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Abstract

Among the main impediments that languages such
as MATLAB and APL present to a compiler is the
lack of an explicit declaration for a variable's type. The
determination of this important atttibute could allow a
compiler to generate more efficient code, and is a
problem that has been extensively studied in the past.
This paper revisits this problem but unlike prior
efforts, the objective is a uniform approach to type
estimation that also accommodates type incorrect
programs in a way that facilitates stronger type error
detection through the exact localization of the type
etror at run time. We also show how our methodology
makes it possible to further treduce the run-time
overthead due to type conformability checking. The
techniques are cleatly demonstrated by applying them
to deduce the intrinsic types of program variables in
the MATLAB language.

1 Introduction

If a compiler could predict the range of values and
shapes that program variables take on during
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execution, simpler and more efficient code could be
generated to catry out the operations in the program.
For instance, if the statement? £« g+ occurred
somewhere in a MATLAB? program and if the
compiler could establish that both z and 4are always
bound to scalar-shaped integer values in every
execution of this statement, then a simple machine
instruction that adds the values of 2z and 4 could be
generated, rather than an invocation to a generalized
array addition subroutine. Such an inference would
also be beneficial storage-wise because it would permit
the compiler to statically allocate a single wotd for the
result ¢ instead of having to overestimate ¢ as being,
say a double-word result, or having to bind ¢ to some
dynamically allocated storage. Thus, in programming
languages such as MATLAB and APL that lack
declarations, inferring the attribute of type is cleatly
desirable from the viewpoint of producing an efficient
translation of the source.

This paper presents a scheme to automatically
infer the types of program variables in dynamically
typed languages such as MATLAB and APL. The
presentation centets on the MATLAB language, which
was primarily chosen on account of the immense (and
still growing) popularity that it enjoys in the
programming comrnunity.

The difference between outr work and previous
efforts is its ability to exactly Jocalize a type error, when
one does occur at run time. By “exactly localizing” a
type error, we mean allowing progtam execution to
continue succesifully until the occurrence of the type
error, at which point execution is terminated. Consider

? The symbol «— will be used to denote an assignment
operation.

*MATLAB is a registered trademark of The MathWorks,
Inc.
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a progtam /7 whose type correctness cannot be
established statically. Previous approaches will enable
static type estimates for all the variables in the
program that are bound to be honored at run time
along every type-correct execution path in/Z.
Howevet, if a patticular type-incorrect execution path
is exercised, it is not clear how the static inferences
will affect program execution. Will a type error be
detected, and if so, does the detection exactly localize
the type etror in the sense stated earlier? The capability
to localize a type error is desirable because it would
allow the program to execute exactly as written and
thereby facilitate stronger debugging support. This
capability would also benefit system-ctitical software,
where premature code abortion on some input data
may be an ill-advised option. The focus of this work is
to investigate the additions necessary to previously
proposed lattice-based techniques so as to encompass
type incotrect programs and to also permit the precise
localization of run-time type errors. In addition, we
also show how our methods enable a reduction in the
type conformability checking overhead through the
exploitation of the monotonicity propetty of the type
functions involved, and through the application of
well-known compiler optimizations such as loop
peeling.

The rest of this paper is organized as follows. In
section 2, we desctibe previous research that forms the
basis of our work. The necessary extensions to handle
type errors correctly, along with a description and an
informal justification of the modified type
determination ptocess, are provided in section 3. This
is followed in section 4 by an actual application of the
techniques to the problem of intrinsic type estimation
in MATLAB. The fact that previous approaches lack
the ability to precisely localize type errors, even if they
do manage to detect one, is shown in section 5. We
then discuss how the overhead due to type
conformability checking can be reduced by our
scheme in section 6. Other research efforts in the area
of type determination are mentioned in section 7.
Finally, we conclude the paper in section 8.

2 Lattices for Type
Determination

An oft-cited wotk in the area of type estimation is
that due to Kaplan and Ullman [9]. They proposed a
mathematical framewotk based on the theory of
lattices to automatically infer the types of vatiables in a

model of computation that abstracted programming
languages such as APL, SETL and SNOBOL. Their
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framewortk postulates the existence of a lattice [15] 77
of types, chosen by the compiler designer. The
objective is to detetmine statically a type that
subsumes the actual run-time type as #ightly as possible. A
type £ is said to “subsume” a type s if all data
representable by s is also representable by . A case
in point is the COMPLEX type in the MATLAB
language, which has a value range that numerically
contains the value range of the REAL type in the
language. The motivation behind using a lattice is that
a type lower down in the lattice hierarchy can be safely
replaced by a type higher up without comptomising
program correctness®. The need to move down the
lattice is because elements higher up tend to be more
expensive, in temms of execution ime and memory
costs, than elements lower down. For example, the
COMPLEX type typically requires at least twice the
execution time and storage space as the REAL type in
MATLAB. By making the infetence as close as
possible to the actual run-time type, the apptroach
attempts to optimize on the program's operational and
storage requirements.

2.1 Overview of the earfier rramework

Formally, if s and ¢ ate two types in a lattice of
types 7', the join of s and #, denoted by sV ¢,
represents the “smallest” type that subsumes both s
and Z. By this definition, any other type that subsumes
s and £ also subsumes sV . The meet of s and ¢,
denoted by sA 2, is the “largest” type whose value
range is contained within the value ranges of both s
and 7.

