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A b s t r a c t  
Among the main impediments that languages such 

as MATLAB and APL present to a compiler is the 
lack of an explicit declaration for a variable's type, The 
deterrninadon of this important attribute could allow a 
compiler to generate more effident code, and is a 
problem that has been extensively studied in the past. 
This paper revisits this problem but unlike prior 
efforts, the objective is a uniform approach to type 
estimation that also accommodates type incorrect 
programs in a way that facilitates stronger type error 
detection through the exact localization of  the type 
error at run time. We also show how our methodology 
makes it possible to further reduce the run-time 
overhead due to type eonformability checking. The 
techniques are clearly demonstrated by applying them 
to deduce the intrinsic types of  program variables in 
the MATLAB language. 

1 I n t r o d u c t i o n  
I f  a compiler could predict the range of  values and 

shapes that program variables take on during 
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execution, simpler and more effident code could be 
generated to carry out the operations in the program. 
For instance, if  the statement z c ~ a +  b occurred 
somewhere in a MATLAB 3 program and if the 
compiler could establish that both a and b are always 
bound to scalar-shaped integer values in every 
execution of  this statement, then a simple machine 
instruction that adds the values o f  a and b could be 
generated, rather than an invocation to a generalized 
array addition subroutine. Such an inference would 
also be beneficial storage-wise because it would permit 
the compiler to statically allocate a single word for the 
result c instead of  having to overestimate c as being, 
say a double-word result, or having to bind e to some 
dynamically allocated storage. Thus, in programming 
languages such as MATLAB and APL that lack 
declarations, inferring the attribute of  type is dearly 
desirable from the viewpoint of  producing an efficient 
translation of  the source. 

This paper presents a scheme to automatically 
infer the types of  program variables in dynarnically 
typed languages such as MATLAB and APL. The 
presentation centers on the MATLAB language, which 
was primarily chosen on account of  the immense (and 
still growing) popularity that it enjoys in the 
programming community. 

The difference between our work and previous 
efforts is its ability to exact~ loca~ze a type error, when 
one does occur at run time. By "exactly localizing' a 
type error, we mean allowing program execution to 
condnue ~cc~rJful.~ until the occurrence of  the type 
error, at which point execution is terminated. Consider 

t This research was supported by DARPA under Contract 
F30602--98--2-0144. 

2 The symbol , -  will be used to denote an assignment 
operation. 

MATLAB is a registered trademark o f  The MathWorks, 
Inc. 
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a ptogzarn .P whose type co~ectness cannot be 
established statically. Previous approaches will enable 
stadc type estimates for all the variables in the 
pro~arn  that arc bound to be honored at run time 
along every type-correct execution path in P .  
However, i f  a particular type-incorrect execution path 
is exercised, it is not  clear how the static inferences 
will affect program execution. Will a type error be 
detected, and if  so, does the detection exactly localize 
the type error in the sense stated earlier? The capability 
to localize a type error is desirable because it would 
allow the program to execute exactly as written and 
thereby facilitate stronger debugging support. This 
capability would also benefit system-critical software, 
where premature code abortion on some input data 
may be an ill-advised option. The focus of  this work is 
to investigate the additions necessary to previously 
proposed lattice-based techniques so as to encompass 
type incorrect prograrns and to also permit the precise 
localization o f  tun-time type errors. In addition, we 
also show how our methods enable a reduction in the 
type conforrnability checking overhead through the 
exploitation o f  the monotonicity property o f  the type 
functions involved, and through the appUcation of  
well-known compiler optimizadons such as loop 
peeling. 

The rest of  this paper is organized as follows. In 
secdon 2, wc describe previous research that forms the 
basis of  our work. The necessary extensions to handle 
type errors correctly, along with a description and an 
informal justification o f  the modified type 
determination process, are provided in section 3. This 
is followed in section 4 by an actual application o f  the 
techniques to the problem of  intrinsic type estimation 
in MATLAB. The fact that previous approaches lack 
the ability to predsely localize type errors, even if  they 
do manage to detect one, is shown in secdon 5. We 
then discuss how the overhead due to type 
confomaability checking can be reduced by our 
scheme in section 6. Other research efforts in the area 
o f  type determination are mentioned in section 7. 
Finally, we conclude the paper in secdon 8. 

2 Lat t ices for  T y p e  
D e t e r m i n a t i o n  

An oft-cited work in the area o f  type estimation is 
that due to Kaplan and Ullman [9]. They proposed a 
mathematical framework based on the theory of 
lattices to automatically infer the types o f  variables in a 
model o f  computation that abstracted programming 
languages such as APL, SETL and SNOBOL. Their 
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framewoek postulates the existence of  a lattice [15] T 
of  types, chosen by the compiler designer. The 
objective is to determine statically a type that 
subsumes the actual run-time type as #gh@ a~possible. A 
type t is said to "subsume" a type s i f  all dam 
representable by s is also representable by t.  A case 
in point is the C O M P L E X  type in the MATLAB 
language, which has a value range that numerically 
contains the value range of the REAL type in the 
language. The motivation behind using a lamce is that 
a type lower down in the lattice hierarchy can bc safdy 
replaced by a type higher up without compromising 
program correctness+. The need to move down the 
lattice is because dements higher up tend to be more 
expensive, in terms of execution time and memory 
costs, than elements lower down. For example, the 

C O M P L E X  type typically requires a t  least twice the 
execution time and storage space as the REAL type in 
MATLAB. By making the inference as dose  as 
possible to the actual tun-time type, the approach 
attempts to optimize on the program's operational and 
storage requirements. 

2..I' O v e r v / e w  o f  t he  ear//er f r a m e w o r k  
Formally, if a and t are two types in a latdcc of 

types T, the join of s and t, denoted by sV#, 
represents the '+smallest" type that subsumes both s 
and #. By this definition, any other v/pc that subsurncs 
s and t also subsumes aV t. The meet of  s and t,  
denoted by s ^  t ,  is the "largest" type whose value 
range is contained within the value ranges o f  both s 
and ~. 

