
Proceedings of the APL 2001 Conference

Correctly Detecting Intr insic Type Errors
in Typeless Languages Such as MATLAB a

Pramod G. Joisha and Prithviraj Banerjee
Center for Parallel and Distributed Computing

Electrical and Computer Engineering Department
Technological Institute

2145 Sheridan Road, Northwestern University, IL 60208--3118.
Phone: (847) 467-4610, Fax: (847) 491-4455

Email: [pjoisha, banerjee]@ece.nwu.edu

A b s t r a c t
Among the main impediments that languages such

as MATLAB and APL present to a compiler is the
lack of an explicit declaration for a variable's type, The
deterrninadon of this important attribute could allow a
compiler to generate more effident code, and is a
problem that has been extensively studied in the past.
This paper revisits this problem but unlike prior
efforts, the objective is a uniform approach to type
estimation that also accommodates type incorrect
programs in a way that facilitates stronger type error
detection through the exact localization of the type
error at run time. We also show how our methodology
makes it possible to further reduce the run-time
overhead due to type eonformability checking. The
techniques are clearly demonstrated by applying them
to deduce the intrinsic types of program variables in
the MATLAB language.

1 I n t r o d u c t i o n
I f a compiler could predict the range of values and

shapes that program variables take on during

Permission to make digital or hard copies of all or part o f this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage, and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.

APL01, 06101, New Haven CT
0 2 0 0 1 A C M 1-58113-419-3 10010008 $5.00

execution, simpler and more effident code could be
generated to carry out the operations in the program.
For instance, if the statement z c ~ a + b occurred
somewhere in a MATLAB 3 program and if the
compiler could establish that both a and b are always
bound to scalar-shaped integer values in every
execution of this statement, then a simple machine
instruction that adds the values o f a and b could be
generated, rather than an invocation to a generalized
array addition subroutine. Such an inference would
also be beneficial storage-wise because it would permit
the compiler to statically allocate a single word for the
result c instead of having to overestimate c as being,
say a double-word result, or having to bind e to some
dynamically allocated storage. Thus, in programming
languages such as MATLAB and APL that lack
declarations, inferring the attribute of type is dearly
desirable from the viewpoint of producing an efficient
translation of the source.

This paper presents a scheme to automatically
infer the types of program variables in dynarnically
typed languages such as MATLAB and APL. The
presentation centers on the MATLAB language, which
was primarily chosen on account of the immense (and
still growing) popularity that it enjoys in the
programming community.

The difference between our work and previous
efforts is its ability to exact~ loca~ze a type error, when
one does occur at run time. By "exactly localizing' a
type error, we mean allowing program execution to
condnue ~cc~rJful.~ until the occurrence of the type
error, at which point execution is terminated. Consider

t This research was supported by DARPA under Contract
F30602--98--2-0144.

2 The symbol , - will be used to denote an assignment
operation.

MATLAB is a registered trademark o f The MathWorks,
Inc.

Correctl7 Detecting Zntrinsic Type Errors in Typeless Languages such as NA TLAB 7

http://crossmark.crossref.org/dialog/?doi=10.1145%2F570406.570408&domain=pdf&date_stamp=2000-12-01

Proceedings of the APL 2001 Conference

a ptogzarn .P whose type co~ectness cannot be
established statically. Previous approaches will enable
stadc type estimates for all the variables in the
pro~arn that arc bound to be honored at run time
along every type-correct execution path in P .
However, i f a particular type-incorrect execution path
is exercised, it is not clear how the static inferences
will affect program execution. Will a type error be
detected, and if so, does the detection exactly localize
the type error in the sense stated earlier? The capability
to localize a type error is desirable because it would
allow the program to execute exactly as written and
thereby facilitate stronger debugging support. This
capability would also benefit system-critical software,
where premature code abortion on some input data
may be an ill-advised option. The focus of this work is
to investigate the additions necessary to previously
proposed lattice-based techniques so as to encompass
type incorrect prograrns and to also permit the precise
localization o f tun-time type errors. In addition, we
also show how our methods enable a reduction in the
type conforrnability checking overhead through the
exploitation o f the monotonicity property o f the type
functions involved, and through the appUcation of
well-known compiler optimizadons such as loop
peeling.

The rest of this paper is organized as follows. In
secdon 2, wc describe previous research that forms the
basis of our work. The necessary extensions to handle
type errors correctly, along with a description and an
informal justification o f the modified type
determination process, are provided in section 3. This
is followed in section 4 by an actual application o f the
techniques to the problem of intrinsic type estimation
in MATLAB. The fact that previous approaches lack
the ability to predsely localize type errors, even if they
do manage to detect one, is shown in secdon 5. We
then discuss how the overhead due to type
confomaability checking can be reduced by our
scheme in section 6. Other research efforts in the area
o f type determination are mentioned in section 7.
Finally, we conclude the paper in secdon 8.

2 Lat t ices for T y p e
D e t e r m i n a t i o n

An oft-cited work in the area o f type estimation is
that due to Kaplan and Ullman [9]. They proposed a
mathematical framework based on the theory of
lattices to automatically infer the types o f variables in a
model o f computation that abstracted programming
languages such as APL, SETL and SNOBOL. Their

8

framewoek postulates the existence of a lattice [15] T
of types, chosen by the compiler designer. The
objective is to determine statically a type that
subsumes the actual run-time type as #gh@ a~possible. A
type t is said to "subsume" a type s i f all dam
representable by s is also representable by t. A case
in point is the C O M P L E X type in the MATLAB
language, which has a value range that numerically
contains the value range of the REAL type in the
language. The motivation behind using a lamce is that
a type lower down in the lattice hierarchy can bc safdy
replaced by a type higher up without compromising
program correctness+. The need to move down the
lattice is because dements higher up tend to be more
expensive, in terms of execution time and memory
costs, than elements lower down. For example, the

C O M P L E X type typically requires a t least twice the
execution time and storage space as the REAL type in
MATLAB. By making the inference as dose as
possible to the actual tun-time type, the approach
attempts to optimize on the program's operational and
storage requirements.

2..I' O v e r v / e w o f t he ear//er f r a m e w o r k
Formally, if a and t are two types in a latdcc of

types T, the join of s and t, denoted by sV#,
represents the '+smallest" type that subsumes both s
and #. By this definition, any other v/pc that subsurncs
s and t also subsumes aV t. The meet of s and t,
denoted by s ^ t , is the "largest" type whose value
range is contained within the value ranges o f both s
and ~.