Type determination in the framework begins at
the level of assignment statements. Consider an
assignment statement

Z — &N, Xy,..., Xi);

where Z and X{1 < #< £) ate program variables, and

where © denotes a £-ary lanpuage operatot. From
the semantics of ©, it may be possible to determine
the type of Z, at least conservatively, given only the
types 4 of the operands _K. . In such cases, the type
semantics of © could be modeled by a fpe function 7o
that maps the set 7* into the set 7. Type functions
such as 7b are often characterized as forward fHpe
Sfunctions because they indicate what the type of the
result should be, given the types of the arguments. For

* Phrases such as “higher up” and “lower down” are with
reference to the underlying partial order. For instance, a
type / is said to be higher up in the lattice with respect to
atype sif s < 2.
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example, if we were to consider the array addition
built-in function in MATLAB (in infix notation, this
language operator is designated by the symbol +),
adding two operands of type INTEGER and REAL
yields a result whose type is “at most” REAL. We can
thus write 7+ (INTEGER, REAL) = REAL.

It is also possible that, knowing something about
the type of an operator's result and the types of its
operands, something more may be deducible about the
types of its operands. For instance, if we knew that the
type of ¢ in the MATLAB statement ¢« a2+ 5 was
REAL after the assignment, and if the previous best
estimates for the types of a2 and /4 before the
assignment were COMPLEX and REAL respectively,
then the new best estimate for the type of 2 before
the assignment becomes REAL. We thus write
7; (REAL, COMPLEX, REAL) = REAL, whete the

notation Tg(%,1,,-..,,) tepresents the new type

estimate for X;  before the assignment
inZ — O(X, Xy,..., Xa), given that 7 is the type of Z

after the assignment and that the £, s are the respective
ptevious best type estimates for the X;s before the

assignment. Type functions such as 7 that model

these semantics in the backward direction are usually
teferred to as backward type functions.

Program-wide type determination in [9] consists
of a series of steps on the program's control-flow
graph (CFG) [12]. In each step, a forward ot backward
type inference, using the forward and backward type
functons, is performed on a node in this flow graph.
A sequence of such steps that spans all the nodes in
the CFG constitutes a forward or backward pass in the
type detetmination process. The procedure begins
with initial consetvative solutions for each vadable's
type; these then get successively refined with every
iteration of a forward or backwatd type inference pass.
It has been shown that for lattices in which the finite
chain condition holds, a finite number of such iterations
produces a safe solution that cannot be improved
upon further, and that is in some sense an optimal
solution to the type determination problem [9].

2.2 Reguirermnents

Crucial to the success of the Kaplan and Ullman
approach is the satisfaction of two conditions:

Postulate 1. Finite Chain Condition
There are no infinite sequences of elements in
7 that are related by the lattice's partial order
<.. This condition is necessary for the initially
chosen conservative solution to converge to a
fixed point in a finite number of forward or
backwatd type inference steps.

Postulate 2. Monotonicity Condition

The type functions are monotonic with respect to
the defined lattice 7°. For the forward type
functdon 7%, monotonicity implies that

To(t)stys sty ) S To(t 550ty
ift, <t forall1<i<k

Intuitively, monotonicity for the forward type
Function means that the more we know about

the types of the X ; s, the more we will know
about the type of O(X, X,,..., X,).

The above two conditions are sufficient in that if a
lattice of types can be defined that satisfies them, then
such a lattice will be a suitable device for the purposes
of type estimation.

3 Detection of Type Errors

In the framework presented in [9], the important
issue of type incorrect programs was not explicitly
dealt with. That is, programs were considered to be
type cottect to start with, so that the greatest element
in the type lattice, which was assumed to comprise
only “legal” types, formed a suitable initial solution for
the type determinaton problem. Though the
framewortle in [9] could be used on general programs
by assuming them to be type correct and by then
inserting code that enforces the static type estimates
duting progtam execudon, such an approach is
assured to work fine only if the program tutns out to
be type correct at run time. If the program turns out
to be type incorrect, it is not clear whether the static
inferences will continue to hold, and if they do not,
whether the enfotcing code will allow program
execution to proceed successfully until the point of
occutrence of the type error. The extensions desctibed
in this section are meant to address this important
issue.

3.1 Lega/ and Mlega/ Types

The first consideration should be the ability to
differentiate between type correct and type incorrect

Correctly Detecting intrinsic Type Errors i1 Typeless Languages sucl as MATLASB 9
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programs. We do so by regarding two separate sets of
types, Zr and /r, which tepresent legal and “illegal”
types respectively. A legal type is basically the type that
a variable can assume after a successful assignment at
program execution time. The term type is used here in
the most general sense — it represents a collection of
data that have been otganized together for reasons of
logical similafity or mere convenience. Illegal types, on
the other hand, are abstractions meant to signify type
errors. Since the partial order that underlies a type
lattice indicates a “subsumes’ telationship, legal types
should not be comparable by it to illegal types. The
reason for this is that relationships such as /<7 ot
</, whete / denotes a legal type and 7 denotes an
illegal type, would contradict program correctness as
we go up the lattice. Consequently, a bounded type
lattices that is serviceable even in the presence of type
incorrect programs should have the general form
shown in Figure 1.