Type determination in the framework begins at 
the level of  assignment statements. Consider an 
assignment statement 

Z~- e(.,¥;, .,~,..., .,,t~); 

where Z and X,(1 < i < h) are program variables, and 

where O denotes a h-ary language operator. From 
the semantics o f  O,  it may be possible to determine 
the type o f  Z ,  at least conservatively, given only the 
types ~. of  the operands ~ . In such cases, the type 
semantics of  O could be modeled by a typefuncIion To 
that maps the set T + into the set T .  Type functions 
such as To are often charact~ized as j~rward Iype 

functions because they indicate what the type o f  the 
result should be, given the types o f  the arguments. For 

4 Phrases such as "higher up" and "lower down" are with 
reference to the underlying partial order. For instance, a 
type t is said to be higher up in the lattice with respect to 
atype s i f  s< t. 
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example, i f  we were to consider the array addition 
built-in function in MATLAB On infix notation, this 
language operator is designated by the symbol +), 
adding two operands of  type INTEGER and REAL 
yields a result whose type is "at most"  REAL.  We can 
thus write 7"+ (INTEGER. REAL) = REAL. 

It is also possible that, knowing something about 
the type of  an operator's result and the types o f  its 
operands, something more may be deducible about the 
types of  its operands. For instance, if we knew that the 
type of  c in the MATLAB statement c ~ a + b was 
REAL after the assignment, and if  the previous best 
estimates for the types o f  a and b before the 
assignment were COMPLEX and REAL respectively, 
then the new best estimate for the type of  a before 
the assignment becomes REAL. We thus write 

(REAL, COMPLEX, REAL) = REAL, where the 

notation T~(t ,  t ] , . . . ,  t , )  represents the new type 

estimate for .,YS" before the assignment 

in X ~ O(.,.I~, A~,..., ~ . ) ,  given that t is the type of  Z 

after the assignment and that the t~ s are the respective 

previous best type estimates for the X i s before the 

assignment. Type functions such as _Z~ that model 

these semantics in the backward direction are usually 
refe~ed to as back.ward type functions. 

Program-wide type determination in [9] consists 
o f  a series of  steps on the program's control-flow 
graph (CFG) [12]. In each step, a forward ot backward 
type inference, using the forward and backward type 
functions, is performed on a node in this flow graph. 
A sequence of  such steps that spans all the nodes in 
the CFG constitutes a forward or backward pass in the 
type determination process. The procedure begins 
with initial conservative solutions for each variable's 
type; these then get successively refined with every 
iteration of  a forward or baclcward type inference pass. 
I t  has been shown that for lattices in which the finite 
chain condition holds, a finite number of  such iterations 
produces a safe solution that cannot be improved 
upon further, and that is in some sense an optimal 
solution to the type determination problem [9]. 

2. 2 Requirements 
Crucial to the success of  the Kaplan and Ullman 

approach is the satisfaction of  two conditions: 

Postulate 1. Finite Chain Condit ion 
There are no infinite sequences of  elements in 
.7" that are related by the lattice's pardal order 

_<.. This condition is necessary for the initially 
chosen conservative solution to converge to a 
fixed point in a finite number o f  forward or 
backward type inference steps. 

Postulate 2. Monotonicity Condition 
The type functions are monotonic with respect to 
the defined lattice T .  For the forward type 
funcdon ~8, monotonicity implies that 

T O (t l , t  z, . . . , t  k) _< T e (tl,  t'2,...,t'~ ) ,  

i f t  i _<t; forall l_<i_<k 

Intuitively, monotonicity for the forward type 
function means that the more we know about 

the types o f  the X i s, the more we will know 

about the type o f  O(X1,  X 2 , . . .  , X k ) .  

The above two conditions are sufficient in that if a 
lattice o f  types can be defined that satisfies them, then 
such a lattice will be a suitable device for the purposes 
of  type estimation. 

3 Detect ion of  Type Errors 
In the framework presented in [9], the important 

issue of  type incorrect programs was not explicitly 
dealt with. That is, programs were considered to be 
type correct to start with, so that the greatest dement  
in the type lattice, which was assumed to comprise 
only "legal" types, formed a suitable initial solution for 
the type determination problem. Though the 
framework in [9] could be used on general programs 
by assuming them to be type correct and by then 
inserting code that enforces the static type estimates 
during program execution, such an approach is 
assured to work fine only if  the program turns out to 
be type correct at run time. I f  the program turns out 
to be type incorrect, it is not clear whether the static 
inferences will continue to hold, and if they do not, 
whether the enforcing code will allow program 
execution to proceed successfully until the point of  
occurrence o f  the type error. The extensions described 
in this section are meant to address this important 
issue. 

3. I Legal and Illega/ Types 
The first consideration should be the ability to 

differentiate between type correct and type incorrect 
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programs. We do so by regarding two separate sets o f  
types, L ,  and I t ,  which represent legal and "illegal" 
types respectively. A legal type is basically the type that 
a variable can assume after a successful assignment at 
program execution time. The  term type is used here in 
the mos t  general sense - -  it represents a colkaion of  
data that have been organized together for reasons o f  
logical similarity or mere convenience. Illegal types, on 
the other hand,  are abstractions meant  to signify type 
errors. Since the partial order that underlies a type 
lattice indicates a "subsumes"  relationship, legal types 
should no t  be comparable by it to illegal types. The 
reason for this is that  reclationships such as l_< i or 
i_< / ,  where I denotes a legal type and i denotes an 

illegal type, would contradict program correctness as 
we go up the lattice. Consequently, a bounabd type 
lattice s that is serviceable even in the presence o f  type 
incorrect programs should have the general form 
shown in Figure 1. 

