
The Undecidability of Associativity
and Commutativity Analysis

ARTHUR CHARLESWORTH
University of Richmond

Associativity is required for the use of general scans and reductions in parallel languages. Some
systems also require functions used with scans and reductions to be commutative. We prove the
undecidability of both associativity and commutativity. Thus, it is impossible in general for a com-
piler to check for those conditions. We also prove the stronger result that the resulting relations
fail to be recursively enumerable. We prove that these results hold for the kind of function sub-
programs of practical interest in such a situation: function subprograms that, due to syntactical
restrictions, are guaranteed to halt. Thus, our results are stronger than one can obtain from Rice’s
Theorem. We also obtain limitations concerning the construction of functions and limitations con-
cerning compiler-generated run-time checks. In addition, we prove an undecidability result about
programmer-constructed run-time checks.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Program-
ming—parallel programming; D.3.2 [Programming Languages]: Language Classifications—con-
current, distributed, and parallel languages; D.3.3 [Programming Languages]: Language Con-
structs and Features—general scan operators, general reduction operators; F.4.1 [Mathematical
Logic and Formal Languages]: Mathematical Logic—computability theory; F.4.3 [Mathemati-
cal Logic and Formal Languages]: Formal Languages—decision problems

General Terms: Languages, Theory

Additional Key Words and Phrases: Associative function, commutative function, loop program,
parallel prefix, primitive recursive, recursive, recursively enumerable, reduction, scan, sequence,
undecidable

1. INTRODUCTION

Many problems related to software are known to be undecidable. The lasting
contribution of discovering and proving such results is to help define the bound-
aries within which software developers must work, rather than to provide tech-
niques applicable in software development. Recent such results in this journal
concern the undecidability of flow-sensitive alias analysis [Ramalingam 1994],

This work was partially supported by a grant from the University of Richmond and is also related
to research funded by NASA grant NAG-1-774.
Author’s address: Department of Mathematics and Computer Science, University of Richmond,
Richmond, VA 23173; email: charlesworth@acm.org.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2002 ACM 0164-0925/02/0900-0554 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 5, September 2002, Pages 554–565.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F570886.570889&domain=pdf&date_stamp=2002-09-01

Undecidability of Associativity and Commutativity Analysis • 555

the undecidability of context-sensitive data-dependence analysis [Reps 2000],
and the undecidability of context-sensitive synchronization-sensitive analy-
sis [Ramalingam 2000]. Our undecidability results concern associativity and
commutativity analysis.

It is well known that reductions and scans facilitate solving a variety of
problems [Kruskal et al. 1985; Hillis and Steele Jr. 1986]. These operations, in
conjunction with just selection and broadcasting, yield an elegant, yet powerful
model of parallel computation [Akl and Stojmenovic 1996]. (Reductions are
sometimes called “generalized sums” and scans are sometimes called “prefix
sums”.)

Software platforms support the use of programmer-defined functions in re-
ductions and scans by providing general operators that take a sequence and the
programmer-defined function f and produce the resulting reduction or scan.
By compiling high-level software platforms into low-level primitives on their
machines, parallel computer vendors can compete in the arena of efficiency to
encourage programs written for those software platforms to be ported to their
machines.

Functions that fail to be associative can produce correct answers on one im-
plementation of a general reduction or scan operation and incorrect answers on
another, even though both implementations are correct. Thus, such software
platforms require that a function used with a scan or reduction must be as-
sociative and this assumption is made by the implementors of the platform.
It is not just a theoretical possibility that programmers introduce errors into
software by incorrectly determining the associativity of functions. According to
the chief implementor of the MPI general reduction operator on the IBM SP2,
the correctness of that implementation was questioned by some of its users.
But in each case, the reason for the problem was the failure on the part of pro-
grammers to properly ensure the associativity of functions (H. Franke, personal
communication).

Some systems require f to be both associative and commutative [IBM 1994;
Intel 1994; Parasoft 1990]. Other systems just require f to be associative [Bala
et al. 1995] and some of these also give the programmer the option of assert-
ing that f is commutative so the implementation can use commutativity to
advantage [Snir et al. 1996].