Figute 1: Layout of a Type Lattice Usable in the
Ptesence of Type Incorrect Programs

In Figure 1, the shaded regions represent lattice
points in the legal and illegal type sets. The greatest
and least elements of the lattice, namely 1 and 0, do
not depict a particular legal or illegal type and are
needed only to form a lattice out of Zr and /7. In a
set-theoretic sense, the most general type 1 could be
thought of as ZrU /r, while the most restrictive type
0 could be thought of as the empty set. In terms of an
intetpretation, 0 could be regarded as the type of a
program variable that is yet to be assigned a value.

Without loss of generality, we can suppose that
there exists a single lattice point in Zr , say 4 , that
subsumes every other legal type in Figure 1. This is
because, if such an element does not exist, the lattice
can always be extended through the introduction of a
new legal type /4 that subsumes all the maximal/ legal
types in Zr. (We call a legal type / maximal if there
exists no other legal type / such that /</.) However,

? Bounded lattices are lattices that have both a greatest
and a least element [15]. It is easy to show that any lattice
that satisfies Postulate 1 must be bounded.
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since 4 may not be mappable to any useful machine
representation that permits the efficient manipulation
of objects belonging to that type by a computer, we
assume the following:

Postulate 3. A Mappable Largest Legal Type

The largest among the legal types in Zr enjoys an
efficient machine representation.

Though the requitement of a mappable largest
legal type is not essential, its fulfillment would be
helpful to a compiler writer since it would allow the
generation of efficient code whenever the tesult of an
inference is a legal type. This is because even if a
patticular inferred legal type lacks an efficient machine
representation, another legal type that is higher up in
the lattice and that does have an efficient machine
representation can always be used in its place. Such a
substitution is valid because program correctness is
preserved as we move up the lattice. What Postulate 3
does is to make the prospect of finding such a legal
type a surety. This is not to say that a type lattice in
which Postulate 3 does not hold cannot be used for
type estimation. In fact, in [3], 2 lattice of APL legal
intrinsic types in which the greatest elemeat does not
have an efficient machine representation is used. In
such cases, if the static inference is the greatest legal
type, the emitted code may have to rely on run-time
resolution to carry out the associated operation. At run
time, a switch-like construct selects the cortect
operation to invoke since by then, the exact types of
the operands will be known. The difference is of
coutse between a few machine instructions that
operate directly on machine-representable data objects
— such as integer or floating-point numbets — and
the execution of conditional code, along with the
maintenance of additional bookkeeping information,
to achieve run-time tesolution.

3.2 Type assertions

A problem that the lattice in Figure 1 poses to a
compiler wrter is that a type inference is useful so
long as it is 0 ot falls onto any of the lattice points in
Z7r and /r . This is because a legal type inference
could be used to produce an efficient translation of
the source, while an illegal type inference could be
used to flag program errot. However, if the result of a
static type inference is 1, then nothing useful is gained
since we are back where we started: that a program
variable's type could be either legal or illegal. The
possibility of 1 being the result of a type inference
cannot be ruled out since without any advance
knowledge on program cottectness, the process of

Pramod G. Jorsha arnd Prithiviraj Barnerjee
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type estimation would begin with 1 as the initial
conservative solution. In fact, in dynamically typed
languages such as MATLAB and APL, type
cotrectness may be specific to an execution instance.
The question therefore boils down to what needs to
be done in order to get around this lack of complete
static information in a reasonably efficient mannet.

Our solution to this problem involves preceding
every assighment statement of the form

§: Z — (X, Xn,..., Xe);

in the original code fragment by a #ype arsertion:
S : asser{ TH(T(N1), T (X2),.. T (MD)) < 4);
S Z— (X, Xy,..., X2)

The function call in statement S tests at run time
whether the condition
Zo(Ts (X)), Ta(A2),..., T (X)) < & Is tue; if so,
execution is allowed to continue and if not, execution
is terminated. The notation 7.(JX1) stands for the

most restrictive type of the program variable 7 at the
patticular point S' in the program and can be
established at run time by inspecting X when control
is at that point in the program’. No changes have to be
made to the framework in [9] to handle the inserted
assert calls since they can be regarded as “dummy”
assighments in which the assigned vatiables are not
subsequently used. Other aspects of the framework,
such as its treatment of confluence points in the CFG,
remain unchanged.

Conceptually, type assertions enable us to assume
that the reaching types for every program variable are
legal at every point in the program. Thus, instead of 1,
we can begin with 4 as the initial type solution.
Physically, a type assertion is the type conformability
code of a language operator, in-lined just before its
invoeation at the call-site. By decoupling an operator's
type checking semantics this way, it may be possible to
lessen the overall overhead due to type conformability
checking (see section 6).