Type determination in the framework begins at
the level of assignment statements. Consider an
assignment statement

Z~- e(.,¥;, .,~,..., .,,t~);

where Z and X,(1 < i < h) are program variables, and

where O denotes a h-ary language operator. From
the semantics o f O, it may be possible to determine
the type o f Z , at least conservatively, given only the
types ~. of the operands ~ . In such cases, the type
semantics of O could be modeled by a typefuncIion To
that maps the set T + into the set T . Type functions
such as To are often charact~ized as j~rward Iype

functions because they indicate what the type o f the
result should be, given the types o f the arguments. For

4 Phrases such as "higher up" and "lower down" are with
reference to the underlying partial order. For instance, a
type t is said to be higher up in the lattice with respect to
atype s i f s< t.

Pramod G. .loisha and Pr/thviraj Banerjee

Proceedings of the APL 2001 Conference

example, i f we were to consider the array addition
built-in function in MATLAB On infix notation, this
language operator is designated by the symbol +),
adding two operands of type INTEGER and REAL
yields a result whose type is "at most" REAL. We can
thus write 7"+ (INTEGER. REAL) = REAL.

It is also possible that, knowing something about
the type of an operator's result and the types o f its
operands, something more may be deducible about the
types of its operands. For instance, if we knew that the
type of c in the MATLAB statement c ~ a + b was
REAL after the assignment, and if the previous best
estimates for the types o f a and b before the
assignment were COMPLEX and REAL respectively,
then the new best estimate for the type of a before
the assignment becomes REAL. We thus write

(REAL, COMPLEX, REAL) = REAL, where the

notation T~(t , t] , . . . , t ,) represents the new type

estimate for .,YS" before the assignment

in X ~ O(.,.I~, A~,..., ~ .) , given that t is the type of Z

after the assignment and that the t~ s are the respective

previous best type estimates for the X i s before the

assignment. Type functions such as _Z~ that model

these semantics in the backward direction are usually
refe~ed to as back.ward type functions.

Program-wide type determination in [9] consists
o f a series of steps on the program's control-flow
graph (CFG) [12]. In each step, a forward ot backward
type inference, using the forward and backward type
functions, is performed on a node in this flow graph.
A sequence of such steps that spans all the nodes in
the CFG constitutes a forward or backward pass in the
type determination process. The procedure begins
with initial conservative solutions for each variable's
type; these then get successively refined with every
iteration of a forward or baclcward type inference pass.
I t has been shown that for lattices in which the finite
chain condition holds, a finite number of such iterations
produces a safe solution that cannot be improved
upon further, and that is in some sense an optimal
solution to the type determination problem [9].

2. 2 Requirements
Crucial to the success of the Kaplan and Ullman

approach is the satisfaction of two conditions:

Postulate 1. Finite Chain Condit ion
There are no infinite sequences of elements in
.7" that are related by the lattice's pardal order

_<.. This condition is necessary for the initially
chosen conservative solution to converge to a
fixed point in a finite number o f forward or
backward type inference steps.

Postulate 2. Monotonicity Condition
The type functions are monotonic with respect to
the defined lattice T . For the forward type
funcdon ~8, monotonicity implies that

T O (t l , t z, . . . , t k) _< T e (tl, t'2,...,t'~) ,

i f t i _<t; forall l_<i_<k

Intuitively, monotonicity for the forward type
function means that the more we know about

the types o f the X i s, the more we will know

about the type o f O(X1, X 2 , . . . , X k) .

The above two conditions are sufficient in that if a
lattice o f types can be defined that satisfies them, then
such a lattice will be a suitable device for the purposes
of type estimation.

3 Detect ion of Type Errors
In the framework presented in [9], the important

issue of type incorrect programs was not explicitly
dealt with. That is, programs were considered to be
type correct to start with, so that the greatest dement
in the type lattice, which was assumed to comprise
only "legal" types, formed a suitable initial solution for
the type determination problem. Though the
framework in [9] could be used on general programs
by assuming them to be type correct and by then
inserting code that enforces the static type estimates
during program execution, such an approach is
assured to work fine only if the program turns out to
be type correct at run time. I f the program turns out
to be type incorrect, it is not clear whether the static
inferences will continue to hold, and if they do not,
whether the enforcing code will allow program
execution to proceed successfully until the point of
occurrence o f the type error. The extensions described
in this section are meant to address this important
issue.

3. I Legal and Illega/ Types
The first consideration should be the ability to

differentiate between type correct and type incorrect

Correctly Detecting fnCr/nsic Type Errors in Typeless Languages such as MA ?"LAB 9

Proceedings of the APL 2001 Conference

programs. We do so by regarding two separate sets o f
types, L , and I t , which represent legal and "illegal"
types respectively. A legal type is basically the type that
a variable can assume after a successful assignment at
program execution time. The term type is used here in
the mos t general sense - - it represents a colkaion of
data that have been organized together for reasons o f
logical similarity or mere convenience. Illegal types, on
the other hand, are abstractions meant to signify type
errors. Since the partial order that underlies a type
lattice indicates a "subsumes" relationship, legal types
should no t be comparable by it to illegal types. The
reason for this is that reclationships such as l_< i or
i_< / , where I denotes a legal type and i denotes an

illegal type, would contradict program correctness as
we go up the lattice. Consequently, a bounabd type
lattice s that is serviceable even in the presence o f type
incorrect programs should have the general form
shown in Figure 1.

F i g u r e 1: Layout o f a Type Lattice Usable in the
Presence o f Type Incorrect Programs

In Figure 1, the shaded regions represent lattice
points in the legal and illegal type sets. The greatest
and least elements o f the lattice, namely 1 and 0, do
not depict a particular legal or illegal type and are
needed only to form a lattice out o f L r and I t . In a
set-theoretic sense, the mos t general type 1 could be
thought o f as £ r O ./r, while the mos t restrictive type
0 could be thought o f as the empty set. In terms o f an
interpretation, 0 could be regarded as the type o f a
program variable that is yet to be assigned a value.