We prove that associativity is undecidable. Thus, it is impossible in general
for compile-time checks to verify the associativity of functions. Moreover, we
prove the stronger result that the set of function subprograms that are associa-
tive is not recursively enumerable. We also prove the same impossibility results
for commutativity. We prove that these results hold for the kind of function sub-
programs of practical interest in such a situation: function subprograms that,
due to syntactical restrictions, are guaranteed to halt. Thus, our results are
stronger than one can obtain from Rice’s Theorem. We also show that straight-
forward construction from a base set of functions does not provide a satisfactory,
general approach to obtaining associative functions. We also obtain limitations,
for both associativity and commutativity, concerning compiler-generated run-
time checks and undecidability results for programmer-constructed run-time
checks.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 5, September 2002.

556 • Arthur Charlesworth

Many researchers have developed techniques for the automatic extraction
of reductions and scans from the loops of sequential programs. In contrast, the
focus of this paper is on programmer-defined function subprograms.

The paper is organized as follows: Section 2 provides background infor-
mation, Section 3 considers compile-time results, Section 4 considers con-
struction from a base set of functions, Section 5 considers compiler-generated
run-time checks, Section 6 considers programmer-constructed run-time checks,
and Section 7 presents conclusions.

2. BACKGROUND

Let X be a set and let f be a function subprogram that defines a function
from X × X to X . Since such a function subprogram defines a unique such
function, for convenience in notation we let f also denote that function; our
treatment is not affected by the fact that a single function can be implemented
by infinitely many function subprograms. Recall that f is associative if and
only if the following associativity equation holds for all x, y , and z in X :

f (x, f (y , z)) = f (f (x, y), z).

Also recall that f is commutative if and only if, for all x and y in X , f (x, y) =
f (y , x).

These definitions assume f is defined on all of X × X ; that is, the function
subprogram defining f halts on all inputs. That is the situation of practical
interest in the context of scans and reductions. Of course, determining whether
an arbitrary function subprogram halts on all inputs is an undecidable prob-
lem. We avoid nonhalting computations by focusing on bounded-loop programs,
also called loop programs [Meyer and Ritchie 1967b]. An obvious algorithm de-
termines whether a function subprogram is in this set, since the definition of
the set is purely syntactical.

We assume in this paper that all programs are written in Pascal. Our results
apply to Pascal-like restrictions of other languages. For example, the syntax of
the for loop in C and the DO loop in Fortran must be restricted so that, for
instance, it is not possible to change the value of a loop control variable within
such a loop.

Definition 1. A bounded-loop program is a function subprogram that
makes no calls on subprograms and whose only sequence control is via for
loops, begin end blocks, and if and if then else statements. An input-free pro-
gram is a program containing no input statements. To simplify our treatment
we also assume that an input-free program contains no subprograms.

Our focus on bounded-loop programs leaves out no function of practical inter-
est. This follows from two facts. First, a function from tuples of natural numbers
to natural numbers can be defined by a bounded-loop program if and only if it
is primitive recursive [Meyer and Ritchie 1967b]. Of course, natural numbers
can be used to code any data type. Second, the set of primitive recursive func-
tions contains all the recursive functions that halt on all inputs “that we could
conceivably want to compute for any practical purpose” [Phillips 1992, p. 111].

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 5, September 2002.

Undecidability of Associativity and Commutativity Analysis • 557

Roughly, this is because if f is a recursive function that is not primitive re-
cursive, the running time of any program to compute f grows at an enormous
rate.

The standard approach to proving the undecidability of a decision prob-
lem concerning properties of a function is to use Rice’s Theorem [Hopcroft and
Ullman 1979; Rogers 1987]. Rice’s Theorem concerns recursive functions in gen-
eral, including those that fail to halt on some inputs. Interpreted in terms of
unrestricted programs, Rice’s Theorem states that each nontrivial extensional
property is undecidable. (An “extensional” property of a program is a property
that depends on the input/output functional behavior of the program rather
than on the syntactical form of the program.) For unrestricted programs, it fol-
lows that the property of being associative is undecidable; we need the stronger
result that this undecidability also holds for bounded-loop programs. For un-
restricted programs, Rice’s Theorem implies that the property of being both
primitive recursive and associative is undecidable, but it also implies that the
property of being primitive recursive alone is undecidable. Since the functions
of practical interest in the context of this paper arise from bounded-loop pro-
grams, and thus are known to be primitive recursive, the framework of Rice’s
Theorem is inappropriate.