F i g u r e  1: Layout  o f  a Type Lattice Usable in the 
Presence o f  Type Incorrect  Programs 

In Figure 1, the shaded regions represent lattice 
points in the legal and illegal type sets. The greatest 
and least elements o f  the lattice, namely 1 and 0, do 
not  depict a particular legal or illegal type and are 
needed only to form a lattice out  o f  L r  and I t .  In a 
set-theoretic sense, the mos t  general type 1 could be 
thought  o f  as £ r O  ./r, while the mos t  restrictive type 
0 could be thought  o f  as the empty set. In  terms o f  an 
interpretation, 0 could be regarded as the type o f  a 
program variable that is yet to be assigned a value. 

Without  loss o f  generality, we can suppose that 
there exists a single lattice point  in L r  , say ~i , that 
subsumes every other legal type in Figure 1. This is 
because, i f  such an d e m e n t  does no t  exist, the lattice 
can always be extended through the introduction o f  a 
new legal type ,6 that subsumes all the maxima/legal 
types in LT. (We call a legal type / maximal i f  there 
exists no  other legal type 2 such that / <  2 .) However,  

5 Bounded lattices am lattices that have both a greatest 
and a least element [15]. It is easy to show that any lattice 
that satisfies Postulate 1 must be bounded. 

since ~i may not  be mappahie to any useful machine 
representation that permits the efficient manipulation 
of  objects belonging to that type by a computer ,  we 
assume the following: 

Postulate 3. A Mappable largest Legal Type 
The largest among the legal types in L~ enjoys an 

efficient machine representation. 

Though  the requirement o f  a mappabie largest 
legal type is no t  essential, its fulfillment would  be 
helpful to a compiler writer since it would allow the 
generation of  efficient code whenever  the result o f  an 
inference is a legal type. This is because even if  a 
particular inferred legal type lacks an efficient machine 
representation, anodaer legal type that  is higher up in 
the lattice and that does have an efficient machine 
representation can always be used in its place. Such a 
substitution is valid because program correctness is 
preserved as we move  up the latdce. What  Postulate 3 
does is to make the prospect  o f  finding such a legal 
type a surety. This is no t  to say that  a type lattice in 
which Postulate 3 does no t  hold  cannot  be used for 
type estimation. In  fact, in [3], a latdce o f  A P L  legal 
intrinsic types in which the greatest element does no t  
have an efficient machine representation is used. In  
such cases, i f  the static inference is the greatest legal 
type, the emitted code may have to rely on  run-t ime 
resolution to carry out  the associated operadon.  At  run 
time, a switch-like construct selects the correct 
operation to invoke since by then, the exact types of 
the opcrands will bc known. The difference is of 
course between a few mach.inc instructions that 
operate directly on machine-representable data objects 
- -  such as integer or floating-point numbers -- and 
the execution of conditional code, along with the 
maintcnancc of additional bookkeeping information, 
to achieve run-time resolution. 

3.2 Type assertions 
A problem that the lattice in Figure 1 poses to a 

compiler writer is that a type inference is useful so 
long as it is 0 or falls onto  any o f  the latdce points  in 
LT and IT . This is because a legal type inference 
could be used to produce an e f f ident  t ranshfion o f  
the source, while an illegal type inference could be 
used to flag program error. However,  i f  the result o f  a 
static type inference is 1, then nothing useful is gained 
since we are back where we started: that a program 
variable's type could be either legal or illegal. The  
possibility o f  1 being the result o f  a type inference 
cannot  be ruled out  since wi thout  any advance 
knowledge on program correctness, the process o f  
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type estimation would begin with 1 as the initial 
conservative solution. In fact, in dynamically typed 
languages such as MATLAB and APL, type 
correctness may be specific to an execution instance. 
The question therefore boils down to what needs to 
be done in order to get around this lack of  complete 
static information in a reasonably efficient manner. 

Our solution to this problem involves preceding 
ever T assignment statement of  the form 

,5': , Z , -  0(,t% X~,...,,t~) ; 

in the original code fragment by a 9rpe assertion: 

,..e: _< 

,.s"' : Z ~ O(.,15, ..I%..., .,I~) 

The function call in statement S" tests at run rime 
whether the condition 

(m))_< is if so, 

execution is al]owcd to continue and if not, execution 
is terminated. The notation ~,,(.,.l(i) stands for the 

most restrictive type of  the program variable X,. at the 
particular point ,5" in the program and can be 
established at run time by inspecting .if7 when control 
is at that point in the program ~. No changes have to be 
made to the framework in [9] to handle the inserted 
assert calls since they can be regarded as "dummy" 
assignments in which the assigned variables are not 
subsequentiy used. Other aspects of  the framework, 
such as its treatment of  confluence points in the CFG, 
remain unchanged. 

Conceptually, type assertions enable us to assume 
that the reaching types for every program variable are 
legal at every point in the program. Thus, instead of  1, 
we can begin with ~ as the initial type solution. 
Physically, a type assertion is the type conforrnability 
code of a language operator, in-lined just before its 
invocation at the call-site. By decoupling an operator's 
type checking semantics this way, it may bc possible to 
lessen the overall overhead due to type conformability 
checking (see section 6). 

3.2.1 F o r w a r d  t y p e  i n f e r e n c e  

For the sake of  simplicity, we assume that every 
node in the control-flow graph consists of  either a 

The most restrictive type is the exact type of  the datum 
in question. It could be at th© granularity of the type 
system at hand, or even lower. For example, the most 
restrictive intrinsic type for the real number 0:1 could be 
REAL in the MATLAB type system, or the type "real 
numbers that lie between 0 and 1." It could also be the 
type o f  a particular real number (i.e., 0:1). 
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type assertion or an assignment statement. Let r~V) 

be a etatic estimate of the type o f  a program variable V 
immeehate~ n39er the node p is executed in this flow 
graph. Let Pf(/O be a static estimate of  the type of  a 

program variable V when control reaches the node q. 
I f  p is the only predecessor of  q in the CFG, then 
~-,(~ would be an acceptable pick for p , ( ~ .  

