A Dynamic APL GUI Equation Solver

 (ADAGE)Stephen M. Mansour
The Carlisle Group, Inc.
544 Jefferson Ave., Scranton, PA 18510
steve@carlislegroup.com

Abstract

This paper describes ADAGE, (A Dynamic APL GUI Equation solver), which allows the user to solve a single multivariate equation when values are supplied for all but one of the variables. The application presents a graphical user interface and uses many of the newer features of Dyalog APL. These include dynamic functions and operators, recursion with tail calls, object syntax, and namespace reference array expansion. All of these features, combined with some key mathematical concepts, including function composition, implicit functions and the Secant algorithm, work together to provide a simple solution to a complex problem. Several examples from the mortgage industry will be explored.

Function Composition

We can derive a monadic function by currying one of the arguments to a dyadic function. Dyalog APL accomplishes this via the composition operator with an array operand:

```
    (20*) 0123 a Powers of 2
1248
    (*02) 0123 asquaring Function
0149
```

In effect there are two completely different monadic functions created from the power function ($*$). This concept extends to a function of n arguments, represented by a monadic function taking an n-vector as its right argument and producing a scalar result. We

[^0]can derive n different functions of a single variable in a similar mannet.

As an example, consider the function $p m t$, which calculates a monthly mortgage payment:
[0] $\quad \mathbb{p} \leftarrow m t X ; r ; t ; b ; D$
[1] (r t b) $-X$ f Rate, term, balance
[2] $D \leftarrow(1+r \div 1200) \star t$
[3] $m+b \times(r \div 1200) \times D \div D-1$
pmt 9.5 360100000
840-8542072
There are three related single-variable functions, which produce the same result but take different inputs:

> A Payment as a function of...
(Pmt 山 360 100000)9.5 คRate 840.8542072
\{pmt 9.5 w 100000$\} 360$ คTerm 840.8542072
\{pmt 9.5 360 (1) 100000 A ...Aalance
840.8542072

Homogenous Equations and Implicit Functions

Any function $y=f(x)$ can be converted to implicit form by the homogeneous equation
$g(x, y)=y-f(x)=0$.
Similatly, any multivariate function
$y=f\left(x_{0}, \cdots, x_{n-1}\right)$ can be converted to implicit form as follows:
$g\left(x_{1}, \cdots, x_{n-1}, y\right)=y-f\left(x_{1}, \cdots, x_{n-1}\right)=0$.
Then by setting $y=x_{n}$ we can define
$g_{k}(a)=g\left(x_{0}, \cdots, x_{k-1}, a, x_{k+1}, \cdots, x_{n}\right)$.
Now we can solve for $x_{k}=g_{k}^{-1}(0)$ using numerical methods.

For example, $p m t$ can be converted to implicit form in the following manner. Represent the homogeneous equation by the function $g(m, r, t, b)=m-p m t(r, t, b)$, whose explicit re-
sult is the error or deviation from zero. Then derive a function, e.g. $g_{1}(a)=g(841, a, 360,100000)$ by fixing all
operator defined below. Four separate functions can be created - one for each variable. parameters except the one of interest, using the $s u b$

```
    g+{\omega[0]-pmt 1+\omegau}
f Function in implicit form
& Result is deviation from o
0.145792日212
    sub+{X&a O X[\omega\omega]+w o da X} A Sub operator fixes all but one variable
    X<0 9.5 360 100000 & Fix rate, term, balance
    Xa(g sub 0) 841
0.1457928212
    X<841 0 360 100000 f Fix payment, term, balance
    X\circ(g sub 1) 9.5
0.1457928212
    X<840.81 9.5 0 100000 & Fix payment, rate, balance
    K0(g sub 2) 360
0.1457928212
    X<841 9.5 360 0 f Fix payment, rate, term
    Xo(g sub 3) 100000 & Input balance = $100,000
```