We assume all numbers are accurately represented within the computer,
so addition and multiplication are associative. Although this assumption can-
not be satisfied on a physical computer, it provides a standard, useful level of
abstraction. (If this assumption is not made and X has finite size n, then for
bounded-loop programs in the worst case: associativity is decidable and requires
n3 equality checks and commutativity is decidable and requires n(n− 1)/2
equality checks.)

3. COMPILE-TIME LIMITATIONS

This section shows that, in general, compilers cannot check for either associa-
tivity or commutativity, because determining whether or not a bounded-loop
program is associative (or commutative) is an undecidable problem. We actu-
ally prove the following stronger results: the set of associative bounded-loop
programs and the set of commutative bounded-loop programs both fail to be
recursively enumerable.

LEMMA 3.1 (UNDECIDABILITY OF INPUT-FREE HALTING PROBLEM). The following
problem is undecidable: Given an input-free program P, will P halt?

PROOF. Follows from the undecidability of the blank-tape halting problem
[Phillips 1992].

THEOREM 3.2. Let X be the set of integers. The set S of bounded-loop pro-
grams from X × X to X that are associative is not recursively enumerable.

PROOF. First, we prove that S is not recursive, by showing that the recur-
siveness of S would imply a decision method for solving the halting problem
for an arbitrary input-free program P . We show that P fails to halt if and only
if f P is associative, where f P is the commutative, bounded-loop program given

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 5, September 2002.

558 • Arthur Charlesworth

function f(x, y: Integer): Integer;
var HaltFound: Boolean;

i: Integer;
begin

HaltFound := False;
... Prepare to begin tracing the program P.
for i := 1 to (x + y) do

if not HaltFound then
begin

... Trace the execution of next step of the program P .

... If that step causes P to halt, assign True to HaltFound.
end;

if HaltFound then f := x * y else f := x + y
end;

Fig. 1. The function f P used in the proof of Theorem 3.2.

by the schema in Figure 1. (That f P is a bounded-loop program follows from
the fact that tracing any single step of P can be determined by a bounded-loop
program [Meyer and Ritchie 1967b]; to avoid subprograms we can assume this
is done via an inline expansion.) If P fails to halt, then f P is associative, since
f P is identically the addition function. If P halts, then let n be the number of
steps in the execution of P , where n > 0, and note that f P (−1, f P (1, n+ 1)) =
−(n+ 1) whereas f P (f P (−1, 1), n+ 1) = 0, so f P is not associative.

To complete the proof, it suffices to show that the set of bounded-loop pro-
grams from X × X to X that fail to be associative is recursively enumerable,
since if a set and its complement are both recursively enumerable, the set is
recursive. Let F = { fα(1), fα(2), . . . } be a recursive enumeration of all bounded-
loop programs from X × X to X , using the purely syntactical definition of
such subprograms. Let T = {tβ(1), tβ(2), . . . } be a recursive enumeration of all
triples of integers. The enumerations α and β induce a recursive enumeration
γ of the set F × T . Now let the output list O be initially empty, denote γ (i)
as (γ (i)1, γ (i)2) and, iterating for i= 1, 2, . . . , if γ (i)1 is not yet in O, check the
associativity equation for function subprogram γ (i)1 and triple γ (i)2, inserting
γ (i)1 on O if the equation does not hold. The resulting list O is a recursive enu-
meration of the set of bounded-loop programs from X × X to X that fail to be
associative.

THEOREM 3.3. Let X be the set of integers. The set S of bounded-loop prog-
rams from X × X to X that are commutative is not recursively enumerable.