However, a particular node could have more titan one 
predecessor. To cover such situations, we determine 
p~(/O to be the maximum of  the type estimates at all 

the predecessor nodes p:  

&(tO = V (1) 

Now suppose that the flow graph node q 
contains the type check 
ass, rt(TeC¢~XO,~f(X2), ...,{9(A~)) < 4). We can make a 

forward type inference through the assertion to arrive 
at static type estimates ~g(V) for every V at the node. 

This is because the asset/ invocation basically 
establishes constraints on the types o f  the ASs qt~ertbe 
ca~l, so that the type o f  O(XhA<z,...,Xi) in the 

following statement is always legal Thus, such a 
forward type inference should employ the backward 
type function . 7~(h,...) since new type estimates for 

the .,,Ks that satisfy the assertion would have to be 
determined. We arrive at these estimates 
conservatively: 

'pt( fV~ if V ~ ~17 for all 1 _< j _< J[; 

~ ( / / ~  ="  A .7~' ( ~ , / , ,  (.xi). 1~ Aq) ..... /~,(~I:0) otherwise. (2) 

all j'such 

that V = 

Correctness.  We need to show that 
~9(~<r~(V)  will hold true at node q, i f  

ee~(~ _< ¢p(/l 0 holds true at each predecessor node p .  

We show this by first demonstrating that 
~9(~ _< p~(V) will be true for all V at q. Because 

control will always reach the node ¢ from one of  its 
predecessor nodes p ,  the most restrictive type ¢~(V~ 

at ¢ can at most be the maximum of  the most 
restrictive types at each of  the predecessors p :  

¢(r3-< V ~(V) (3) 
aU predecessor 
nodes p 

11 
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We are also given that ~v(l 0 < 'r~V) is true at each 

predecessor node p .  Therefore, from the 
monotonieity o f  the join operator V 

v < v 
all predeeessar - -  all p r e t e s t  
tip des p nodmr p 

From Equation (1), the last constraint becomes 

all p r e ~ l © ~  
Imdesl~ 

Inequalities (3) and (4) thus lead to 

~,(rO _< p,(V). (5) 

We now need to consider the two scenarios that 
arise from V appearing or not  appearing in the type 
assertion. I f  V does not appear in the asset/call, the 
claim q'~(V) < ~-~(~ immediately follows from 

Inequality (5) and Equation (2). Therefore, suppose 
that V does appear in the assert caU. From the 
semantics of  the call, an estimate for "~(~ after the 

assertion would be 

A .~' ( ~, ~.,]'z), ...) ~'~+,.t'~.)), 
that V=.I~ 

However,  from the definition of  ~ V), the following 
should hold after the assertion: 

e(~_< A .T~(~ ,e~) ,e~-X , ) , . - . , ' ~ - ) ) .  (6) 
all ./such 
that F= .~ .  

From Inequality (5), we also have 9~Xi) < p~A~ for 

all 1 < i <  k. Hence, from the monotonicides of  

~o(~,...) and the meet operator A, we obtain 

A 
all i such 
that ~ . , I ~  

A (.,n)). 
al l . l  mad1 
fltat g=.,~} 

Therefore, from Inequality (6) and Equation (2), we 
get ~ V )  _< ~-~(~. 

I f  the flow graph node ¢ contains an assignment 
statement, the forward type inference is 
straightforward and is shown below: 

if v =  z ,  

~-~(V) = [p~(/'O o t h e r w i s e .  (7) 

Correctrmss. Once again, we need to show that 
• ~ V) _< 7~( V) will hold true at node ¢, if 

%,(~ < ¢ ~ t  0 holds true at each predecessor node t7. 

As before, we can show that Inequality (5) is satisfied 
at node 9.  Therefore, if  V is not, Z ,  e , ( ~  _< ~-~( 

tribally follows from Equation (7). I f  V is Z ,  then 
from the definition of  9~(~,  

Since ~9(.,~) _< py(.A~ for all 1 < i <  h ,  we have from 

the monotonicity of  To, 

ro ( r , ( aq) ,  _< ..., 

Therefore, from Inequality (8) and Equation (7), we 
can conclude mat < ,-,(tO. 

3.2.2 B a c k w a r d  t y p e  i n f e r e n c e  

For the as signment statement 
Z ~ O(Z1, Aq,..-, Xi.), a backward type inference arises 

by considering the context in which Z is subsequent~ 
used. However, because every such use is preceded by 
an assert call, no useful inferences about the type of  Z 
can be made in the backward direction. The reason for 
this is that a type check of  the form 
aaserz~.7"o(..., %(Z),...) _< ll) only makes guarantees 

regarding the type of  Z after the call, not before. I f  
those guarantees are not met at run time, execution 
halts at the assertion. 

21~ : a 6..-- . . .  

~:  b *--~ a 

F igure  2. An APL Code Fragment 

. / ~  : ~ ¢ - . - . . .  

:t>Assert that the type of a 

is a scalar nonnegative integer. 

S" :b ~--~ a 

Figure  3: An APL code fragment 
bedded-Type Checking Code 

with em- 

As an example, consider the APL code fragment 
shown in Figure 2. By noting that the ' primitive 
expects a scalar nonnegative integer as its argument, 
we can deduce that the value of  a computed in the 
first line must be of  dais type. However,  such an 

t 
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inference is valid only if the code fragment is given to 
be type correct. Even if the type checking code 
associated with statement ,5' were considered explidfly 
as shown in Figure 3, we still cannot hope to deduce 
useful type information, simply because the assertion 
may not  hold immediately after statement R .  That is, 
a may not  be a scalar normegative integer between 
statements R and ,5" in Figure 3. Thus, if  a program 
is not  given to be  type correct to start with, no useful 
type information can be derived via a backward 
inference. To arrive at a type solution, we must 
therefore rely on only forward type inferences. 