0.1457928212

The Secant Algorithm

One could use Newton's method to solve $x_{k}=g_{k}^{-1}(0)$. However, this involves evaluating $g_{k}^{\prime}(a)$ fot each k. A slightly less efficient but easier solution is to apply the Secant Method [1]. This method solves for x_{k} by choosing two initial approximations, a_{0} and a_{1}, then iteratively solves the following equation:

$$
\begin{equation*}
a_{n}=a_{n-1}-\frac{g_{k}\left(a_{n-1}\right)\left(a_{n-1}-a_{n-2}\right)}{g_{k}\left(a_{n-1}\right)-g_{k}\left(a_{n-2}\right)} \tag{0.1}
\end{equation*}
$$

When $\left|a_{n}-a_{n-1}\right|<\varepsilon$ stop and choose $x_{k}=a_{n}$ as the solution.

The dynamic operator SecAlg can be used for this purpose. Notice that the operator is recursive and uses a tail call:

[0] SecAlger
[1] (PO QO P1 01) +w A Unpack right arg
[3] $P+P 1-Q 1 \times(P 1-P 0) \div Q 1-00$ a $A P P 1 Y$
algorithm

variables
[5] (TOL^.>|P-PO)vasi:P0 00 P1 01 a Check
$\begin{array}{lll}\text { tolerance } \\ {[6]} & (\alpha-1) \nabla P 0 ~ Q O P 1 Q 1 \quad \text { A Continue }\end{array}$
[7] \}

g1+Xo(g sub 1) f Create rate function
($P 0$ P1) +9 10 \quad f Two approximations
(Q0 01)+g1*Po P1 a Apply function to approximations

50 g1 Secalg PO QO P1 Q_{1} a Secant Algorithm 9.501998177-3.069544618E 12 9.50199日177
$9.094947018 E^{-13}$
The result is a four-item vector containing the final two iterations and the results of applying the implicit function to those two values. The first item of the result as the solution; the interest rate satisfying the homogeneous equation is approximately 9.502%

Creating a GUI

A GUI front end for the mortgage calculations requires a form, which contains a "calculate" button and an edit box for each variable. The user can then enter a value in each edit bor. When he presses a button, the system will recalculate the correct value of the corresponding variable to satisfy the equation.

The function SOLVE (Figure 1) takes the name of an implicit function as input. (See Figure 2: the implicit function $m t g$). A corresponding data dictionary provides a description for the input; the data format and default values. (See Figure 3: the variable $D D_{-} m t g$). It is a matrix containing a row for each input variable to the implict function. SOLVE creates an array of namespaces corresponding to the edit boxes; each item corresponds to a row in the data dictionary. Namespace reference artay expansion and object syntax permits direct assignment of properties to each edit box:

```
ED.FormatString↔DD[;2] & ED is a namespace array
ED.Value+DD[;3] & DD is the data dictionary
```

The default column serves a dual purpose, first to supply a default value to appear in the edit bor to save typing. Secondly, it is used as the first initial value a_{0} when the corresponding calc button is pressed. Before pressing the button, the user should change it to another value, which will serve as the second initial value a_{1}. If the user doesn't change it, the system will automatically create a unique second initial value.

To run ADAGE, the user simply enters: SOLVE ' $m t g$ ' and the Equation Solver dialog box appears (Figure 4).

When the user presses a button, the callback function RECALC (Figure 6) receives the name of the button object, then uses the Secant Method to calcu-
late the appropriate value and changes the value property of the appropriate edit box.

A Complex Problem: Pricing Mortgage-Backed Securities

Mortgage-backed securities are callable bonds that pay both principal and interest as opposed to traditional bonds, which pay only interest until maturity. There are many factors involved in pricing these securities. These include yield, prepayment rate, coupon rate, servicing fees, maturity, and the delay (days to first payment). If we assume that the prepayment rate is constant, we can use the following formula (from [2]):

$$
\begin{aligned}
& g(v, y, p, c, s, m, d)=v-100\left(\frac{1+y}{1+y d}\right)\left[\frac{(1+c)^{m}(p+c-s) z_{1}+(s-p(1+c)) z_{2}}{(1+c)^{m}-1}\right]=0 \\
& \mathrm{z}_{1}= \frac{1-\left(\frac{1-p}{1+y}\right)^{m}}{y+p} \\
& z_{2}= \begin{cases}1-\left[\frac{(1-p)(1-c)}{1+y}\right]^{m} & (1-p)(1-c) \neq(1+y) \\
\frac{y+p+p c-c}{1+y} & (1-p)(1-c)=(1+y)\end{cases}
\end{aligned}
$$