3.2.1 Forward type inference

For the sake of simplicity, we assume that every
node in the control-flow graph consists of either a

5 The most restrictive type is the exact type of the datum
in question. It could be at the granularity of the type
system at hand, or even lower. For example, the most
restrictive intrinsic type for the real number 0:1 could be
REAL in the MATLAB type system, or the type “real
numbers that lie between 0 and 1.” It could also be the
type of a particular real mumber (i.e., 0:1).

type asscrtion or an assignment statement. Let 7,(¥)
be a static estimate of the type of a program vatiable ¥
immediately after the node p is executed in this flow
graph. Let p{¥) be a static estimate of the type of a
program vatiable V when control reaches the node ¢.
If p is the only predecessor of 4 in the CFG, then
7A¥) would be an acceptable pick for p(FV).
However, a particular node could have more than one
predecessor. To cover such situations, we determine
2{V) to be the maximum of the type estimates at all
the predecessor nodes p:

P (V)= vV (M) M

n#l predecessor nodey p

Now suppose that the flow graph node ¢
contains the type check
assert(76(7 X1), 7 X2),...,Td X)) < 4). We can make a
forward type inference through the assertion to arrive
at static type estimates 7/ V) for evety V at the node.
This is because the amwer# invocation Dbasically
establishes constraints on the types of the X:s after the
calf, so that the type of O(X1,X:..,X:) in the
following statement is always legal Thus, such a
forward type infetence should employ the backward
type function . 77(4,...) since new type estimates for

the JXis that satisfy the assertion would have to be

determined. We atrive at these estimates
conservatively:

(2 V) ifV=Xforall <5< 4
=1 N T4 (X, (N5, ., #( X)) Otherwise.  (2)

all 7'such

{that V=2x

Cottectness. We need to show that

TAV)<7{V) wil hold true at node ¢, if

7 V) < 7 ¥) holds true at each predecessor node p.
We show this by first demonstrating that
TAV) < p{V) will be true for all ¥ at g. Because
control will always reach the node ¢ from one of its
ptedecessor nodes g, the most restrictive type 7 V)
at ¢ can at most be the maximum of the most
restrictive types at each of the predecessors z:
(V) < L, 3)

all predecessor
nodes »

Correctly Detecting Intrinsic Type Frrors fnn Typeless Languages such as MATLAS 11
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We are also given that 74 V) < 7.V) is true at each

ptedecessor node p. Therefore, from the
monotonicity of the join operator V
V #N V1)

all predecessar
nodes

all predeceseor
nodes 7

From Equation (1), the last constraint becomes

wnY . TN 2D @
nodes p

Inequalities (3) and (4) thus lead to
T{V) < 2(V). ®
We now need to consider the two scenatos that
arise from J appearing or not appeating in the type

assettion. If ¥ does not appear in the asser? call, the
caim #(V)<7{¥V) immediately follows from

Inequality (5) and Equation (2). Therefore, suppose
that ¥ does appear in the aser# call From the
semantics of the call, an estimate for 7(¥) after the

assertion would be
A T(4TLX2),..., T X5)) .

all 7such
that V=1,

Howevet, from the definition of 7{¥), the following
should hold after the assertion:

HNS, N, THAFAED,FAE, - 7). ©)
thar V=4

From Inequality (5), we also have 7{X1) < z{.X) for
all 1<7< 4 Hence, from the monotonicides of
7% (4,...) and the meet operator A, we obtain

N ZI(4T{X), 7 K0), ..., T{ X)) <

all 7 such
that F=1X;

/\ ];J(Il1 pg(zl’l), 9'(/n)7---:ﬁﬂ (Xi))

all 7 such
that V=/4;

Therefote, from Inequality (6) and Equation (2), we
get 74 ¥) < 7l V).

If the flow graph node ¢ contains an assignment
statement, the forward type inference s
straightforward and is shown below:

To(pd X0), PAX2), .. o D)) if V' = Z,

AN = (V)

otherwise.
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Correctness. Once again, we need to show that
TAV)<7dV) will hold true at node ¢, if

TA¥) < 74(¥) holds true at each predecessor node .

As before, we can show that Inequality (5) is satisfied
at node p. Therefore, if V is not, Z, 7{}) < 7{V)

ttivially follows from Equation (7). If V" is Z, then
from the definition of 7(¥),

T V) < To(TAX1), 7L X2),..., T X7)). )]

Since TAX) < p{X) for all 1< ¢< £, we have from
the monotonicity of 7e,

To(THE), FAID), ., TAID)) < TolpA XY, ), ., A D).

Therefore, from Inequality (8) and Equation (7), we
can conclude that 7{¥) < 7(V).

3.2.2 Backward type inference

For the assignment statement
Z « 9(0, Xy,..., X3), a backward type inference atises
by considering the context in which Z is subsequently
used. However, because every such use is preceded by
an assert call, no useful inferences about the type of Z
can be made in the backward direction. The reason for
this is that a type check of the fotm
asser7eo(...,7T{Z),..) < 4) only makes guarantees
regarding the type of Z after the call, not before. If
those guarantees are not met at run time, execution
halts at the assertion.

Fra—...

Sbe—1La
Figure 2. An APL Code Fragment

R,
S" > Assert that the type of 2
is a scalar nonnegative integer.

S":bera

Figure 3: An APL code frapment with em-
bedded-Type Checking Code

As an example, consider the APL code fragment
shown in Figure 2. By notng that the ' primitive
expects a scalar nonnegative integer as its argument,
we can deduce that the value of ¢ computed in the
first line must be of this type. However, such an

Pramod G. Jofsha and Prithvira) Banerjee
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inference is valid only if the code fragment is given to
be type correct. Even if the type checking code
associated with statement .5’ were considered explicitly
as shown in Figure 3, we still cannot hope to deduce
useful type information, simply because the assertion
may not hold immediately after statement Z. That is,
¢ may not be a scalar nonnegative integer between
statements & and 5" in Figure 3. Thus, if a program
is not given to be type cotrect to statt with, no useful
type information can be detived via a backward
inference. To artive at a type solution, we must
therefore rely on only forward type inferences.