3.2.3 P r o g r a m - w i d e  t y p e  i n f e r e n c e  

Program-wide type determination begins with 
conservative type estimates r , ( ~  for every program 

va~able V at every node r of  the CFG. Because of  
the embedded type assertions, h is a legitimate 
starting estimate. The procedure then performs a 
forward type inference pars by computing type 
estimates at every node using the type estimates at the 
predecessor nodes, as discussed in section 3.2.1. It 
does not  matter how the forwaxd pass traverses the 
CFG to accomplish this type estimation because the 
type estimates at every node will always be safe. That 
is, if the forward pass does not process a node, the old 
type estimates at the node, which are given to be safe, 
will remain in place, while if a node is visited, the new 
type estimates computed at that node will be such that 
they continue to be safe. Therefore, a way in which the 
forward pass could be implemented is by traversing 
the CFG in a dqpth-flrJt or breadth-first fashion, 
computing the type estimates at each node along the 
way. However,  revisiting a node may provide 
opportunities for further refinements in the type 
estimates. 

Because of  the finite chain condition and the 
monotonicity of  the type functions involved, this 
improvement will not occur indefinitely and will 
eventually teach a stable state. Thus, program-wide 
type determination could be performed by repeatedly 
applying the forward pass on the CFG until a 
fixed-point type estimate is achieved at each node. 
Program-wide type estimates for the variables may 
then be determined by taking a join of  the respective 
fixed-point nodal type estimates. 

3. 3 Type error Iocal/zat'/on 
Consider the assignment statement 

,9: Z ~ -  O(A~,A~,...,A~); 

in the original code fragment and the corresponding 
statement pair 

s , :  _< a); 

s "  : E ~ -  e(x~, x, , . . . ,  6.) ;  

in the translated version. Suppose that control is 
currently at statement ,9 in the original code fragment. 
The interpreter would successfully execute this 
statement if and o ~ y  if  
To(9~(Aq),¢,(,Yfi),...,'~A~.)) _< ~. I f  it does execute 

successfully, then the associated type assertion ,5 n in 
the translatecl version would also execute successfully 
and control would reach the statement ,5"'. The latter 
statement would then execute corrtecdy because the 
type of  E in ,5'I' was statically estimated to be at least 
as large as ÷,(Z).. I f  T,(~,(;~),~,(;~), . . . ,~&n.)) :g ~ ,  

then a type error would crop up at statement S in the 
original code fragment while the corresponding type 
assertion in the transhted version would fail. Since this 
argument applies to every statement in the original 
code fragment, we thus observe that the translated 
version will faithfully reproduce the original code's 
execution behavior. 

A key point to note is that the procedure wiU 
produce legal static type estimates even when the 
program is always (i.e., under all execution paths) type- 
incorrect. The embedded assertions will however 
intercept the type error at tun time, allowing the 
program to execute successfully until the point o f  
occurrence o f  the type error. In certain situations, it 
may be possible to statically verify that a particular 
assertion will never hold at tun time. As an example, 
this could happen when the assertion involves the 
types of  program constants. In such cases, the type 
error could be flagged at compile time, giving an 
opportunity for the programmer to take immediate 
remedial action. 

4 A MATLAB Example 
To demonstrate the lattice-based type 

determination techniques discussed so far, we consideet 
the problem of  inferring the intrinsic variable types in 
a MATLAB program. In particular, we shall examine 
the simple, contrived MATLAB code fragment shown 
in Figure 4. The code excerpt consists o f  a while loop 
within which reaching values for the program variables 
a and b are added by using the array addition built-in 
function. The result is assigned to the program 
variable c, which is then operated in the next two 
statements by the colon built-in function. We assume 
that c and d are not live before the loop. 
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The construction ra : n produces a row vector of  
elements that form an arithmetic progression with a 
common difference of  1. The starting and ending 
values o f  this progression are ra' and r a ' + l n ' - r a ' ~  

where m' and n' represent the rtm-time realvalues of  
m and n respectively. (The construction l : a  is 
therefore similar to the APL construction z e. 

while (...), 
c ~  a +  #, 

a * - 2 : q  

d~-- 1 : c, 

end; 

F igure  4. A Simple M_ATLA_B Code Fragment 

In MATLAB, the notion of  logical similarity 
in the context o f  types consists o f  a structural aspect 
(e.g., a 2 X 3 matrix) and an arithmetic aspect (e.g., 

integers, reals, complexes and so on). These two 
aspects are independent o f  each other and can be 
analyzed in isolation; we call the former the attribute 
of  .rbape and the latter the attribute of  intdnsic type. The 
discussion in this section will concern itself with the 
problem of  intrinsic type estimation in MATLAB, 
though the techniques are also applicable to shape 
estimation using lattices. An implementation could use 
the methodology of  this section to arrive at intrinsic 
type estimates for the program vaxiablcs and to 
translate the source into a version that has the 
necessary intrinsic type checks; the translation could 
then be subjected to a separate shape inferring phase 
that gathers the requisite shape information and then 
inserts the needed shape checks. When lattices arc 
used for shape determination, rough esdrnates of  
shape, such as whether a program variable is a scalar, 
row vector, column vector, matrix or an "arbitrary" 
array, can be arrived at in the same way intrinsic types 
were inferred. These shape estimates may then be used 
like intrinsic type estimates to emit code with the 
necessary assertions. However, the shape semantics of  
language operators in MATLAB and APL often 
impose requirements at the granularity of  array 
extents. For example, the matrix multiply built-in 
function in MATLAB (denoted by the infix operator 
*) expects at least one operand to be a scala.t, or both 
to be matrices such that the extent along the second 
dimension of  the first operand matches the extent 
along the first dimension of  the second operand [10]. 
Any other combination of  shapes produces a run-time 
error. Figuring out what an array's extents actually ate 

is advantageous because it may sanction important 
optimizafions such as run-time shape conformab~ty 
check reduction, memory preat[ocafion and 
scalarization [8]. Alternate approaches that make this 
possible and that are based on a shape calculus have 
been discussed in [8]. 

