Proceedings of the APL 2001 Conference

Is There a Way of Combining Array-Processing and
Object-Oriented Programming?

Georg Reichard
Institute fur Baustatik
Technical University of Graz,
Lessingstrasse 25 A-8010 Graz, Austria
Tel.: 0316/ 873-6187 Fax: 0316 / 873-6185
Reichard@ifb.tu-graz.ac.at

Abstract

Based on the seven levels of principals of object-
oriented programming desctibed by B. Meyer [2], it is
shown that with today’s APL interpretets it is possible
to combine array processing and object-otiented

programming on a very high level of abstraction.

Introduction

By reading computer magazines, you can find eve-
rywhere articles concetning object-otiented software
development. It seems as if suddenly everything is
object oriented. You find object-otiented program-
ming languages, databases, user intetfaces and even
object-oriented hardware.

“Object-oriented programming” is “in”, but still
developets may have heard about it, but do not know
exactly what is actually meant by it.

The term object-oriented programming comes from the
concept of objects, which form the main pillars of this
programming style. A task is divided in its elementary
components, the so-called objects, which can be
manipulated by the user.

From this point of view “object-oriented think-
ing” has a tradition lasting over 2000 years and statts
with no less 2 person than Aritoteles, who designed in
350 (B.C) with his “disposition of knowledge in
categories” a class scheme for all objects.

Object-oriented programming is not only using an
object-oriented programming language, but means also

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commmercial advantage, and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

APLO1, 06/01, New Haven CT

©2001 ACM 1-58113-419-3 / 01/0006 $5.00

a completely different way of thinking, which is al-
ready used in analysis and design of the theoretical,
semantic solution.

For making code te-usable, extensible, and com-
patible there is 2 demand for a modular system atchi-
tecture.

Like “object-oriented”, “modulat” is another
popular catchword, but with many interptetations.
Originally it meant developing an application in pieces,
mostly called subroutines. The degree of reusability
can only increase, if the modules are really autono-
mous.

But today modularity demands morte from the
programmet. B. Mayer defines the five criteria for
rating modularity, the attributes of modular decompo-
sition, combination, undetstanding, durability and
protection.

This will not be discussed in detail here, but it
should be pointed out, that modularity is the key for
reusability and the flexibility of futute extensions.

Object-Oriented Models

Instead of the two entities of data and procedures
there is only one entity in object-oriented systems—
the object. It offers both procedures and data as a self-
contained unit to the rest of the program.

Figure 1: Basic structure of object orented systems

Is There a way of Combining Array-Processing and Object-Oriented Programming a3


http://crossmark.crossref.org/dialog/?doi=10.1145%2F570406.570417&domain=pdf&date_stamp=2000-12-01

Proceedings of the APL 2001 Conference

Furthermore, the data of this object can not be
manipulated directly, but only by messages sent to the
object. The object itself decides how—and with which
one of its own procedures—it will respond to this
message.

For evaluating the quality of a system architecture,
not only should the simplicity of design be considered,
but also the facilities: how changes can be realized. In
this respect objects get the dtop on functions.

object identity (instance)

methodes —+b>  attribules
(procedures) <l4—  (datn)

v
massages to other objects

messages to the Object

progremm-code (encapsulated)

Figu.l': 2:_Obiect a.tc-hj.tec ture
Object-Oriented

Programming Languages

Looking at classical programming languages, how
far they are able to support object-oriented concepts,
you find mainly three types:

The first one allows programming with abstract
data types. All accesses to data ate petformed by
routines. Without linguistical support this is just a
methodical agreement and of coutse not object-ot-
ented programming yet. Representatives of this type
include languages like FORTRAN.

The second category covers languages, which al-
low definiions of modules though suitable data
structures for encapsulating information (for example
the language Modula-2), but do not offer heredity.

The last type contains the real object-oriented lan-
guages, which include all concepts, like heredity,
polymorphism and redefinition.

Object-oriented programming in
Fortran?

The oldest “living” programming language,
FORTRAN, offers just a primitive suppott for encap-
sulation.

A FORTRAN system consists of a main-routine and
normally several subroutines. Due to a language
facility, which has been part of the language since
FORTRAN77, encapsulation can be emulated.

84

The facility to allow several entries to a procedure
was otiginally likely designed for other purposes, but
can also be used in this case.

This extension allows FORTRAN routines to have
entry-points other than the one at the head of the
routine. These entries can be called from other places
as if they were independent routines. All entres of a
given routine use the same persistent data, which can
be stored between different calls by the SAVE
directive.

This technique can be used for developing mod-
ules for managing abstract objects. The module hides
thereby in a routine with several entries, which repre-
sent the methods of the object. Note that the routine
is never called by its intrinsic name.

All entries must contain the following form:
ENTRY (arguments)

..ihstructions...

RETURN

Note that the FORTRAN routine and all its entties
must either be subroutines or functions. So if any
operation of the object needs a result, all other entries
must be defined as functions, even if the tesult is
itrelevant.

Although this programming technique works, it
suffers from strict limitations:

Intetnal calls of an operation by another one are
not allowed, since this would be a recutsive call.

Thete is no support for dynamical creation of ob-
jects (instances). Thus it is only possible to implement
single objects instead of defining classes with any
number of exponents created at run time.

Therefore this programming style should only be
used, if there is no other choice than using FORTRAN
and applying encapsulation techniques.

Object-oriented programming in APL?