Without loss o f generality, we can suppose that
there exists a single lattice point in L r , say ~i , that
subsumes every other legal type in Figure 1. This is
because, i f such an d e m e n t does no t exist, the lattice
can always be extended through the introduction o f a
new legal type ,6 that subsumes all the maxima/legal
types in LT. (We call a legal type / maximal i f there
exists no other legal type 2 such that / < 2 .) However,

5 Bounded lattices am lattices that have both a greatest
and a least element [15]. It is easy to show that any lattice
that satisfies Postulate 1 must be bounded.

since ~i may not be mappahie to any useful machine
representation that permits the efficient manipulation
of objects belonging to that type by a computer , we
assume the following:

Postulate 3. A Mappable largest Legal Type
The largest among the legal types in L~ enjoys an

efficient machine representation.

Though the requirement o f a mappabie largest
legal type is no t essential, its fulfillment would be
helpful to a compiler writer since it would allow the
generation of efficient code whenever the result o f an
inference is a legal type. This is because even if a
particular inferred legal type lacks an efficient machine
representation, anodaer legal type that is higher up in
the lattice and that does have an efficient machine
representation can always be used in its place. Such a
substitution is valid because program correctness is
preserved as we move up the latdce. What Postulate 3
does is to make the prospect o f finding such a legal
type a surety. This is no t to say that a type lattice in
which Postulate 3 does no t hold cannot be used for
type estimation. In fact, in [3], a latdce o f A P L legal
intrinsic types in which the greatest element does no t
have an efficient machine representation is used. In
such cases, i f the static inference is the greatest legal
type, the emitted code may have to rely on run-t ime
resolution to carry out the associated operadon. At run
time, a switch-like construct selects the correct
operation to invoke since by then, the exact types of
the opcrands will bc known. The difference is of
course between a few mach.inc instructions that
operate directly on machine-representable data objects
- - such as integer or floating-point numbers -- and
the execution of conditional code, along with the
maintcnancc of additional bookkeeping information,
to achieve run-time resolution.

3.2 Type assertions
A problem that the lattice in Figure 1 poses to a

compiler writer is that a type inference is useful so
long as it is 0 or falls onto any o f the latdce points in
LT and IT . This is because a legal type inference
could be used to produce an e f f ident t ranshfion o f
the source, while an illegal type inference could be
used to flag program error. However, i f the result o f a
static type inference is 1, then nothing useful is gained
since we are back where we started: that a program
variable's type could be either legal or illegal. The
possibility o f 1 being the result o f a type inference
cannot be ruled out since wi thout any advance
knowledge on program correctness, the process o f

10 Pramod G. .loisha and Prithviraj Banerjee

Proceedings of the APL 2001 Conference

type estimation would begin with 1 as the initial
conservative solution. In fact, in dynamically typed
languages such as MATLAB and APL, type
correctness may be specific to an execution instance.
The question therefore boils down to what needs to
be done in order to get around this lack of complete
static information in a reasonably efficient manner.

Our solution to this problem involves preceding
ever T assignment statement of the form

,5': , Z , - 0(,t% X~,...,,t~) ;

in the original code fragment by a 9rpe assertion:

,..e: _<

,.s"' : Z ~ O(.,15, ..I%..., .,I~)

The function call in statement S" tests at run rime
whether the condition

(m))_< is if so,

execution is al]owcd to continue and if not, execution
is terminated. The notation ~,,(.,.l(i) stands for the

most restrictive type of the program variable X,. at the
particular point ,5" in the program and can be
established at run time by inspecting .if7 when control
is at that point in the program ~. No changes have to be
made to the framework in [9] to handle the inserted
assert calls since they can be regarded as "dummy"
assignments in which the assigned variables are not
subsequentiy used. Other aspects of the framework,
such as its treatment of confluence points in the CFG,
remain unchanged.

Conceptually, type assertions enable us to assume
that the reaching types for every program variable are
legal at every point in the program. Thus, instead of 1,
we can begin with ~ as the initial type solution.
Physically, a type assertion is the type conforrnability
code of a language operator, in-lined just before its
invocation at the call-site. By decoupling an operator's
type checking semantics this way, it may bc possible to
lessen the overall overhead due to type conformability
checking (see section 6).

3.2.1 F o r w a r d t y p e i n f e r e n c e

For the sake of simplicity, we assume that every
node in the control-flow graph consists of either a

The most restrictive type is the exact type of the datum
in question. It could be at th© granularity of the type
system at hand, or even lower. For example, the most
restrictive intrinsic type for the real number 0:1 could be
REAL in the MATLAB type system, or the type "real
numbers that lie between 0 and 1." It could also be the
type o f a particular real number (i.e., 0:1).

Co/7-ect/y " Dez'~cHi,2g Znz~tinsic Type E/rots in Typeless Languages such as HA TLAB

type assertion or an assignment statement. Let r~V)

be a etatic estimate of the type o f a program variable V
immeehate~ n39er the node p is executed in this flow
graph. Let Pf(/O be a static estimate of the type of a

program variable V when control reaches the node q.
I f p is the only predecessor of q in the CFG, then
~-,(~ would be an acceptable pick for p , (~ .

However, a particular node could have more titan one
predecessor. To cover such situations, we determine
p~(/O to be the maximum of the type estimates at all

the predecessor nodes p:

&(tO = V (1)

Now suppose that the flow graph node q
contains the type check
ass, rt(TeC¢~XO,~f(X2), ...,{9(A~)) < 4). We can make a

forward type inference through the assertion to arrive
at static type estimates ~g(V) for every V at the node.

This is because the asset/ invocation basically
establishes constraints on the types o f the ASs qt~ertbe
ca~l, so that the type o f O(XhA<z,...,Xi) in the

following statement is always legal Thus, such a
forward type inference should employ the backward
type function . 7~(h,...) since new type estimates for

the .,,Ks that satisfy the assertion would have to be
determined. We arrive at these estimates
conservatively:

'pt(fV~ if V ~ ~17 for all 1 _< j _< J[;

~ (/ / ~ =" A .7~' (~ , / , , (.xi). 1~ Aq) /~,(~I:0) otherwise. (2)

all j'such

that V =

Correctness. We need to show that
~9(~<r~(V) will hold true at node q, i f

ee~(~ _< ¢p(/l 0 holds true at each predecessor node p .