4. I The MA TLAB Intrinsic Type Lattice 

For the given code fragment, an appropriate way 
of  arranging the intrinsic types of  MATLAB into a 
latdce T is shown in Figure 5, where 0 is the least 
element of  the lattice and 1 is its greatest element. The 
B OOL E AN intrinsic type stands for a 1-bit value m 
namely, 0 or 1. The UlNT8 intrinsic type represents 
unsigned integer bytes and is primarily intended for 
image processing applications [11]. The INTEGER, 
REAL and C O M P L E X  intrinsic types denote 
integers, real numbers and complex numbers 
respectively. The artificial intrinsic type N O N R E A L  
designates strictly complex numbers - -  that is, those 
with nonzero imaginary parts. The latdce point i 
indicates the illegal intrinsic type, which, as remarked 
earlier, is an abstraction meant to express an ill-formed 
MATLAB expression. For  instance, the colon built-in 
funcdon expects the intrinsic types o f  both of  its 
operands to be at most  REAL; a NONREAL intrinsic 
type causes the run-dine system to complain 1. On  
comparing Figures 5 and 1, we observe that 
BOOLEAN, UINT8, INTEGER, REAL, 
NONREAL and COMPLEX correspond to the legal. 
intrinsic types. The ascendancy from BOOLEAN to 
COMPLEX,  and from N O N R E A L  to C O M P L E X  
reflects the inclusion of  a legal intrinsic type's value 
range in the value range of  the legal intrinsic type 
above it. 

4.2 Intr insic Type Functions 
Our first task is to cast M.ATLAB's in~insic type 

semantics for the array addition and colon built-in 
functions into the relevant type functions. The 
resulting forward intrinsic type functions are shown in 
Tables 1 and 2. In these tables, we use B, U, I, R, N 
and C as abbreviations for B O O L E A N ,  UINTB, 
INTEGER, REAL, NONREAL and COMPLEX 
respectivdy. 

7 A n  invocat ion such as 1 : 2 + 3 i ,  where  i is the 
imaginary  unit, elici ts  an alert  ('Warning: COLON 
arguments must ba real sealars. ' ) f rom the M A T L A B  run- 
t ime system. 
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An important point to note in these tables is that 
only the intrinsic type semantics are captured without 
any attention to shape. That is, Tables 1 and 2 tell us 
how the intrinsic types map, assuming that the 
arguments are shape conforming. The formulations 
ensure that the illegal intrinsic type i is either 
propagated, or generated if the arguments are not 
intrinsic-type conforming. Technically, the decision to 
propagate the illegal intrinsic type is one of  
convenience because reaching types will never be i 
due to the preceding type assertions. Generation of  
the illegal intrinsic type is however necessary so as to 
allow the assertions to detect type errors at run dme. 
When one of  the operands to the intrinsic type 
functions is 0, we have some leeway in choosing the 
image of  the map; the choices shown in Tables 1 and 2 
are such that monotonicity is secured. Observe also 
that whenever one (or both) of  the operands to the 
intrinsic type functions is 1, the outcome is also 
usually 1 since nothing can be said about the intrinsic 
type of  the result except that it could also be either 
legal or illegal. When both operands to either of  the 
intrinsic type functions are C O M P L E X  or lower, we 
can usually do better. 

F igure  5. Th= Latdce ]" of Intrinsic Types in MATLAB 

0 B U I R N C i 1 

0 0 0 0 0 0 0 0 i i 

B 0 U I I R N C i 1 

U 0 I I I R N C i 1 

I 0 I I I R N C i 1 

R 0 R R R R N C i 1 

N 0 N N N N C C i 1 

C 0 C C C C C C i 1 

i i I i i i i i i i i 

1 i L1  1 1 1 1 1 i 1 

Table  1. 7'+ (s,/) 

0 B U I R N C s 1 

0 0 0 0 0 s i s i 

B 0 B U I I ~ 1 z 1 

U 0 U U I I z 1 s 1 

I 0 i I I I z 1 I 1 

R 0 R R R R j 1 s 1 

N #" i i i f s i g i 

C 1 1 1 1 s 1 ~ 1 

i i i i i ~" ~ i s i 
1 i 1 1 1 1 1 1 

Table  2. T : (8, t) 

for example, ~+  ( R E A L ; C O M P L E X ) = C O M P L E X  
since when a real number is added to a complex 
number, the result is a complex number. In the 
interests of  presentation clarity, we do not assume a 
particular bit width for the INTEGER, REAL and 
COMPLEX intrinsic types. Thus, adding two 
INTEGER quantifies will always produce an 
INTEGER quantity as indicated in Table 1. However, 
because of  the stated finite bit widths of  the 
BOOLEAN and UINT8 intrinsic types, adding a 
B O O L E A N  to a UINT8 could produce an overflow; 
therefore, a safe intrinsic type for the result in this case 
is I N T E G E R  as shown in TaMe 1. 

We also need to consider the backward intrinsic 
type functions for the given built-in functions; these 
are shown in Tables 3 and 4. The backward intrinsic 
type funcdon ~+ (COMPLEX, s,t) can be obtained 

from Table 3 because of  the relation 

.7~(COMPLEX,,, t) = 7~(COMPLEX,t, 8) (9) 

Once again, we have some freedom in deciding the 
maps of  the backward intrinsic type functions when 
one of  the operands is i, since such a situation will 
never occur due to the reaching types being legal at 
every point in the program. In fact, the backward 
intrinsic-type maps have been so selected so as to 
either improve the previous legal estimate o~ produce 
C O M P L E X  or REAL as the new estimate. 