3.2.3 Program-wide type inference

Program-wide type determination begins with
consetrvative type estimates 7.(») for every program
variable V at every node r of the CFG. Because of
the embedded type assertions, 4 is a legitimate
starting estimate. The procedure then performs a
forward type inference pass by computing type
estimates at every node using the type estimates at the
predecessor nodes, as discussed in secdon 3.2.1. It
does not matter how the forward pass traverses the
CFG to accomplish this type estimation because the
type estimates at every node will always be safe. That
1s, if the forward pass does not process a node, the old
type estimates at the node, which ate given to be safe,
will remain in place, while if a hode is visited, the new
type estimates computed at that node will be such that
they continue to be safe. Therefore, a way in which the
forward pass could be implemented is by traversing
the CFG in a depth-firit or breadth-first fashion,
computing the type estimates at each node along the
way. However, tevisiting a node may provide
opportunities for further refinements in the type
estimates.

Because of the finite chain condition and the
monotonicity of the type functions involved, this
improvement will not occur indefinitely and will
eventually reach a stable state. Thus, program-wide
type determination could be performed by repeatedly
applying the forward pass on the CFG until a
fixed-point type cstitnate is achieved at each node.
Program-wide type estimates for the variables may
then be determined by taking a join of the respective
fixed-point nodal type estimates.

3.3 7ype error localization
Consider the assignment statement
8§ Z — 6(X, Xz,..., Xa);

in the original code fragment and the cortesponding
statement pair

S : asserf To(T-(X1), Tr(X2),..., T (N5)) < A);
S Z — (X, Xy, .., X

in the translated version. Suppose that control is
currently at statement .5 in the otiginal code fragment.
The intetpreter would successfully execute this
statement if and only if
To(T(AX1), T X2),...,7T{ X)) < 4. If it does execute

successfully, then the associated type assertion &" in
the translated version would also execute successfully
and control would reach the statement .5™. The latter
statement would then execute cortectly because the
type of Z in S™ was statically estimated to be at least
as large as 72).. If Zo(T{X1),7{X2),....,7{X2)) £ 4,
then a type etror would ctop up at statement .5 in the
original code fragment while the corresponding type
assertion in the translated version would fail. Since this
argument applies to every statement in the otiginal
code fragment, we thus observe that the translated
version will faithfully reproduce the original code's

execution behavior.

A key point to note is that the procedure will
produce legal static type estimates even when the
program is always (i.e., undet all execution paths) type-
incorrect. The embedded assertions will however
intercept the type error at run time, allowing the
program to execute successfully until the point of
occurrence of the type error. In certain situations, it
may be possible to statically verify that a particular
assertion will never hold at tun time. As an example,
this could happen when the assertion involves the
types of program constants. In such cases, the type
error could be flagged at compile time, giving an
opportunity for the programmer to take immediate
remedial action.

4 A MATLAB Example

To demonstrate  the lattice-based type
determination techniques discussed so far, we consider
the problem of inferring the intrinsic vatiable types in
a MATLAB program. In particular, we shall examine
the simple, contrived MATLAB code fragment shown
in Figure 4. The code excerpt consists of a while loop
within which reaching values for the program vatiables
a and ¢4 are added by using the array addition built-in
function. The result is assigned to the program
variable ¢, which is then operated in the next two
statements by the colon built-in function. We assume
that ¢ and & are not live before the loop.

Correctly Delecting intrinsic 7ype Lrrors in Typeless [anguages such as MATLAB 13
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The construction 7 : 7 produces a row vector of
elements that form an arithmetic progression with a
common difference of 1. The starting and ending
values of this progression are 7' and m'4-1z'— m'm
where m' and 7' represent the run-time rea/ values of
m and 7 tespectively. (The construction l:¢ is
therefore similar to the APL construction . c.

while (...),
c—a+ 4
za—2:gc
d—1:c
end;

Figure 4. A Simple MATLAB Code Fragment

In MATLAB, the notion of logical similarity
in the context of types consists of a structural aspect
(eg, a 2X3 matrix) and an arithmetic aspect (e.g.,

integers, reals, complexes and so on). These two
aspects are independent of each other and can be
analyzed in isolation; we call the former the attribute
of shape and the latter the attribute of intrinsic type. The
discussion in this section will concern itself with the
ptoblem of intrinsic type estimation in MATLAB,
though the techniques are also applicable to shape
estimation using lattices. An implementation could use
the methodology of this section to arrive at intrinsic
type estimates for the program varables and to
translate the source into a version that has the
necessary inttinsic type checks; the translation could
then be subjected to a separate shape inferring phase
that gathers the requisite shape information and then
inserts the needed shape checks. When lattices are
used fot shape determination, tough estimates of
shape, such as whether a program variable is a scalar,
fow vector, column vector, matrix or an “atbitrary”
array, can be artived at in the same way intrinsic types
wete inferred. These shape estimates may then be used
like intrinsic type estimates to emit code with the
necessary assettions. However, the shape semantics of
language operators in MATLAB and APL often
impose requirements at the granularity of array
extents. For example, the matrix multiply built-in
functon in MATLAB (denoted by the infix operator
*) expects at least one operand to be a scalar, or both
to be matrices such that the extent along the second
dimension of the first operand matches the extent
along the first dimension of the second operand [10].
Any other combination of shapes produces a run-time
error. Figuring out what an array's extents actually are
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is advantageous because it may sanction important
optimizations such as run-time shape conformability
check reduction, memoty pteallocation and
scalarization [8]. Alternate approaches that make this
possible and that are based on a shape calculus have
been discussed in [8].