We show this by first demonstrating that
~9(~ _< p~(V) will be true for all V at q. Because

control will always reach the node ¢ from one of its
predecessor nodes p , the most restrictive type ¢~(V~

at ¢ can at most be the maximum of the most
restrictive types at each of the predecessors p :

¢(r3-< V ~(V) (3)
aU predecessor
nodes p

11

Proceedings of the APL 2001 Conference

We are also given that ~v(l 0 < 'r~V) is true at each

predecessor node p . Therefore, from the
monotonieity o f the join operator V

v < v
all predeeessar - - all p r e t e s t
tip des p nodmr p

From Equation (1), the last constraint becomes

all p r e ~ l © ~
Imdesl~

Inequalities (3) and (4) thus lead to

~,(rO _< p,(V). (5)

We now need to consider the two scenarios that
arise from V appearing or not appearing in the type
assertion. I f V does not appear in the asset/call, the
claim q'~(V) < ~-~(~ immediately follows from

Inequality (5) and Equation (2). Therefore, suppose
that V does appear in the assert caU. From the
semantics of the call, an estimate for "~(~ after the

assertion would be

A .~' (~, ~.,]'z), ...) ~'~+,.t'~.)),
that V=.I~

However, from the definition of ~ V), the following
should hold after the assertion:

e(~_< A .T~(~ ,e~) ,e~-X ,) , . - . , ' ~ -)) . (6)
all ./such
that F= .~ .

From Inequality (5), we also have 9~Xi) < p~A~ for

all 1 < i < k. Hence, from the monotonicides of

~o(~,...) and the meet operator A, we obtain

A
all i such
that ~ . , I ~

A (.,n)).
al l . l mad1
fltat g=.,~}

Therefore, from Inequality (6) and Equation (2), we
get ~ V) _< ~-~(~.

I f the flow graph node ¢ contains an assignment
statement, the forward type inference is
straightforward and is shown below:

if v = z ,

~-~(V) = [p~(/'O o t h e r w i s e . (7)

Correctrmss. Once again, we need to show that
• ~ V) _< 7~(V) will hold true at node ¢, if

%,(~ < ¢ ~ t 0 holds true at each predecessor node t7.

As before, we can show that Inequality (5) is satisfied
at node 9. Therefore, if V is not, Z , e , (~ _< ~-~(

tribally follows from Equation (7). I f V is Z , then
from the definition of 9~(~,

Since ~9(.,~) _< py(.A~ for all 1 < i < h , we have from

the monotonicity of To,

ro (r , (aq) , _< ...,

Therefore, from Inequality (8) and Equation (7), we
can conclude mat < ,-,(tO.

3.2.2 B a c k w a r d t y p e i n f e r e n c e

For the as signment statement
Z ~ O(Z1, Aq,..-, Xi.), a backward type inference arises

by considering the context in which Z is subsequent~
used. However, because every such use is preceded by
an assert call, no useful inferences about the type of Z
can be made in the backward direction. The reason for
this is that a type check of the form
aaserz~.7"o(..., %(Z),...) _< ll) only makes guarantees

regarding the type of Z after the call, not before. I f
those guarantees are not met at run time, execution
halts at the assertion.

21~ : a 6..-- . . .

~: b *--~ a

F igure 2. An APL Code Fragment

. / ~ : ~ ¢ - . - . . .

:t>Assert that the type of a

is a scalar nonnegative integer.

S" :b ~--~ a

Figure 3: An APL code fragment
bedded-Type Checking Code

with em-

As an example, consider the APL code fragment
shown in Figure 2. By noting that the ' primitive
expects a scalar nonnegative integer as its argument,
we can deduce that the value of a computed in the
first line must be of dais type. However, such an

t

12 Pramod G. 2oisha and Prithviraj Banedee

Proceedings of the APL 200:1. Conference

inference is valid only if the code fragment is given to
be type correct. Even if the type checking code
associated with statement ,5' were considered explidfly
as shown in Figure 3, we still cannot hope to deduce
useful type information, simply because the assertion
may not hold immediately after statement R . That is,
a may not be a scalar normegative integer between
statements R and ,5" in Figure 3. Thus, if a program
is not given to be type correct to start with, no useful
type information can be derived via a backward
inference. To arrive at a type solution, we must
therefore rely on only forward type inferences.

3.2.3 P r o g r a m - w i d e t y p e i n f e r e n c e

Program-wide type determination begins with
conservative type estimates r , (~ for every program

va~able V at every node r of the CFG. Because of
the embedded type assertions, h is a legitimate
starting estimate. The procedure then performs a
forward type inference pars by computing type
estimates at every node using the type estimates at the
predecessor nodes, as discussed in section 3.2.1. It
does not matter how the forwaxd pass traverses the
CFG to accomplish this type estimation because the
type estimates at every node will always be safe. That
is, if the forward pass does not process a node, the old
type estimates at the node, which are given to be safe,
will remain in place, while if a node is visited, the new
type estimates computed at that node will be such that
they continue to be safe. Therefore, a way in which the
forward pass could be implemented is by traversing
the CFG in a dqpth-flrJt or breadth-first fashion,
computing the type estimates at each node along the
way. However, revisiting a node may provide
opportunities for further refinements in the type
estimates.

Because of the finite chain condition and the
monotonicity of the type functions involved, this
improvement will not occur indefinitely and will
eventually teach a stable state. Thus, program-wide
type determination could be performed by repeatedly
applying the forward pass on the CFG until a
fixed-point type estimate is achieved at each node.
Program-wide type estimates for the variables may
then be determined by taking a join of the respective
fixed-point nodal type estimates.

3. 3 Type error Iocal/zat'/on
Consider the assignment statement

,9: Z ~ - O(A~,A~,...,A~);

in the original code fragment and the corresponding
statement pair

s , : _< a);

s " : E ~ - e(x~, x, , . . . , 6.) ;

in the translated version. Suppose that control is
currently at statement ,9 in the original code fragment.
The interpreter would successfully execute this
statement if and o ~ y if
To(9~(Aq),¢,(,Yfi),...,'~A~.)) _< ~. I f it does execute

successfully, then the associated type assertion ,5 n in
the translatecl version would also execute successfully
and control would reach the statement ,5"'. The latter
statement would then execute corrtecdy because the
type of E in ,5'I' was statically estimated to be at least
as large as ÷,(Z).. I f T,(~,(;~),~,(;~), . . . ,~&n.)) :g ~ ,

then a type error would crop up at statement S in the
original code fragment while the corresponding type
assertion in the transhted version would fail. Since this
argument applies to every statement in the original
code fragment, we thus observe that the translated
version will faithfully reproduce the original code's
execution behavior.