Note that the lattice in Figure 5 sadsfies Postulate 
1. By inspection, the backward intrinsic type functions, 
along with the forward ones in Tables 1 and 2, can be 
ascertained to be monotonic with respect to the latdce 
in Figure 5. Hence Postulate 2 is honored. Since the 
real and imaginary parts of  the COMPLEX  intrinsic 
type can be manipulated separately, C O M P L E X  has 
an efficient machine representation thereby enabling 
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0 B U I R N C i 1 

0 0 0 0 0 0 0 0 0 0 

B B B B B B B B B B 

U U U U U U U U U U 

I I I I I I I I I I 

R R R R R R R R R R 

N N N N N N N N N N 

C C C C C C C C C C 

i C C C C C C C C C 

1 C C G C C C C C C 

T a b l e  3. ~+ (COMPLEX, s, 0 

0 B U R N C i 1 

0 0 B U R R R R R 

B 0 B U R R R R R 

U 0 B U R R R R R 

I 0 B U R R R R R 

R 0 B U R R R R R 

N 0 B U R R R R R 

C 0 B I U  R R R R R 

i 0 B U I R R R R R 

1 0 B U R R R R R 

Postulate 3 

Tab le  4. 7~(COMPLEX s, t) 

to hold. We can therefore apply the 
techniques o f  the previous secdon to arrive at usefial 
intrinsic type inferences for the code fragment in 
Figure 4, even if it is not given to be type correct. 

4. 3 Program- Wide Type Inference 
Figure 6 shows the control-flow graph for the 

given code excerpt. Execution is assumed to begin at 
the "start" node S and end at the "finish" node .F~ 
Nodes  l" , 2" and 3" respectively correspond to the 
three assignment statements in Figure 4, while the 
associated type assertions, which presumably are 
automatically inserted by an interpreter or a compiler, 
respectively correspond to the nodes 1', 2' and 3'. We 
assume that the forward type inference pass operates 
by visiting the nodes in the CFG in a depth-first order; 
Figure 6 displays one such traversal using solid arrows. 

The process begins with conservative estimates 
for the intrinsic types at every node of  the flow graph. 

At the start node $, these arc 
~'~a) = ~',(b) = COMPLEX and 

r~c) = ~ - ~ d ) =  O because only a and b are live on 

entry into the code fragment. That is, whenever 
control flows through node $, we can always be 
assured that the relations ~(a) _< COMPLEX,  

%(b) _< COMPLEX,  ÷,(c) = 0, and 9~(a) = 0 prevail. 

However,  at the remaining nodes, the most  restrictive 
intrinsic type for each program variable can be any 
legal value. Therefore, we select G O M P L E X  as the 
initial safe estimate at these nodes. All o f  the initial 
estimates are exhibited in Figure 6 to the right o f  the 
flow graph. Note  that UINT8 and B O O L E A N  were 
used as the most restrictive intrinsic types for the 
program constants 2 and I in the assertions at nodes 2' 
and 3'. 

At the right o f  Figure 6 are shown two 
applications of  the forward type inference pass. A 
particular step in an application of  the pass computes 
the estimates r ~ ( ~  for every program variable V at a 

particular node ¢ in the CFG. Depending on whether 
the node contains a type assertion or an assignment 
statement, the computations happen in accordance 
with Equation (2) or Equation (7). The reaching 
estimates pg (~  are used in these computations and 

have been calcuhted using Equadon (1); for reasons o f  
brevity these calcu.lations have not  been explicidy 
displayed in the figure. To  illustrate one such 
calculation, the following are the reaching intrinsic 
type estimates at node F o n  the first application of  the 
forward pass: 

pF(a)  = COMPLEX V INTEGER=COMPLEX,  

p ~ b )  = COMPLEX V COMPLEX = COMPLEX, 

p ~ c )  = o v REAL=REAL, 

p2r(d) = 0 V INTEGER=INTEGER. 

On the second application o f  the forward pass, we 
arrive at fixed-point intrinsic type estimates at every 
node of  the CFG; this can be verified by applying the 
pass for the third time. By taking the join of  the 
respective estimates at all o f  the CFG nodes, we can 
arrive at the program-wide intrinsic type estimate of  
C O M P L E X  for a,  b and e, and a program-wide 
intrinsic type esdmate of  INTEGER for d. Given no 
prior knowledge regarding the type correctness o f  the 
original code fragrnertt, these are also the best possible 
estimates. It  should be mentioned here that the 
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soludon obtained is to some extent dependent on the 

initially chosen estimates at node $. For instance, 
Figure 7 shows the nodal estimates when a different 
starting solution is picked at $. We note that a 
fixed-point solution is achieved after the first 
application of  the pass and that the nodal estimates of  
the fixed-point solution are more conservative than 
that in Figure 6; in fact, C O M P L E X  becomes the 
program- wide intrinsic type estimate for all the 
program variables in Figure 7. Thus, selecting the best 
initial estimates at node $ is crucial to arriving at good 
program-wide type estimates for all the variables. 

5 Comparisons 
If the code fragment in Figure 4 wcrc type correct, 

then the most restrictive intrinsic type for c would be 

REAL. Through the use of a backward type inference, 
the framework in [9] would determine this. Thus, if 
compilation were done a.r.r#~ing the excerpt to be type 
correct, the translation would declare c to bc REAL. 
However, such a translation will not correctly localize 
a type error, when one does occur at run dine. For 
example, if the generated code were then executed 
with the values 1 + 2 i  and 1 + 3 i  for a and 
respectively, the first statement in the code fragment 
will either execute wrongly (because the intrinsic type 
of e will not bc "large enough" to accommodate the 
expected result2 + 5#~ or will not be executed at all 
(due to preceding type checking code anticipating the 
type error). In either case, the translated version will 
not execute 
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Figure  7. Intrinsic Type E s d m a t o n  with a Different Starting Solution at S 

exactly as the original code fragment. ~ However, if 
code were generated using our scheme, execution is 
guaranteed to proceed successfully until the type 
assertion that immediately precedes the second line in 
the fragment, thus allowing the type error to be 
correctly isolated. 

