
Proceedings of the APL 2001 Conference 

Is  There  a W a y  of Combining Array-Processing and 
Object -Or iented  Programming?  

Georg Reichard  
Institute fur Baustatik 

Technical University of Graz, 
Lessingstrasse 25 A-8010 Graz, Austria 

Tel.: 0316 /873-6187  Fax: 0316 / 873 -6185  
Reichard@ifb.l:u-graz,ac.at: 

Abstract 
Based on the seven levels o f  principals of  object- 

oriented programming described by B. Meyer [2], it is 
shown that with today's APL interpreters it is possible 
to combine axzay processing and object-or/ented 
progxaxnming on a very high level o f  abstraction. 

Introduction 
By reading computer  magazines, you can fred eve- 

tywhere articles concerning object-oriented software 
development.  It seems as if suddenly everything is 
object oriented. You find object-oriented progxam- 
ruing languages, databases, user interfaces and even 
object-oriented hardware. 

"Object-oriented programming" is "'in", but  stir 
developers may have heaxd about it, but  do not  know 
exactly what  is actually meant  by it. 

The term o~ct-oriented programming comes from the 
concept o f  objects, which foma the main pillars of  this 
prog~arnming style. A task is divided in its dementa ty  
components ,  the so-called objects, which can be 
manipulated by the user. 

F rom this point  of  view "object-oriented think- 
hag" has a tradition lasting over 2000 yeaxs and staxts 
with no less a person than Aritoteles, who  designed in 
350 (B.C.) with his "'disposition of  knowledge in 
categories" a class scheme for all objects. 

Object-oriented programming is no t  only using an 
object-oriented programming language, but  means also 

Permission to m a r e  digital or hard copies of  all m part of  this 
w o r k  for personal or classroom use  is granted without fez 
pmvidexl that copies are not  made  or distributed for profit or 
commercial advantage, and that copies beax this notice and the 
full citation o n  the  first page. To copy otherwise, to republish, 
to pos t  on servers, or to r ed i s~bu te  to lists, requires prior 
specific permission and/or a fee. 
APLOl ,  06/111, New H a v e n  C T  
@2001 A C M  1-58113-419-3 1 01/0006 $5.00 

a completely d i f f~ent  way of  thinking, which is al- 
ready used in analysis and design of  the theoretical, 
semantic solution. 

For  making code re-usable, extensible, and com- 
patible there is a demand for a modulax system axchi- 
tecture. 

Like "object-oriented", "modulax" is another 
populax catchword, but  with many interpretations. 
Originally it meant  devdoping  an application in pieces, 
mostly called subroutines. The  degree of  reusability 
can only increase, if  the modules axe really autono- 
mous.  

But today modularity demands more  from the 
programmer.  B. Mayer defines the five criteria for 
rating modularity, the attributes o f  modulax decompo- 
sition, combination, understanding, duarability and 
protection. 

This will not  be discussed in detail here, but it 
should be pointed out, that moduhnaty is the key for 
reusability and the flexibility o f  furore extensions. 

Object-Oriented Models 
Instead of  the two entities o f  data and procedures 

there is only one entity in object-oriented sys tems--  
the object. It  offers both procedures and data as a self- 
contained urnt to the rest o f  the p~o~'axn. 

message 

F i g u r e  I: Basic  s t ruc tu re  o f  ob jec t  o r ien ted  systems 

Is There a way of Combining Array-Processing and Object-Oriented Programming 83 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F570406.570417&domain=pdf&date_stamp=2000-12-01


Proceedings of the APL 2 0 0 1  Conference  

Furthermore,  the data o f  this object  can no t  be  
manipulated directly, bu t  only by  messages sent to the 
object. The  object  itself decides how-- -and  with wh/ch 
one  o f  its own  procedures  it will respond to this 
message. 

For  evaluating the quality o f  a system architecture, 
n o t  only should the simplicity o f  design be  considered, 
b u t  also the facilities: h o w  changes can be  rea]iT.ed. In 
this respect  objects get the drop on funct/ons. 

't | 
! 

object idemJty Onstance) 

mll~lm m 4>.. al~bulm 
~ro~duru)-,~ - -  fdm} 

prugmmm-code Cemmlmullfm@ 

Figure 2: Object axchitecmare 

Object-Oriented 
Programming Languages 

Looking  at classical proffcarnming languages, h o w  
far they are able to suppor t  object-or iented concepts,  
you  find mainly three types: 

The  first one  allows programming with abstract 
data types. All accesses to data ate pe r fo rmed  by 
routines. Wi thou t  linguisticaI suppor t  this is just a 
methodical  agreement  and o f  course no t  object -o~-  
ented programming yet. Representatives o f  this type 
include languages like FORTRAN. 