A key point to note is that the procedure wiU
produce legal static type estimates even when the
program is always (i.e., under all execution paths) type-
incorrect. The embedded assertions will however
intercept the type error at tun time, allowing the
program to execute successfully until the point o f
occurrence o f the type error. In certain situations, it
may be possible to statically verify that a particular
assertion will never hold at tun time. As an example,
this could happen when the assertion involves the
types of program constants. In such cases, the type
error could be flagged at compile time, giving an
opportunity for the programmer to take immediate
remedial action.

4 A MATLAB Example
To demonstrate the lattice-based type

determination techniques discussed so far, we consideet
the problem of inferring the intrinsic variable types in
a MATLAB program. In particular, we shall examine
the simple, contrived MATLAB code fragment shown
in Figure 4. The code excerpt consists o f a while loop
within which reaching values for the program variables
a and b are added by using the array addition built-in
function. The result is assigned to the program
variable c, which is then operated in the next two
statements by the colon built-in function. We assume
that c and d are not live before the loop.

Correctly DetecOng Intr/nsic Type Errors in Ty#eless Languages such as MA TLAB 13

Proceedings of the APL 2001 Conference

The construction ra : n produces a row vector of
elements that form an arithmetic progression with a
common difference of 1. The starting and ending
values o f this progression are ra' and r a ' + l n ' - r a ' ~

where m' and n' represent the rtm-time realvalues of
m and n respectively. (The construction l : a is
therefore similar to the APL construction z e.

while (...),
c ~ a + #,

a * - 2 : q

d~-- 1 : c,

end;

F igure 4. A Simple M_ATLA_B Code Fragment

In MATLAB, the notion of logical similarity
in the context o f types consists o f a structural aspect
(e.g., a 2 X 3 matrix) and an arithmetic aspect (e.g.,

integers, reals, complexes and so on). These two
aspects are independent o f each other and can be
analyzed in isolation; we call the former the attribute
of .rbape and the latter the attribute of intdnsic type. The
discussion in this section will concern itself with the
problem of intrinsic type estimation in MATLAB,
though the techniques are also applicable to shape
estimation using lattices. An implementation could use
the methodology of this section to arrive at intrinsic
type estimates for the program vaxiablcs and to
translate the source into a version that has the
necessary intrinsic type checks; the translation could
then be subjected to a separate shape inferring phase
that gathers the requisite shape information and then
inserts the needed shape checks. When lattices arc
used for shape determination, rough esdrnates of
shape, such as whether a program variable is a scalar,
row vector, column vector, matrix or an "arbitrary"
array, can be arrived at in the same way intrinsic types
were inferred. These shape estimates may then be used
like intrinsic type estimates to emit code with the
necessary assertions. However, the shape semantics of
language operators in MATLAB and APL often
impose requirements at the granularity of array
extents. For example, the matrix multiply built-in
function in MATLAB (denoted by the infix operator
*) expects at least one operand to be a scala.t, or both
to be matrices such that the extent along the second
dimension of the first operand matches the extent
along the first dimension of the second operand [10].
Any other combination of shapes produces a run-time
error. Figuring out what an array's extents actually ate

is advantageous because it may sanction important
optimizafions such as run-time shape conformab~ty
check reduction, memory preat[ocafion and
scalarization [8]. Alternate approaches that make this
possible and that are based on a shape calculus have
been discussed in [8].

4. I The MA TLAB Intrinsic Type Lattice

For the given code fragment, an appropriate way
of arranging the intrinsic types of MATLAB into a
latdce T is shown in Figure 5, where 0 is the least
element of the lattice and 1 is its greatest element. The
B OOL E AN intrinsic type stands for a 1-bit value m
namely, 0 or 1. The UlNT8 intrinsic type represents
unsigned integer bytes and is primarily intended for
image processing applications [11]. The INTEGER,
REAL and C O M P L E X intrinsic types denote
integers, real numbers and complex numbers
respectively. The artificial intrinsic type N O N R E A L
designates strictly complex numbers - - that is, those
with nonzero imaginary parts. The latdce point i
indicates the illegal intrinsic type, which, as remarked
earlier, is an abstraction meant to express an ill-formed
MATLAB expression. For instance, the colon built-in
funcdon expects the intrinsic types o f both of its
operands to be at most REAL; a NONREAL intrinsic
type causes the run-dine system to complain 1. On
comparing Figures 5 and 1, we observe that
BOOLEAN, UINT8, INTEGER, REAL,
NONREAL and COMPLEX correspond to the legal.
intrinsic types. The ascendancy from BOOLEAN to
COMPLEX, and from N O N R E A L to C O M P L E X
reflects the inclusion of a legal intrinsic type's value
range in the value range of the legal intrinsic type
above it.

4.2 Intr insic Type Functions
Our first task is to cast M.ATLAB's in~insic type

semantics for the array addition and colon built-in
functions into the relevant type functions. The
resulting forward intrinsic type functions are shown in
Tables 1 and 2. In these tables, we use B, U, I, R, N
and C as abbreviations for B O O L E A N , UINTB,
INTEGER, REAL, NONREAL and COMPLEX
respectivdy.

7 A n invocat ion such as 1 : 2 + 3 i , where i is the
imaginary unit, elici ts an alert ('Warning: COLON
arguments must ba real sealars. ') f rom the M A T L A B run-
t ime system.

14 Pramod G. 3oisha and Pdthviraj Bane~ee

Proceedings of the APL 2001 Conference

An important point to note in these tables is that
only the intrinsic type semantics are captured without
any attention to shape. That is, Tables 1 and 2 tell us
how the intrinsic types map, assuming that the
arguments are shape conforming. The formulations
ensure that the illegal intrinsic type i is either
propagated, or generated if the arguments are not
intrinsic-type conforming. Technically, the decision to
propagate the illegal intrinsic type is one of
convenience because reaching types will never be i
due to the preceding type assertions. Generation of
the illegal intrinsic type is however necessary so as to
allow the assertions to detect type errors at run dme.
When one of the operands to the intrinsic type
functions is 0, we have some leeway in choosing the
image of the map; the choices shown in Tables 1 and 2
are such that monotonicity is secured. Observe also
that whenever one (or both) of the operands to the
intrinsic type functions is 1, the outcome is also
usually 1 since nothing can be said about the intrinsic
type of the result except that it could also be either
legal or illegal. When both operands to either of the
intrinsic type functions are C O M P L E X or lower, we
can usually do better.