4.1 7he MATLAB Intrinsic Type Lattice

For the given code fragment, an approptiate way
of arranging the intrinsic types of MATLAB into a
lattice T is shown in Figure 5, whete 0 is the least
clement of the lattice and 1 is its greatest element. The
BOOLEAN intrinsic type stands for a 1-bit value —
namely, 0 or 1. The UINT8 intrinsic type represents
unsigned integer bytes and is primarily intended for
image processing applications [11]. The INTEGER,
REAL and COMPLEX intrinsic types denote
integers, real numbets and complex numbets
respectively. The attificial intrinsic type NONREAL
designates strictly complex numbers — that is, those
with nonzero imaginary parts. The lattice point #
indicates the illegal intrinsic type, which, as rematked
earlier, is an abstraction meant to exptess an ill-formed
MATLAB expression. For instance, the colon built-in
function expects the intrinsic types of both of its
operands to be at most REAL; 2 NONREAL intrinsic
type causes the run-time system to complainl. On
comparing Figures 5 and 1, we observe that
BOOLEAN, UINTS, INTEGER, REAL,
NONREAL and COMPLEX cottespond to the legal
intrinsic types. The ascendancy from BOOLEAN to
COMPLEX, and from NONREAL to COMPLEX
reflects the inclusion of a legal intrinsic type's value
range in the value range of the legal intrinsic type
above it.

4.2 Intrinsic Type Functions

Our first task is to cast MATLAB's intrinsic type
semantics for the atray addition and colon built-in
functions into the relevant type functons. ‘The
resulting forward intrinsic type functions are shown in
Tables 1 and 2. In these tables, we use B, U, I, R, N
and C as abbreviations for BOOLEAN, UINTS,
INTEGER, REAL, NONREAL and COMPLEX
respectively.

7 An invocation such as 1: 2 + 3z, where 7 is the
imaginary unit, elicits an alert (“Warning: COLON
arguments must be real scalars.’)from the MATLAB run-
time system.
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An important point to note in these tables is that
only the intrinsic type semantics are captured without
any attention to shape. That is, Tables 1 and 2 tell us
how the intrinsic types map, assuming that the
arguments are shape conforming. The formulations
ensure that the illegal intrinsic type i is either
propagated, or generated if the arguments are not
intrinsic-type conforming. Technically, the decision to
propagate the illegal inttinsic type is one of
convenience because reaching types will nevet be 7
due to the preceding type assertions. Genetation of
the illegal intrinsic type is however necessaty so as to
allow the assertions to detect type efrors at run tme.
When one of the operands to the intrinsic type
functions is 0, we have some leeway in choosing the
image of the map; the choices shown in Tables 1 and 2
are such that monotonicity is secured. Observe also
that whenever one (or both) of the operands to the
intrinsic type functions is 1, the outcome is also
usually 1 since nothing can be said about the intrinsic
type of the result except that it could also be either
legal or illegal. When both operands to either of the
inttinsic type functions ate COMPLEX or lower, we
can usually do better.

AN
e N
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umg e NOHAEAL >\

\\ ¢

-

\

Figure 5. The Lattice 7 of Intrinsic Types in MATLAB
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0 B U | R | N C 2z 1
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uio U U 1 1 z 1 7 1
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N |7 |7 |7 |7 |7 |2 |7 7 | 2
C 1 1 1 1 z 1 z |1
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Table 2. 7': (5,2
for example, 7'+ (REAL;COMPLEX)=COMPLEX

since when a real number is added to a complex
number, the result is a complex number. In the
interests of presentation clarity, we do not assume a
patticular bit width for the INTEGER, REAL and
COMPLEX intrinsic types. Thus, adding two
INTEGER quantties will always produce an
INTEGER quantity as indicated in Table 1. However,
because of the stated finite bit widths of the
BOOLEAN and UINT8 intrinsic types, adding a
BOOLEAN to 2 UINT8 could produce an overflow;
therefore, a safe intrinsic type for the result in this case
is INTEGER, as shown in Table 1.

We also need to consider the backward intrinsic
type functions for the given built-in functions; these
ate shown in Tables 3 and 4. The backward intrinsic
type function 7; (COMPLEX s, £) can be obtained

from Table 3 because of the telaton
]f (COMPLEX, s, ) = ]:(COMPLEX,t, 5 9

Once again, we have some freedom in deciding the
maps of the backward intrinsic type functions when
one of the operands is ¢, since such a situation will
never occur due to the reaching types being legal at
every point in the program. In fact, the backward
intrinsic-type maps have been so selected so as to
either improve the previous legal estimate or produce
COMPLEX ot REAL as the new estitnate.