The  second category covers languages, which al- 
low definitions o f  modules  though su/table data 
structures for  encapsulating infozmation (for example 
the  language Modula-2),  bu t  do no t  offer  hered/ty. 

The  last type contains the  real object-or iented lan- 
guages, which include all concepts ,  like heredity, 
po lymorph i sm and redefinition. 

Object-oriented programming in 
Fortran ? 

The  oldest  "'living" programming language, 
FORTRAN, of£ers just a pr/.mitive suppor t  for encap- 
su.lation. 

A FORTRAN system consists o f  a main-routine and 
normally several subroutines.  D u e  to a language 
facil/ty, which has been part  o f  the language since 
FORTRAN77, encapsulation can be  emuhted .  

The  facility to aUow several entries to a p rocedure  
was o~iginally likely designed for  o ther  purposes,  bu t  
can also be  used  in this case. 

Th . i s  extension aUows FORTRAN r o u t i n e s  t o  have 
entry-points o ther  than the one  at the head o f  the 
routine. These  ent_ties can be  caUed f rom other places 
as i f  they were  independent  routines. All entries o f  a 
g/yen rout ine use the same persistent  clam, which can 
be  s tored be tween  different  calls by  the SAVE 
directive. 

This technique can be  used  for developing m o d -  
ules for managing abstract  objects. T he  module  hides 
thereby in a rout ine with several entries, which  repre- 
sent the me thods  o f  the object. N o t e  that  the routine 
is never called by  its intrinsic name. 

_All enttles m u s t  contain the Following form: 

E N T R Y  (arguments) 

...instructions... 

R E T U R N  

N o t e  that  the FORTRAN routine and all its entities 
mus t  either be  subroutines or  "functions. So if  any 
operat ion o f  the object  needs a result, all o ther  entries 
mus t  be  defined as functions,  even if  the result is 
irrelevant. 

Al though this programming technique works,  it 
suffers f rom strict limitations: 

Internal calls o f  an operat ion by  another  one  are 
no t  allowed, since this w o u l d  be  a recmrsive call 

T h e r e / s  no  suppor t  for  dynarnical creation o f  ob-  
jects (instances). Thus it is o n l y  possible to implement 
single objects instead of defining classes with any 
number of exponents created at run time. 

Therefore  this p rogramming style should only be  
used, i f  there is no  other  choice than using FORTRAN 
and applying encapsulation techniques. 

Object-oriented programming in APL? 
W h e n  A P L  was invented in 1962 by  K.E. Ive t son  

n o b o d y  thought  abou t  object-orientat ion,  bu t  it was a 
trfilestone o f  array processing.  The  m o s t  significant 
step for  A P L  as an array-processing language was the 
further deve lopment  o f  A P L 2  with the int roduct ion o f  
mixed arrays and nes ted  arrays combined  with sugges- 
five, primitive functions. 

Al though there are several different  A P L  inter- 
preters controlling the market, just the envixonment  
Dyalog  A P L  provided  by  Dyadic  Systems Ltd. seems 
to permit  object -or iented sof tware d e v d o p m e n t .  

B4 Georg Reichard 



Proceedings of the APL 2001 Conference 

Dyalog A P L / W  combines the facilities o f  array 
handling with the object-oriented concepts o f  modern 
GUIs. The result is a highly powerful and productive 
tool for developing CUA (Common User Appl/ca- 
tions) conforming software. 

At  this time the namespace technology is the most  
important reason why Dyalog A P L / W  is so extraordi- 
nary and gets the drop on many other programming 
languages. 

I think I will not  have to explain namespaces in 
detail for the circle of  the APL community, but  I 
would like to cling to certain features of  namespaces, 
which are: 

Namespaces can con~in functions, operators, 
variables, and, o f  course, also further namespaces. 
That  means that functions and variables for a certain 
task can be combined in their own namespace. 

Within a namespace you can see only the func- 
tions and variables o f  this namespace, so that func- 
tions ,with the same name in other narnespaces are 
invisible. 

Figure 3: The Dyalog APL/W Workspace Explorer 

Originally narnespaces might have been imple- 
mented to organize and divide the workspace into 
smaUer entities. So a namespace can be copied from 
one workspace to another without creating naming 
conflicts. 

Furthermore, namespaces permit object-oriented 
concepts to be introduced to APL. 

By using namespaces it is possible to encapsulate 
procedures on data, which leads to code that is easier 
to develop, easier to understand, and above aU easier 
to maintain. 