F igure 5. Th= Latdce]" of Intrinsic Types in MATLAB

0 B U I R N C i 1

0 0 0 0 0 0 0 0 i i

B 0 U I I R N C i 1

U 0 I I I R N C i 1

I 0 I I I R N C i 1

R 0 R R R R N C i 1

N 0 N N N N C C i 1

C 0 C C C C C C i 1

i i I i i i i i i i i

1 i L1 1 1 1 1 1 i 1

Table 1. 7'+ (s,/)

0 B U I R N C s 1

0 0 0 0 0 s i s i

B 0 B U I I ~ 1 z 1

U 0 U U I I z 1 s 1

I 0 i I I I z 1 I 1

R 0 R R R R j 1 s 1

N #" i i i f s i g i

C 1 1 1 1 s 1 ~ 1

i i i i i ~" ~ i s i
1 i 1 1 1 1 1 1

Table 2. T : (8, t)

for example, ~+ (R E A L ; C O M P L E X) = C O M P L E X
since when a real number is added to a complex
number, the result is a complex number. In the
interests of presentation clarity, we do not assume a
particular bit width for the INTEGER, REAL and
COMPLEX intrinsic types. Thus, adding two
INTEGER quantifies will always produce an
INTEGER quantity as indicated in Table 1. However,
because of the stated finite bit widths of the
BOOLEAN and UINT8 intrinsic types, adding a
B O O L E A N to a UINT8 could produce an overflow;
therefore, a safe intrinsic type for the result in this case
is I N T E G E R as shown in TaMe 1.

We also need to consider the backward intrinsic
type functions for the given built-in functions; these
are shown in Tables 3 and 4. The backward intrinsic
type funcdon ~+ (COMPLEX, s,t) can be obtained

from Table 3 because of the relation

.7~(COMPLEX,,, t) = 7~(COMPLEX,t, 8) (9)

Once again, we have some freedom in deciding the
maps of the backward intrinsic type functions when
one of the operands is i, since such a situation will
never occur due to the reaching types being legal at
every point in the program. In fact, the backward
intrinsic-type maps have been so selected so as to
either improve the previous legal estimate o~ produce
C O M P L E X or REAL as the new estimate.

Note that the lattice in Figure 5 sadsfies Postulate
1. By inspection, the backward intrinsic type functions,
along with the forward ones in Tables 1 and 2, can be
ascertained to be monotonic with respect to the latdce
in Figure 5. Hence Postulate 2 is honored. Since the
real and imaginary parts of the COMPLEX intrinsic
type can be manipulated separately, C O M P L E X has
an efficient machine representation thereby enabling

Correctly DetecO~q Ing#nsic Type Emors in Typeless Languages such as MA TLAB i 5

Proceedings of the APL 2001 Conference

0 B U I R N C i 1

0 0 0 0 0 0 0 0 0 0

B B B B B B B B B B

U U U U U U U U U U

I I I I I I I I I I

R R R R R R R R R R

N N N N N N N N N N

C C C C C C C C C C

i C C C C C C C C C

1 C C G C C C C C C

T a b l e 3. ~+ (COMPLEX, s, 0

0 B U R N C i 1

0 0 B U R R R R R

B 0 B U R R R R R

U 0 B U R R R R R

I 0 B U R R R R R

R 0 B U R R R R R

N 0 B U R R R R R

C 0 B I U R R R R R

i 0 B U I R R R R R

1 0 B U R R R R R

Postulate 3

Tab le 4. 7~(COMPLEX s, t)

to hold. We can therefore apply the
techniques o f the previous secdon to arrive at usefial
intrinsic type inferences for the code fragment in
Figure 4, even if it is not given to be type correct.

4. 3 Program- Wide Type Inference
Figure 6 shows the control-flow graph for the

given code excerpt. Execution is assumed to begin at
the "start" node S and end at the "finish" node .F~
Nodes l" , 2" and 3" respectively correspond to the
three assignment statements in Figure 4, while the
associated type assertions, which presumably are
automatically inserted by an interpreter or a compiler,
respectively correspond to the nodes 1', 2' and 3'. We
assume that the forward type inference pass operates
by visiting the nodes in the CFG in a depth-first order;
Figure 6 displays one such traversal using solid arrows.

The process begins with conservative estimates
for the intrinsic types at every node of the flow graph.

At the start node $, these arc
~'~a) = ~',(b) = COMPLEX and

r~c) = ~ - ~ d) = O because only a and b are live on

entry into the code fragment. That is, whenever
control flows through node $, we can always be
assured that the relations ~(a) _< COMPLEX,

%(b) _< COMPLEX, ÷,(c) = 0, and 9~(a) = 0 prevail.

However, at the remaining nodes, the most restrictive
intrinsic type for each program variable can be any
legal value. Therefore, we select G O M P L E X as the
initial safe estimate at these nodes. All o f the initial
estimates are exhibited in Figure 6 to the right o f the
flow graph. Note that UINT8 and B O O L E A N were
used as the most restrictive intrinsic types for the
program constants 2 and I in the assertions at nodes 2'
and 3'.

At the right o f Figure 6 are shown two
applications of the forward type inference pass. A
particular step in an application of the pass computes
the estimates r ~ (~ for every program variable V at a

particular node ¢ in the CFG. Depending on whether
the node contains a type assertion or an assignment
statement, the computations happen in accordance
with Equation (2) or Equation (7). The reaching
estimates pg (~ are used in these computations and

have been calcuhted using Equadon (1); for reasons o f
brevity these calcu.lations have not been explicidy
displayed in the figure. To illustrate one such
calculation, the following are the reaching intrinsic
type estimates at node F o n the first application of the
forward pass:

pF(a) = COMPLEX V INTEGER=COMPLEX,

p ~ b) = COMPLEX V COMPLEX = COMPLEX,

p ~ c) = o v REAL=REAL,

p2r(d) = 0 V INTEGER=INTEGER.