Note that the lattice in Figure 5 satisfies Postulate
1. By inspection, the backward intrinsic type functions,
along with the forward ones in Tables 1 and 2, can be
ascertained to be monotonic with respect to the lattice
in Figure 5. Hence Postulate 2 is honored. Since the
real and imaginary parts of the COMPLEX intrinsic
type can be manipulated separately, COMPLEX has

an efficient machine representation thereby enabling
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Table 3. 7;(COMPLEX, s,7)
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Table 4. 7%(COMPLEX, s, 9

Postulate 3 to hold. We can therefore apply the
techniques of the previous section to arrive at useful
intrinsic type inferences for the code fragment in
Figure 4, even if it is not given to be type correct.

4.3 Program-Wide Type Inferernce

Figure 6 shows the control-flow graph for the
given code excerpt. Execution is assumed to begin at
the “statt” node S and end at the “finish” node F.
Nodes 1" , 2" and 3" respectively cottespond to the
thtee assignment statements in Figure 4, while the
associated type assertions, which presumably are
automatically inserted by an intetrpreter or a compiler,
respectively cottespond to the nodes 1', 2' and 3'. We
assume that the forward type inference pass operates
by visiting the nodes in the CFG in a depth-first order;
Figure 6 displays one such travetsal using solid atrows.
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The process begins with conservative estimates
for the intrinsic types at every node of the flow graph.
At the start node S, these atre
7{a) = 7{8) = COMPLEX and
T7{¢) = 7{d) = O because only 2 and ¢4 are live on
entty into the code fragment. That is, whenever

control flows through node S, we can always be
assured that the relatons 74{2) < COMPLEX,
7{6) < COMPLEX, 7{c) =0, and 7(d) =0 ptevail
However, at the remaining nodes, the most restrictive
intrinsic type fot each progtam vatiable can be any
legal value. Thetefore, we seleet COMPLEX as the
initial safe estimate at these nodes. All of the inital
estimates are exhibited in Figure 6 to the right of the
flow graph. Note that UINT8 and BOOLEAN were
used as the most resttictive intrinsic types for the

program constants 2 and 1 in the assertions at nodes 2'
and 3'.

At the right of Figure 6 are shown two
applications of the forward type infetence pass. A
patticular step in an application of the pass computes
the estimates 74 /) for every program vatiable V" ata
particular node ¢ in the CFG. Depending on whether
the node contains a type assettion or an assignment
statement, the computations happen in accordance
with Equation (2) or Equation (7). The reaching
estimates g(¥) ate used in these computations and
have been calculated using Equation (1); for reasons of
brevity these calculations have not been explicitly
displayed in the figure. To illustrate one such
calculation, the following are the reaching intrinsic
type estimates at node F on the first application of the
forward pass:

2 2) = COMPLEX v INTEGER=COMPLEX,
2% = COMPLEX v COMPLEX=COMPLEX,
2/ c) = 0v REAL=REAL,

2 d) = 0V INTEGER=INTEGER.

On the second application of the forwatd pass, we
atrive at fixed-point intrinsic type estimates at every
node of the CFG; this can be verified by applying the
pass for the third time. By taking the join of the
respective estimates at all of the CFG nodes, we can
arrive at the program-wide inttinsic type estimate of
COMPLEX for z, 6 and ¢, and a program-wide
intrinsic type estimate of INTEGER for 2Z. Given no
prior knowledge regarding the type correctness of the
original code fragment, these are also the best possible
estimates. It should be mentioned hete that the
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solution obtained is to some extent dependent on the
initially chosen estimates at node S§. For instance,
Figure 7 shows the nodal estimates when 2 different
starting solution is picked at S. We note that a
fixed-point solution is achieved after the frst
application of the pass and that the nodal estimates of
the fixed-point solution are mote conservative than
that in Figure 6; in fact, COMPLEX becomes the
program- wide intrinsic type estimate for all the
program vatiables in Figure 7. Thus, selecting the best
initial estimates at node § is crucial to arriving at good
program-wide type estimates for all the variables.

5 Comparisons

If the code fragment in Figure 4 were type cotrect,
then the most testtictive inttinsic type for ¢ would be

s
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REAL. Through the use of a backward type inference,
the ftamework in [9] would determine this. Thus, if
compilation were done assuming the excetpt to be type
cotrect, the translation would declare ¢ to be REAL.
However, such a translation will not correctly localize
a type etror, when one does occur at ran time. For
example, if the generated code wete then executed
with the values 1427 and 1437 for ¢ and 4
respectively, the first statement in the code fragment
will either execute wrongly (because the intrinsic type
of ¢ will not be “large enough” to accommodate the
expected tesult2 4 5¢) or will not be executed at all
(due to preceding type checking code anticipating the
type error). In either case, the translated version will
not execute

i) =L > 1!
i) = m%=4’.
== wya ] =10,

(i 2 L) =, Teld =T EL) =4,
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Figure 6. Estimating the Intrinsic Types Using a Depth-First Traversal on the Control-Flow Graph
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Figure 7. Intrinsic Type Estimation with a Different Starting Solution at S

When

exactly as the original code fragment? However, if control  reaches the first assertion,
code were generated using our scheme, execution is 7(4) <COMPLEX and 7(6) < COMPLEX are
guaranteed to proceed successfully until the type  guaranteed to be true. Since
assertion that immediately precedes the second line in 7'+ (COMPLEX,COMPLEX)=COMPLEX from

the fragment, thus allowing the type etror to be

correctly isolated.