6 Lessening the Run-Time 
Type Checking Overhead 

Some of  the type assertions may be verifiable at 
compile time. For instance, consider the type 
assertions generated for the example in Figure 4; these 
are reprised in Figure 8 and marked by the t> prefix. 

If  the code fragment in Figure 4 were run through the 
MATLAB interpreter with a and b set to 1 + 2i  and 
1 + 3i respectively, and if the first iteration of the loop 
were executed, the run-time system will execute the 
assignment to e without a hitch but will complain when 
attempting to cornputc 2 : c in the next statement. 

When control reaches the first assertion, 
~(a) < COMPLEX and ~(b) < COMPLEX arc 

guaranteed to be true. Since 
T+ (CO MPLEX, COMPLEX) = COMPLEX from 

Table 1, we can conclude from the monotonic  
property that the first assertion will always hold. 
Additionally, since 
~ :  (BOOLEAN,~(c)) _< T (UINT8,~(c)) from 

monotortidty, success at the second assertion implies 
success at the third assertion. Eliminating the 
redundant assertions will then produce the equivalent 
code in Figure 9. Next, from Figures 6 and 7, the 
variable a will be o f  type I N T E G E R  in the statement 
c ~ - -a+  b from the second iteration on. Therefore, 
the single assertion in Figure 9 need not be executed 
beyond the second iteration because if  a type error 
does occur, it will occur within the first two iterations. 
We can therefore apply the loop peeling 
transformation [12] to remove the first two iterations 
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of  the loop into separate code. The result, shown in 
Figure 10, produces a loop body that is free of  type 
checks. Notice that though the type checking 
overhead has been pared down to a minimal, a type 
error, when one does occur, will still be correctly 
localized in Figure 10. The code in Figure 10 can now 
be subjected to a shape determination phase to gather 
the necessary shape information for further 
optirnizations of  the translated code [8]. It could also 
be executed by an interpreter as an optimized version 
of the source program in Figure 4. 

while ( ~est), 

c~-a+k,  

a ~ - - 2  : q 

t> a$~r~ (S,~(~)) _< C) 

d+-l:q 

end; 

Figure 8. With Embedded Type Assemons 

while (teat), 

ca-a+#,  

 8-r4 : (u, _< o) 
a ~ - - 2 :  ~ 

d+-l:G 

end; 

Figure 9. After Eliminating Redundant Type 
Assertions 

if (test), 

c , -a+b ,  

a ~ - - 2 :  g 

dc--l:g 

end; 

if (test), 

e~--a+b, 

a ~--- 2 : G 

d ~ l : q  

end; 

while ( te~, 

e*-a+#. 

a ~ 2 : G  

d ~ l : g  

end; 

Figure 10. After Loop Peeling 

7 Related W o r k  
Previous attempts in the area of  type csdmation 

for languages such as MATLAB and APL aimed at 
determining conservative static estimates under the 
implicit assumption that the program was type correct 
[1, 9, 5, 3, 6, 13, 4]. In some of these approaches, a 
provision for type incorrectness was made by the 
argument that run-time type checking code would 
ultimately catch a type error when it did occur, though 
not necessarily at the point of  occurrence (see section 
5). It is in that respect that our work chiefly differs 
from these previous attempts. Work due to Bauer and 
Saal was among the earliest to recognize that a 
substantial percentage of  the run- time type checks 
needed for APL could be avoided by static analysis [1]. 
They showed how even a simple type determination 
scheme could produce significant improvements in 
performance. The determination of  types through the 
use of  data-flow analysis was first reported in [14]. The 
work in [9] improved on this by providing more 
powerful algorithms for type detection. In [5], a type 
determination mechanism in a production APL 
compiler that emitted Systern/370 assembly code was 
described. The inferring occurred in a front-end 
compilation process and used a type calculus along 
with a global data-flow analyzer. However, the process 
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was limited to some extent because when the back-end 
compi/adon started, the systeti1 expected user 
intervention to resolve the type o f  any variable that 
was assigned a general type during the front-end 
compilation process. 

In  the work due to Budd [3], a partial ordering of  
intrinsic type and shape was used in the type 
determination process. Data-flow techniques were 
then applied to propagate type inforrnailon across 
expressions, statements and procedures. A point of  
pragmatic interest in the context of  [3], and that was 
alluded to in section 3.1, is that the greatest dement  in 
the intrinsic type lattice used did not  have an efficient 
machine representation. This impacted the quality of  
the generated code when the smile inference was the 
greatest dement.  The observation that backward type 
inferences can be used with only limited success in real 
codes was also pointed out in [3]. 

In  the area o f  type determination for MATLAB, 
an important effort is the FALCON project [6, 7]. In  
the FALCON approach, a static inference mechanism 
attempts to deduce as much of  the intrinsic type 
information as possible at compile time, and treats the 
intrinsic types of  the remaining variables to be 
COMPLEX. Matters relating to how the compiled 
code performs in the presence of  type errors were not  
dealt with. Techniques similar to those in [6] have 
been used in the Menhir project [4], and in other 
MATLAB compilers such as "Otter" [13]. In the case 
of  Menhir, the system relies on user-provided 
annotations called directives when sufficient type 
information is lacking. 

8 S u m m a r y  
In this paper, we presented a scheme using which 

the types of  program variables in typeless languages 
such as MATLAB and APL can be inferred. The 
unique advantage of  our approach is its ability to also 
correctly handle type incorrect programs. In particular, 
our scheme provides a stronger type error detection 
support than previously proposed methods. In 
addition, we also showed how our approach may 
empower further reductions in the type conformability 
checking overhead. The described techniques are 
currently being integrated into the MATCH compiler, 
a transhtor that aims on converting MATLAB sources 
into code for embedded processors, DSPs and FPGAs 
[2]. 
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