On the second application o f the forward pass, we
arrive at fixed-point intrinsic type estimates at every
node of the CFG; this can be verified by applying the
pass for the third time. By taking the join of the
respective estimates at all o f the CFG nodes, we can
arrive at the program-wide intrinsic type estimate of
C O M P L E X for a, b and e, and a program-wide
intrinsic type esdmate of INTEGER for d. Given no
prior knowledge regarding the type correctness o f the
original code fragrnertt, these are also the best possible
estimates. It should be mentioned here that the

115 Pramod G. .]o/sha and Pr/thv/raj Banedee

P r o c e e d i n g s o f t h e APL 2 0 0 2 C o n f e r e n c e

soludon obtained is to some extent dependent on the

initially chosen estimates at node $. For instance,
Figure 7 shows the nodal estimates when a different
starting solution is picked at $. We note that a
fixed-point solution is achieved after the first
application of the pass and that the nodal estimates of
the fixed-point solution are more conservative than
that in Figure 6; in fact, C O M P L E X becomes the
program- wide intrinsic type estimate for all the
program variables in Figure 7. Thus, selecting the best
initial estimates at node $ is crucial to arriving at good
program-wide type estimates for all the variables.

5 Comparisons
If the code fragment in Figure 4 wcrc type correct,

then the most restrictive intrinsic type for c would be

REAL. Through the use of a backward type inference,
the framework in [9] would determine this. Thus, if
compilation were done a.r.r#~ing the excerpt to be type
correct, the translation would declare c to bc REAL.
However, such a translation will not correctly localize
a type error, when one does occur at run dine. For
example, if the generated code were then executed
with the values 1 + 2 i and 1 + 3 i for a and
respectively, the first statement in the code fragment
will either execute wrongly (because the intrinsic type
of e will not bc "large enough" to accommodate the
expected result2 + 5#~ or will not be executed at all
(due to preceding type checking code anticipating the
type error). In either case, the translated version will
not execute

I
.I
4
!

1
4
1
1
t

I
.!
t
t

4
t

4

d

:l

1

!

t
f

1

1

|

' 1 . I

"wa.l~l = (~ = ~l[L,Jq = I

| [

l !

1tHrum

l L

1 1

1 1

,wOtJ~l

1 =#:a
• n t . f ~ m l ~

~ W =:MLq =l

|

Figure 6. Estimating the Intrinsic Types Using a Depth-First Traversal on the Control-Flow Graph

Correctly" Det~ecHng Zn~rlnsic Type Errors/n Typeless Languages such as MA T1..AB 177

Proceedings of the APL 2001 Conference

~¢

4,

t 1

t. 1
.

l l

t [

1 1

t l

mtM--~.

Figure 7. Intrinsic Type E s d m a t o n with a Different Starting Solution at S

exactly as the original code fragment. ~ However, if
code were generated using our scheme, execution is
guaranteed to proceed successfully until the type
assertion that immediately precedes the second line in
the fragment, thus allowing the type error to be
correctly isolated.

6 Lessening the Run-Time
Type Checking Overhead

Some of the type assertions may be verifiable at
compile time. For instance, consider the type
assertions generated for the example in Figure 4; these
are reprised in Figure 8 and marked by the t> prefix.

If the code fragment in Figure 4 were run through the
MATLAB interpreter with a and b set to 1 + 2i and
1 + 3i respectively, and if the first iteration of the loop
were executed, the run-time system will execute the
assignment to e without a hitch but will complain when
attempting to cornputc 2 : c in the next statement.

When control reaches the first assertion,
~(a) < COMPLEX and ~(b) < COMPLEX arc

guaranteed to be true. Since
T+ (CO MPLEX, COMPLEX) = COMPLEX from

Table 1, we can conclude from the monotonic
property that the first assertion will always hold.
Additionally, since
~ : (BOOLEAN,~(c)) _< T (UINT8,~(c)) from

monotortidty, success at the second assertion implies
success at the third assertion. Eliminating the
redundant assertions will then produce the equivalent
code in Figure 9. Next, from Figures 6 and 7, the
variable a will be o f type I N T E G E R in the statement
c ~ - -a+ b from the second iteration on. Therefore,
the single assertion in Figure 9 need not be executed
beyond the second iteration because if a type error
does occur, it will occur within the first two iterations.
We can therefore apply the loop peeling
transformation [12] to remove the first two iterations

18 Pramod ~ Joisha and Pr/thviraj Banedee

Proceedings of the APL 2001 ConFerence

of the loop into separate code. The result, shown in
Figure 10, produces a loop body that is free of type
checks. Notice that though the type checking
overhead has been pared down to a minimal, a type
error, when one does occur, will still be correctly
localized in Figure 10. The code in Figure 10 can now
be subjected to a shape determination phase to gather
the necessary shape information for further
optirnizations of the translated code [8]. It could also
be executed by an interpreter as an optimized version
of the source program in Figure 4.

while (~est),

c~-a+k,

a ~ - - 2 : q

t> a$~r~ (S,~(~)) _< C)

d+-l:q

end;

Figure 8. With Embedded Type Assemons

while (teat),

ca-a+#,

 8-r4 : (u, _< o)
a ~ - - 2 : ~

d+-l:G

end;

Figure 9. After Eliminating Redundant Type
Assertions

if (test),

c , -a+b ,

a ~ - - 2 : g

dc--l:g

end;

if (test),

e~--a+b,

a ~--- 2 : G

d ~ l : q

end;

while (te~,

e*-a+#.

a ~ 2 : G

d ~ l : g

end;

Figure 10. After Loop Peeling

7 Related W o r k
Previous attempts in the area of type csdmation

for languages such as MATLAB and APL aimed at
determining conservative static estimates under the
implicit assumption that the program was type correct
[1, 9, 5, 3, 6, 13, 4]. In some of these approaches, a
provision for type incorrectness was made by the
argument that run-time type checking code would
ultimately catch a type error when it did occur, though
not necessarily at the point of occurrence (see section
5). It is in that respect that our work chiefly differs
from these previous attempts. Work due to Bauer and
Saal was among the earliest to recognize that a
substantial percentage of the run- time type checks
needed for APL could be avoided by static analysis [1].
They showed how even a simple type determination
scheme could produce significant improvements in
performance. The determination of types through the
use of data-flow analysis was first reported in [14]. The
work in [9] improved on this by providing more
powerful algorithms for type detection. In [5], a type
determination mechanism in a production APL
compiler that emitted Systern/370 assembly code was
described. The inferring occurred in a front-end
compilation process and used a type calculus along
with a global data-flow analyzer. However, the process

CorrecUy Detecting Intrinsic Type Errors in Typeless Languages such as MA TLAB 19

Proceedings of the APL 200:1. Conference

was limited to some extent because when the back-end
compi/adon started, the systeti1 expected user
intervention to resolve the type o f any variable that
was assigned a general type during the front-end
compilation process.