6 Lessening the Run-Time
Type Checking Overhead

Some of the type assertions may be vetifiable at
compile time. For instance, consider the type
assertions generated for the example in Figure 4; these
are repdsed in Figure 8 and marked by the > prefix.

¥ If the code fragment in Figure 4 were run through the
MATLAB interpreter with 2 and 4 setto 14 27 and
1+ 37 respectively, and if the first iteration of the loop
were executed, the run-tume system will execute the
assignment to ¢ without a hitch but will complain when
atternpting to compute 2 : ¢ in the next statement.
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Table 1, we can conclude from the monotonic
property that the first asserdon will always hold.
Additionally, since
7":(BOOLEAN,7(¢)) < 77 (UINT8,7(¢)) from
monotonicity, success at the second assertion implies
success at the third assertion. Eliminating the
redundant assertions will then produce the equivalent
code in Figure 9. Next, from Figures 6 and 7, the
variable 2 will be of type INTEGER in the statement
c¢+— e+ 6 from the second iteration on. Therefore,
the single assertion in Figure 9 need not be executed
beyond the second iteration because if a type etror
does occu, it will occur within the first two iterations.
We can therefore apply the loop peeling
transformation [12] to remove the first two iterations
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of the loop into separate code. The result, shown in
Figure 10, produces a loop body that is free of type
checks. Notice that though the type checking
overhead has been pared down to a minimal, a type
error, when one does occur, will stll be correctly
localized in Figure 10. The code in Figure 10 can now
be subjected to a shape determination phase to gather
the necessary shape information for further
optimizations of the translated code [8]. It could also
be executed by an interpreter as an optimized version
of the source program in Figure 4.

while (Zes?),
> asserd 7'+ (7(a),7(8) < ©)
c—a+td
D asserdA T . (U,7(c)) < O)
z2—2:¢
> asserd T . (B,7(c)) < O)
d—1:¢

end;

Figure 8. With Embedded Type Assettions

if (zes?),
c—a+4
> asser{ 7", (0,7(4)) < ©)
a—2:g¢
d—1:c¢
end;
if (zesd),
c—a+ 4
> asserT . (U, 7(c)) < ©))
2—2:¢
Zd—1:¢
end;
while (Zes,
c—a+t 4
ea—2:¢
d—1:¢
end;
Figure 10. After Loop Peeling

while (zzs4),
c—a+4
o> asserd 7" (U, 7(6)) < O)
a—2:¢
d—1:¢

end;

Figure 9. After

Assertions

Eliminating Redundant Type

7 Related Work

Previous attempts in the area of type estimation
for languages such as MATLAB and APL aimed at
determining conservative static estimates under the
implicit assumption that the program was type correct
[1, 9,5, 3, 6, 13, 4]. In some of these approaches, a
provision for type incorrectness was made by the
argument that run-time type checking code would
ultimately catch a type error when it did occur, though
fiot necessatily at the point of occurrence (see section
5). It is in that respect that our wotk chiefly differs
from these previous attempts. Wotk due to Bauer and
Saal was among the eatliest to recopnize that a
substantial percentage of the run- time type checks
needed for APL could be avoided by static analysis [1].
They showed how even a simple type determination
scheme could produce significant improvements in
performance. The determination of types through the
use of data-flow analysis was first reported in [14]. The
work in [9] improved on this by providing more
powetful algorithms for type detection. In [5], 2 type
determination mechanism in a producton APL
compiler that emitted System/370 assembly code was
desctibed. The infetting occurred in a front-end
compilation process and used a type calculus along
with a global data-flow analyzer. However, the process
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was limited to some extent because when the back-end
compilation started, the system expected user
intervention to tesolve the type of any vatiable that
was assigned a general type during the front-end
compilation process.

In the work due to Budd [3], a partial ordering of
intrinsic type and shape was used in the type
determination process. Data-flow techniques wete
then applied to propagate type information across
expressions, statements and procedures. A point of
pragmatic intetest in the context of [3], and that was
alluded to in section 3.1, is that the greatest element in
the intrinsic type lattice used did not have an efficient
machine representation. This impacted the quality of
the generated code when the static inference was the
greatest element. The obsetrvation that backward type
inferences can be used with only limited success in real
codes was also pointed out in [3].

In the area of type determinaton for MATLAB,
an important effort is the FALCON ptoject [6, 7]. In
the FALCON approach, a static inference mechanism
attempts to deduce as much of the inttinsic type
information as possible at compile time, and treats the
intrinsic types of the remaining varables to be
COMPLEX. Matters relating to how the compiled
code petforms in the presence of type errots were not
dealt with. Techniques similar to those in [6] have
been used in the Menhir project [4], and in other
MATLAB compilers such as “Otter” [13]. In the case
of Menhir, the system relies on user-provided
annotations called directives when sufficient type
information is lacking,

8 Summary

In this paper, we presented a scheme using which
the types of program variables in typeless languages
such as MATLAB and APL can be inferred. The
unique advantage of our approach is its ability to also
cotrectly handle type incorrect programs. In particular,
our scheme provides a stronger type error detection
support than previously proposed methods. In
addition, we also showed how our approach may
empower further reductions in the type conformability
checking overhead. The described techniques are
currently being integrated into the MATCH compiler,
a translator that aims on converting MATLAB soutces
into code for embedded processors, DSPs and FPGAs

[2).
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