Imp lementa t ion  of Object-  
Oriented Programming 
Concepts in APL 

B. Meyer defines "seven levels of  the object-ori- 
ented facility", which I have used as criteria for the 
feasibility o f  object-oriented APL. 

L e v e l  1 - a n  o b j e c t  b a s e d  m o d u l a r  
s t r u c t u r e  

"'Systems are unifised on basis o f  their data stxuc- 
U.~e?' 

The classification o f  a system into modules can be 
easily realized by using the narnespace technology and 
h/erarchy for struct~,ring the needed data of  an appli- 
cation system. 

L e v e l  2 - d a t a  a b s t r a c t i o n  
"Objects must  be described as implementations of  

abstract data types." 

By structuring classes, especially objects, in sepa- 
rate namespaces abstract data types can easily be 
defined, due to the fact that narnespaces can manage 
variables and routines in common. Because o f  the 
invisibility of  these dements  from outside of  the 
namespace it is possible to encapsulate the structure. 
But  there is one minor point  against the pure object- 
oriented concept: Values o f  attributes can be accessed 
without c~lli~g a proper procedure by simply 
spedfying the whole class path, e.g.: 

#.Project.MyClass.Vaziable 

It should be pointed out that this facility is also 
provided in "'pure" object-oriented languages like 
C++,  but  for reasons of  maintainability and reusability 
it should be avoided. 

L e v e l  3 - a u t o m a t e d  m e m o r y  
a l l o c a t i o n  

"Unused objects should be deallocated by the 
subjacent language system without the interference o f  
the programmer" 

This level is covered by the APL interpreter, 
which actually allocates and deallocates memory for all 
variables used in the system. 

L e v e l  4 - c l a s s e s  
"Every non-simple type is a module and each 

module o f  higher level is a type." 

By interpretation of  the definition "non-simple 
type", which allows the usage of  predefined data types 
(Like integer, string, etc.), APL  fulfils this level too. AU 
other program dements  can build up on these types 
and can be defined as variables containing mixed 
and /o r  nested arrays, implemented as classes in sepa- 
rate namespaces. 

Is There a way of Combining Array-Processing and Object-Oriented Programming 85 



Proceedings of the APL 2001 Conference 

L e v e l  5 - h e r e d i t y  

"A class can be def ined as an extension or  as a re- 
striction o f  another  dass ."  

Heredi ty  techniques can be  realized by  nesting the 
different classes in a tree structure o f  namespaces.  
Th rough  adding all parent  namespaces  in the global 
system variable OP A TH "with 

OPA THe- ' + ' 

the whole  class path  is searched for a requested  
m e t h o d  to run. 

By adding functions in a new sub-namespace  
classes can be  extended,  by  redeeming functions as 
"'null-functions" and variables "with "'null-values" 
classes can be  restricted ref*m-ing to their parent  class. 

Level 6 - polymorphism 
"Program demen t s  may  refer to objects o f  more  

than one class, and operat ions may  have different 
implementat ions in different classes." 

Through  the principles o f  heredity and encapsula- 
tion o f  data in separate namespaces  po lymorphic  soft- 
ware deve lopment  can easily be  realized with Dyalog  
APL.  For  the pu rpose  o f  extensibility o f  software 
systems this technique o f  polymo~phism should be  
impficifly used. 

Level 7 - multiple heredity 
<'It is possible to define classes, which  inherit f rom 

more  than one  class, and m o t e  than once  f rom one  
c l a s s .  "J 

This level can only be  realized laboriously in 
Dya log  APL.  B y  implement ing a cover  funct ion 

Result÷'Method' Do arguments 

it is possible  to search the path  s tored in the variable 
"dasspa th"  for a reques ted  method.  

This principle o f  object -or iented programming is 
very  controversial,  since it is n o t  def ined h o w  methods  
which exist in m o r e  than one  class are inherited. Also 
the maintenance o f  these  classes of ten leads to 
problems.  For  these reasons this technique is no t  
suppor ted  in Java, for  example. 

L i t e r a t u r e :  
[1] I- Jacobson, M. Ch.r/sterson, P. Jonnson, and G. 

Overgaaxd: Oi~}ct-Omutsd S o ~ r r  1Sngineering-A Cast 
Driwn Approach, Addison Wesley, Woldi. ghana, 19 9 2. 

[2] B. Meyer. O~ct-Oriented £ql~vare Construaio.. Preaxtice- 
H~ll International, Ltd., London, 1988. 

86 G e o r g  R e i c h a r d  