In the work due to Budd [3], a partial ordering of
intrinsic type and shape was used in the type
determination process. Data-flow techniques were
then applied to propagate type inforrnailon across
expressions, statements and procedures. A point of
pragmatic interest in the context of [3], and that was
alluded to in section 3.1, is that the greatest dement in
the intrinsic type lattice used did not have an efficient
machine representation. This impacted the quality of
the generated code when the smile inference was the
greatest dement. The observation that backward type
inferences can be used with only limited success in real
codes was also pointed out in [3].

In the area o f type determination for MATLAB,
an important effort is the FALCON project [6, 7]. In
the FALCON approach, a static inference mechanism
attempts to deduce as much of the intrinsic type
information as possible at compile time, and treats the
intrinsic types of the remaining variables to be
COMPLEX. Matters relating to how the compiled
code performs in the presence of type errors were not
dealt with. Techniques similar to those in [6] have
been used in the Menhir project [4], and in other
MATLAB compilers such as "Otter" [13]. In the case
of Menhir, the system relies on user-provided
annotations called directives when sufficient type
information is lacking.

8 S u m m a r y
In this paper, we presented a scheme using which

the types of program variables in typeless languages
such as MATLAB and APL can be inferred. The
unique advantage of our approach is its ability to also
correctly handle type incorrect programs. In particular,
our scheme provides a stronger type error detection
support than previously proposed methods. In
addition, we also showed how our approach may
empower further reductions in the type conformability
checking overhead. The described techniques are
currently being integrated into the MATCH compiler,
a transhtor that aims on converting MATLAB sources
into code for embedded processors, DSPs and FPGAs
[2].

References
[1] A. M. Bauer and H. J. Saal. "Does APL Really

Need Run-Time Checking?". Software---Practice
and Experience, 4:129--138, 1974.

[2] P. Banerjee, U. N. Shenoy, A. Choudhary, S.
Hauck, C. Bachmann, M. Chang, M. Haldar, P. G.
Joisha, A. Jones, A. Kanhere, A. Nayak, S.
Periyacheri, and M. Walkden. "A M A T L A B
Compiler for Configurable Computing Systems".
Technical Report CPDC--TR--9906--013, Center
for Parallel and Distributed Computing,
Department of Electrical and Computer
Engineering, Northwestern University, Evanston,
IL 60208--3118, USA, September 1999.

[3] T. Budd. An APL Compiler. Springer-Verlag New
York, Inc., New York City, NY 10010, USA,
1988. ISBN 0--387--96643--9.

[4] S. Chanveau and Fi Bodin. "Menhir: A n
Environment for High Performance MATLAB".
Lecture Notes in Computer Science, 1511:27--40,
1998. Proceedings o f the 4th International
Workshop on Languages, Compilers and
Run-Time Systems, Pittsburgh, PA, USA, May
1998.

[5] W.-M. Ching. "Program Analysis and Code
Generation in an APL/370 Compiler". IBM
Journal o f Research and Development, 30(6):594--
602, November 1986.

[6] L. A. De Rose. "Compiler Techniques for
MATLAB Programs". Ph.D. dissertation,
University o f Illinois at Urbana-Champaign,
Depai tment of Computer Science, May 1996.

[7] htrp: / /www.csrd.uiuc.edu/falcon / falcon.htrnl, The
FALCON Project Home Page.

[8] P. G. Joisha, U. N. Shenoy, and P. Banerjee. ".An
Approach to Atray Shape Determination in
MATLAB". Technical Report CPDC--TR--2000--
10--010, Center for Parallel and Distributed
Computing, Department of Electrical and
Computer Engineering, Northwestern University,
Evanston, IL 60208--3118, USA, October 2000.

[9] M. A. Kaplan andJ. D. Ullrnan. " A Scheme for the
Automatic Inference of Variable Types". Journal
of the ACM, 27(1):128--145, January 1980.

[10] The MathWorks, Inc., 24 Prime Park Way,
Nafick, MA 01760--1500, USA. MATLAB---The
Language of Technical Computing, January 1997.
Using MATLAB (Version 5).

20 Pramod ~ Joisha and Prithviraj Banedee

Proceedings of the APL 2001 Conference

[11] The MathWorks, Inc., 3 Apple Hill Drive, Natick,
MA 01760--2098, USA. Image Processing
Toolbox: For Use with MATLAB, September
2000. User's Guide (Version 2).

[12] S. S. Muchn.ick. Advanced Compiler Design and
Implementation. Morgan Kaufmann Publishers,
Inc., San Francisco, CA 94104, USA, 1997. ISBN
1-55860--320--4.

[13] M. J. Quinn, A. Malishevslry, N. Seelarn, and Y.
Zhao. "Preliminary Results from a Parallel
MATLAB Compiler". In the Proceedings of the
12th International Parallel Processing Symposium,
pages 81--87, Orlando, FL, USA, April 1998.

[14] A. M. Tenenbaum. "Type Determination in Very
High-Level Languages". Ph.D. dissertation,
Courant Institute of Mathemadcal Sciences, New
York Universky, Department of Computer
Sdence, October 1974. Computer Science Report
NSO-3.

[15] J. P. Trembl~y and R. Manohar. Discrete
Mathematical Structures with Applications to
Computer Science. Computer Science Series.
McGraxv-H.ill, Inc., New York City, NY 10121,
USA, 1975. ISBN 0-07-- 065142--6.

Co~ecLYy Detectin..q Intrinsic Type Errors in Typeless Languages such as I~4'A TLAB 21