Although the formula is fairly complex, it is very straightforward to code in APL. (See Figure 7: The implicit function price) One can provide any six inputs and solve for the remaining one using our application, the function price and the data dictionary, DD_price:

```
DD_price
\begin{tabular}{lllc}
\(Y \bar{L} D\) & Yield: & \(F 7.3\) & 10 \\
\(C P R\) & Prepayment Rate: & \(F 7.3\) & 30 \\
\(C P N\) & \(C o u p o n:\) & \(F 7.3\) & 10 \\
\(S V C\) & Service Rate: & \(F 7.3\) & 0.5 \\
\(T R M\) Term: & \(I 3\) & 360 \\
\(D E L\) & \(D e l a y:\) & \(I 3\) & 30 \\
\(P R I\) & Price: & \(F 7.3\) & 100
\end{tabular}
        SOLVE 'price'
```

The corresponding dialog box appears in Figure 5.
While price and yield are the most commonly requested information, we could also calculate the required prepayment rate necessary to satisfy a particular price and yield. Or we could determine the interest
rate that would satisfy a particular price, yield and prepayment speed Notice that Newton's Method would require calculating partial derivatives of equation (0.2) with respect to each of the variables. However, using the secant method, we can avoid all of that.

Notice that the price function is in effect a scalar function; it consists of only scalar primitive functions; there are no operators or non-scalar primitives in the code. All components of the right argument must be conformable; that is, they must all have the same shape or be scalars. Notice also that there are no:if control structures to handle the exception case when $(1-p)(1-c)=1+y$ because an :if statement cannot handle an array unless it is inside a loop. Lines 17 and 18 of the price function handle the exception using scalar functions. In fact, the function behaves like a scalar utility (See [3]). Although the application is set up to calculate a single value, it can easily be adapted to solve for arrays. The domain of the func-
tion price includes not only simple 7-element vectors, but also nested 7-element vectors whose elements may also be arrays, e.g-
price (7.5 7.75) 10 (6.9日 6.B) . 5 36030 (101 102)
6.1867136269 .270884727

Conclusion

Building a user interface to solve equations is not difficult in APL. In the workspace ADAGE there are only two defined functions and one defined operator in the basic application:

SOLVE - Cover function; Creates the GUI interface

RECALC - Callback function.
SecAlg - Operator used to solve equation using secant method.

An additional operator sub is localized in the RECALC function as a dynamic operator.

For a user application, one needs only supply an implicit function and a corresponding data dictionary. For the two examples in this paper:
$m t g, p r i c e$ - Implicit functions
$D D_{1} m t g, D D _p r i c e$-Data Dictionaries
ADAGE is easily adaptable to inputting variable names instead of values and solving for many different values simultaneously. A production version of the pricing model is currently being implemented for use in the mortgage industry.

