftrepeat
dotted

A (global change) may appehr in any staff, but
its effect is to make a change to all the staves in
the system. The keyword meter introduces a
new meter signature across the entire system and
must be followed by the two numbers of the sig-
nature separated by a slash; the second number of
the pair must be a power of two. A bar line
occurring at the beginning or end of a measure
changes the bar line at that point across the
whole system from the standard single line to one
of the more complex symbols. If bar 1 ine ap-
pears in the middle of a measdre, an extra bar
line of the chosen form appears in every staff.

(pitch) + (note name)[(register)]
(note name) ---* (simple note)

J (discretionary
accidental}

1 (mandatory accidental)
(register) + (number)

A (pitch) that is a (mandatory accidental) is
printed as a note with an accidental sign, regard-
less df whether or not the accidental would be
conventionally required. A (pitch) that is a
(discretionary accidental) is printed with or
without an accidental sign according to the con-
vention that accidentals influence the pitch of all
notes of the same register until the end of the
measure. A (simple note) is printed without an
accidental and is interpreted as the proper pitch
according to the same convention. The three
kinds of note names are tokens of the language,
and they are described syntactically in the section
on microsyntax.

A (register) may be any number from 0
through 9, where ~4 refers to middle C. If the
(register) is omitted frdm a (pitch), and the
(pitch) is Alone of the first note in a (chord), the
register number is inferred to be the one that
creates the smallest diatonic interval between the
current note and the first note of the previous
(chord). If the (pitch) is the second or subse-
quent (pitch) in a (chord), then the (register) is
chosen to create the smallest interval with the
previous note in the same (chord). The (regis-
ter)s may be omitted from several successive
(chord)s, but the first (chord) of any (row) or
(voice entry)must have explicit (register)s.

Conzpufir~g Pracficrs

Acknowledgmenls. I would like to thank Dean
Roush for the musical expertise, and The Ohio
State University and the National Science Foun-
dation for the financial means to undertake this
project.

REFERENCES
I. Byrd. D. A syster~ for music printing by computer. Co~r~put. Hum

8 (May 1974). A description of the SMUT music-printing system.
2. Ericson. R.F. The DARMS project: A status report. Conrpuf. Hum.

9 (Nov. 1975). A discussion of the design and potential uses of
the DARMS music-description language.

3. Gomberg. D.A. A computer-oriented system for music printing.
Cornput. Hum II (Mar. 1977). A discussion of the problems of
representing the conventions of musical notation in computer
algorithms.

4. Kernigltan. B. PIC-A language for typesetting graphics. Softw.
Pratt. Exper. 12. 1 (Jan. 1982). A discussion of a “graphics-
description language.”

5. Knuth. D.E. TEX nrld Metafovf. Digital Press. Bedford. Mass., 1979.
A broad discussion of computer typography. including some-
what obsolete sections on ‘I?$ and Metafont. The current ver-
sion of TEx is documented in The TDbook 161, and documenta-
tion for the recently released version of Metafont is still in prep-
aration.

6. Knuth. D.E. The T&Xbuok. Addison-Wesley. Reading, Mass.. 1984.
Documentation for themY text-formatting system.

7. Maxwell. J.T.. and Omstein. SM. Mockingbird: A composer’s
amanuensis. Byte 9 [Jan. 1984). A discussion of an interactive
and graphical computer system for music composition.

8. Plass. M.F. Optimal pagination techniques for automatic typeset-
ting systems. Tech. Rep. CS870. Computer Science Dept., Stan-
ford Univ., Calif.. 1981. A study of algorithms for automatically
breaking documents into aesthetically pleasing pages.

9. Professimal Cun~poser. Mark of the Unicorn. Cambridge. Mass..
1985. A computer program for the Apple Macintosh that t~ses
interactive graphics for preparing musical scores.

10. Reid. B.K. Scribe: A document specification language and its
compiler. Tech. Rep. CMU-CS-81.100. Dept. of Computer Sci-
ence. Carnegie-Mellon Univ.. Pittsburgh. Pa., 1980. A discussion
of the philosophy behind the Scribe text-formatting system.

11. Ross, T. Tlrr Arf of Music Eqravirq md Processiq. Hansen Books.
1970. A detailed tutorial on the conventions of music typogra-
phy.

12. Scribe Docunrer~l Productim Sysfenl User Mamu/. Unllogic. Pitts-
burgh. Pa.. 1984. Documentation foi the Scribe text-formatting
system.

13. Smith. L.C. Editing and printing music by computer. /. Music
TJxw~ 17, 2 (1973). A discussion of Smith’s music-printing
system.

CR Categories and Subje’ct Descriptors: D.3.2 (Programming Lan-
guages]: Language Classifications--,lorlprocpdural languages: H.3.m
[Information Storage and Retrieval]: Miscellaneous: 1.7.2 [Text
Processing]: Document Preparation--fornrat am? rmfatiorz. /a~~a~?s:
I.5 [Arts and Humanities]: music

General Terms: Design, Human Factors. Languages
Additional Key Words and Phrases: computer-readable musical

scores. music printing

Received 10/85. accepted l/86

Author’s Present Address: John S. Courlay. Dept. of Computer and
Information Science. The Ohio State University. 2036 Neil Avenue
Mall, Columbus. OH 43210: network addresses: gourlay@ohio-
state.arpa [ARPANET]. cbosgd!osu-eddie!gourlay (UUCP).

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage. the ACM copyright notice and the title of the
publication and its date appear. and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise. or to republish. requires a fee and/or specific permission.

May 1986 Volumr 29 Number 5 Cornttlunicatiorls of the ACM 401