When APL was invented in 1962 by K.E. Ivetson
nobody thought about object-orientation, but it was a
milestone of array processing. The most significant
step for APL as an array-processing language was the
further development of APL2 with the introduction of
mixed arrays and nested arrays combined with sugges-
tive, primitive functions.

Although there are several different APL inter-
preters controlling the market, just the environment
Dyalog APL provided by Dyadic Systems Ltd. seems
to permit object-oriented software development.

Georg Reichard



Proceedings of the APL 2001 Conference

Dyalog APL/W combines the facilities of array
handling with the object-oriented concepts of modern
GUIs. The result is a highly powerful and productive
tool for developing CUA (Common User Applica-
tions) conforming software.

At this time the namespace technology is the most
important reason why Dyalog APL/W is so extraordi-
nary and gets the drop on many other progtamming
languages.

I think I will not have to explain namespaces in
detail for the circle of the APL community, but I
would like to cling to certain features of namespaces,
which are:

Namespaces can contain functions, opetatots,
variables, and, of course, also further namespaces.
That means that functions and variables for a cettain
task can be combined in their own namespace.

Within a namespace you can see only the func-
tions and variables of this namespace, so that func-
tions with the same name in other namespaces are
invisible.

L e B e
" - = - " ) :-I
I e | e e i (s 1 S |
m_ ._-f; Tt M IEA1- Ilr:_lT:IF-ll _-___: |
P T e T
B W reala
. £ a
- 1
L | i J o s e o sl A e e

Figure 3: The Dyalog APL/W Workspace Explorer
Ornginally namespaces might have been imple-
mented to organize and divide the wotkspace into
smaller entities. So a namespace can be copied from
one workspace to another without creating naming
conflicts.

Furthermore, namespaces permit object-oriented
concepts to be introduced to APL.

By using namespaces it is possible to encapsulate
procedures on data, which leads to code that is easier
to develop, easier to understand, and above all easier
to maintain.

Implementation of Object-
Oriented Programming

Concepts in APL

B. Meyer defines “seven levels of the object-od-
ented facility”, which I have used as criteria for the
feasibility of object-otiented APL.

Level 1 - an object based modular
structure

“Systems are unitised on basis of their data struc-
ture.”

The dassification of a system into modules can be
easily realized by using the namespace technology and
hierarchy for structuring the needed data of an appli-
cation system.

Level 2 - data abstraction

“Objects must be described as implementations of
abstract data types.”

By structuring classes, especially objects, in sepa-
rate namespaces abstract data types can easily be
defined, due to the fact that namespaces can manage
vatiables and routines in common. Because of the
invisibility of these elements from outside of the
namespace it is possible to encapsulate the structure.
But there is one minor point against the pure object-
oriented concept: Values of atttibutes can be accessed
without calling a propet procedure by simply
specifying the whole class path, e.g.:

# .Project. MyClass.Vatiable

It should be pointed out that this facility is also
provided in “pure” object-otiented languages like
C++, but for reasons of maintainability and reusability
it should be avoided.

Level 3 - automated memory
allocation

“Unused objects should be deallocated by the
subjacent language system without the intetference of
the programmer”

This level is covered by the APL interpreter,
which actually allocates and deallocates memoty for all
variables used in the system.

Level 4 - classes

“Evety non-simple type is a module and each
module of higher level is a type.”

By intetpretation of the definition “non-simple
type”, which allows the usage of predefined data types
(like integer, string, etc.), APL fulfils this level too. All
other program elements can build up on these types
and can be defined as variables containing mixed
and/or nested atrays, implemented as classes in sepa-
rate namespaces.

Is There a way of Combining Array-Processing and Object-Oriented Programming 85



Proceedings of the APL 2001 Conference

Level 5 - heredity

“A class can be defined as an extension or as a re-
striction of another class.”

Heredity techniques can be realized by nesting the
different classes in a tree structure of namespaces.
Through adding all parent namespaces in the global
system variable DPATH with

OPATH«'+"

the whole class path is searched for a requested
method to run.

By adding functions in a new sub-namespace
classes can be extended, by redefining functions as
“null-functions” and variables with “null-values”
classes can be restricted referring to their parent class.

Level 6 — polymorphism

“Program elements may refer to objects of more
than one class, and operations may have different
implementations in different classes.”

Through the ptinciples of heredity and encapsula-
tion of data in separate namespaces polymorphic soft-
wate development can easily be realized with Dyalog
APL. For the purpose of extensibility of software
systems this technique of polymorphism should be
implicitly used.

36

Level 7 — multiple heredity

“It is possible to define classes, which inherit from
more than one class, and mote than once from omne
class.”

This level can only be realized laboriously in
Dyalog APL. By implementing a cover function

Result<«'Method' Do arguments

it is possible to search the path stored in the vadable
“classpath” for a requested method.

This principle of object-oriented programming is
very controvetsial, since it is not defined how methods
which exist in mote than one class are inherited. Also
the maintenance of these classes often leads to
ptoblems. For these reasons this technique is not
suppotted in Java, for example.

Literature:

[11 I. Jacobson, M. Christetson, P. Joanson, and G.
Overgaard: Object-Oriented Software Engincering — A Case
Driven Approach, Addison Wesley, Wokingham, 1992

[2] B. Meyet. Object-Oriented Software Construction. Prentice-
Hall Intemational, Ltd., London, 1988.

Georg Reichard