References

[1] Burden and Faires, Numerical Anabysis, Fourth Edition, PWVS-Kent, 1989
[2] Fabozzi, The Handbook of Mortgage Backed Securities, Revised Edition, Probus Publishing, 1988
[3] Mansour, S. How to Write an APL Utility Function, APL97 Conference Proceedings, Quote Quad Vol 28 No. 4

```
    \nablaSOLVE
[O] SOLVE FN;DD;F;SZ;FT;BC;EC;R;EV;ED;C
[1] n\nablaRUN the application
[2] A\omega Function Name: e.g. price (assumes data dictionary DD_price)
[3] ACreate basic form
[4] 'FORM'DWC'FOrm' 'Inverse Calculator'('Coord' 'Pixel')
[5] 'FORM.PARMS'DWC'Group'('Function: ',FN)(B 16)(312 416)
[6] 'FORM.PARMS.Label1'पWC'Label' 'Press button to calculate:'(24 8)
[7] 'FORM.PARMS.Label2'[DC'Label' 'Enter Values:'(24 162)
[B] C<1כ\rhoDD&&'DD_',FN f Data dictionary, # of cols
[9] F+'FORM.PARMS' A Parent
[10] SZ<24 128 OBC&32 o EC&162 A Slze, Button col, Edit col
[11] R+56+32\times14\rhoDD A ROWS
[12] EV+'Event'('Select' 'RECALC'FN) A Event
[13] FT*'FieldTyPe' 'Numeric' & ED.FieldType&c'Numeric'
[14] R{(F,',',(0כ\omega),'_B')DWC'Button'(1כ\omega)(\alpha BC)SZ EV}'cc[1]DD
[15] R((F,',',w,'_E')焐'Edit' '1(a EC)SZ FT}"DD[;0]
[16] ED+{&F;''',\omega,'_E'}"DD[;0] & Edit objects
[17] :If 2<C O ED.FÖrmatString<DD[;2] 0 :EndIf
[18] :If 3<C 0 ED.Value+DD[;3] 0 :EndIf & Update properties from DD
[19] पDQ'.' & Put up form
```

Figure 1：Main function SOLVE

［1］AE Financial ${ }_{\text {cher }}$			
［ 2 ］			
［3］	fo DATE：Pay－thru date		
［4］	คの DAYCOUNT：＇ACT／ACT＇＇ACT／360＇＇30／360＇（default）		
［5］	aw Rate：Should be in percentage form		
［6］	nw TERM：In months		
［7］	fu PV：Present Value（ Default $=\$ 1.00$ ）		
［日］	م山 FV：Future Value（Default＝0）		
［9］			
［10］	An mtg RATE TERM PV＇PMT		
［11］			
［12］	（ R N B0 M）$+Y$（ UnPack right argument		
［13］	$Y N+N * * Y+1+R \div 1200 \quad$ A Calculate monthly，lifetime amort factor $\mathrm{Z}+P+(B 0 \times Y N) \times(Y-1) \div 1-Y N$ a Calculate monthly payment		
［14］			
［15］	$Z \leftarrow P \leftarrow(B 0 \times Y N) \times(Y-1) \div 1-Y N$ e Calculate monthly payment $Z+M+Z \div(-N) * R=0 \quad$ a Calculate when rate $=0$		

Figure 2：Implicit function $m t g$

Variable	Description	Format	Default
R	Rate	$F 7.3$	10
T	Term	$I 3$	360
$B 0$	Balance	$P<\$>C F 16.2$	100000
M	Payment	$P<\$>C F 16.2$	900

Figure 3：Sample data dietionary $D D_{-} m t g$

Proceedings of the APL 2001 Conference

Figure 4: ADAGE dialog box

```
[0] \nablaRECALC
[0] FN RECALC X;BUT;G;GK;NM;GRP;EDITS;K;P;sub
[1] fe Written by Steve Mansour
[2] &\nabla Recalculate parameters
[3] Aw Button, Event
[4] BUT&4X & G&&FN & Get full name of button
[5] NM&-2+(1+\Gamma/('.'=BUT)/ıpBUT)\downarrowBUT f Get parameter name
[6] GRP<(&BUT).### & Find parent
[7] EDITS&&'E|it'口WNकGRP & Find all edit fields
[a] X EDITS-Value f Get values fromscreen
[9] K<DD[;0]icNM A Find position of button pressed
[10] sub*{X+a o X[\omega\omega]\leftarroww o ad K} & Sub operator
[11] P&P+0,=/P&DD[K;3],KコX & Set Initial values
[12] GK+X:(G sub K) & ImpIicit function
[13] X[K]-2כ50(GK SecAlg),P,[0.5]GK"P & APPly Secant Algorithm
[14] EDITS.Value-X f Assign values back to screen
[15] \nabla
```

Figure 6: Callback function RECALC

Figure 7: Implicit function: price

[^0]: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
 APL01, 06/01, New Haven, CT USA
 ©2001 ACM 1-58113-419-3 / 01/0006 \$5.00