PROOF. Modify the proof of Theorem 3.2 by changing the limit on the loop in
Figure 1 to (x− y). Note that if P halts in n steps, with n > 0, then f P (n, 0) = 0
whereas f P (0, n) = n. In the rest of the proof, use integer doubles, instead of
integer triples.

The compile-time limitations do not require the full power of the theorems,
since they follow from just the nonrecursiveness of the two decision problems.
Do any important limitations follow from applying the full power of the theo-
rems? We explore that question in the following two remarks.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 5, September 2002.

Undecidability of Associativity and Commutativity Analysis • 559

Remark 3.4. It follows from Theorem 3.2 that a software tool cannot pro-
vide access to all associative bounded-loop programs through a mechanism that
lets the programmer select the desired function subprogram through interac-
tively answering yes/no questions about the nature of the program. We assume
this model of interaction: the programmer understands the nature of the desired
function subprogram well enough to use such a mechanism, might not be sure
the resulting function is associative, but is sure it can be defined as a bounded-
loop program; if the resulting function is indeed associative, given sufficient
time the mechanism would ultimately allow the programmer to learn that fact.
(On the other hand, if the resulting function is not associative, the programmer
could use the mechanism forever without learning that fact.) A breadth-first
traversal of the search tree provided by such a mechanism would yield a re-
cursive enumeration of the possible associative, bounded-loop programs from
which to select, contradicting Theorem 3.2. A similar remark applies to the
commutative, bounded-loop programs.

Remark 3.5. One should not conclude too much from the preceding remark.
The programmer might not want the software tool to provide access to all as-
sociative bounded-loop programs, regardless of whether they satisfy certain
additional properties, such as good run-time efficiency and a program text the
programmer can easily comprehend. The limitation described in Remark 3.4
ignores such properties.

Also, Theorems 3.2 and 3.3 pertain to function subprograms, not to functions.
Although that is the appropriate context for a compile-time limitation, it may
not be the appropriate context for a limitation on an interactive software tool.
The user of such a software tool might want a function subprogram having
a particular desired functional (i.e., input/output) behavior, regardless of the
form of the program. We can easily see that Remark 3.4 does not apply in that
situation by considering the case of commutative functions. A software tool
could use a recursive enumeration of all bounded-loop programs from X × X to
X (which exists, since the definition of such subprograms is purely syntactical)
and for each such function subprogram h, it could list the function subprogram
whose signature is

function f (x, y : Integer): Integer;

and whose body is (the result of replacing calls by inline expansions in) the
return statement

f := h(min(x, y), max(x, y))

The mathematical functions corresponding to the resulting function subpro-
grams range over all the commutative, primitive recursive functions.

4. LIMITATIONS ON CONSTRUCTION FROM A BASE SET OF FUNCTIONS

A programmer-defined function f is commutative whenever it is constructed
so it accesses its two parameters via commutative functions. That is, if g1
and g2 are commutative function subprograms and h is any binary function

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 5, September 2002.

560 • Arthur Charlesworth

subprogram, then the function

f (x, y) = h(g1(x, y), g2(x, y))

is commutative.
However, in the context of this article, when the programmer wants a com-

mutative function, the programmer also wants the function to be associative.
Associativity is much less well-behaved than commutativity. Ensuring the asso-
ciativity of h, as well as that of g1 and g2, does not guarantee that the resulting
f is associative, even if f is restricted to a straight-line function subprogram.
To see this, let x = 1, y = 2, and z = 3, let g1 and g2 be addition of integers,
let h be multiplication of integers, and note that f (x, f (y , z)) fails to equal
f (f (x, y), z), since

f (1, f (2, 3)) = f (1, 25) = 262 6= 122 = f (9, 3) = f (f (1, 2), 3).

Moreover, the same x, y , and z show that neither the sum of the associative
functions g1 and g2 nor their product is an associative function.

5. LIMITATIONS ON COMPILER-GENERATED RUN-TIME CHECKS

In view of the limitations on compile-time checks and construction of functions
from a base set, we consider run-time checking of associativity and commuta-
tivity when a reduction or scan is executed. In this situation, there is just one
particular sequence 〈x1, . . . , xn〉 to consider, with n > 2. The concern in this
situation is not necessarily with the general properties of f , it is with what
happens when f is applied n− 1 times, starting with the values in {x1, . . . , xn}.
That is, the concern is no more than whether f is associative and commutative
on the set f n−2{x1, . . . , xn}, where that notation is defined as follows.

Definition 2. Let A ⊆ X and let i be an integer. We define f 0 A to be A and,
for i > 0, we define f i A to be the set

A∪ { f (x, y) | x ∈ f j A and y ∈ f k A, where j ≥ 0, k ≥ 0, and j + k < i}
so that f i A consists of the values that result from applying f at most i times,
using members of A. We say that A is closed under f iff f 1 A = A.

Until further notice, we consider just the simplest situation, in which
{x1, . . . , xn} is closed under f . When f is indeed commutative, exhaustively
checking that

f (xi, x j) = f (x j , xi)

holds for all distinct xi and x j requires carrying out n(n− 1)/2 equality checks.
Even when that is accomplished using n processors with an efficiency of 1, the
number of equality checks performed per processor is at least (n−1)/2, so linear
time is required. That approach is unacceptable: programmers expect the entire
work of a reduction or scan, when implemented using n processors, to be ac-
complished in less than linear time on typical parallel computers; for instance,
in O(log(n)) time on a hypercube. (Remark 5.1 gives related results.) Using an
exhaustive approach for checking the associativity of f is even worse: when f
is indeed associative, there would be n3 checks of the associativity equation,

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 5, September 2002.

Undecidability of Associativity and Commutativity Analysis • 561

so quadratic time is required, assuming an algorithm using n processors with
efficiency 1.

Since exhaustive checking is unacceptable, we consider the adequacy of more
efficient run-time checking. We examine reductions, but the results also apply
to scans. We assume a processor participating in calculating the f -reduction
of 〈x1, . . . , xn〉 performs successive computations of the form f (x ′, x ′′), where
x ′, x ′′ ∈ {x1, . . . , xn}. If during a particular reduction all n− 1 equations of the
form

f (x ′, x ′′) = f (x ′′, x ′) (1)

hold, does it follow that f is commutative on {x1, . . . , xn}? The answer is “no,”
even if f is associative. For example, let f be matrix multiplication and let

x1 =
[
1 0
1 0

]
, x2 =

[
0 0
1 −1

]
, x3 =

[
0 1
0 1

]
, and y =

[
1 −1
1 −1

]
.

Then (1) is satisfied throughout the left-to-right reduction of 〈x1, x2, x3〉, since
each of f (x1, x2), f (x2, x1), f (f (x1, x2), x3), and f (x3, f (x1, x2)) is the zero ma-
trix. In contrast, f (x1, f (x3, x2)) is the non-zero matrix y , since f (x3, x2) = y .

A similar negative result holds for associativity. Suppose during a particular
reduction all n− 2 equations of the form

f (x ′, f (x ′′, x ′′′)) = f (f (x ′, x ′′), x ′′′) (2)

hold. Then f is not necessarily associative on {x1, . . . , xn} even if f is a commu-
tative, straight-line function, such as

f (x, y) = (2(x + y)− 1) div 3,

where div denotes integer division. The left-to-right reduction of 〈1, 1, 2, 3〉 us-
ing that particular f satisfies (2) at each step and yields the final answer 2,
whereas the right-to-left reduction yields the final answer 1.

Now we no longer assume that {x1, . . . , xn} is closed under f . In contrast to
the preceding negative results, we could obtain an automatic run-time verifica-
tion that the associativity properties of f are adequate for obtaining reductions
using f , if the run-time system could check that f satisfies the following prop-
erty for each pair of parameter values (x, y) passed to f at run-time:

∀w ∈ X : f (w, f (x, y)) = f (f (w, x), y). (3)

This is because any given f -reduction of 〈x1, . . . , xn〉 equals the left-to-right
f -reduction. To see this, consider successive applications of the part of the
equality in (3) that goes from left to right, using recursion and the invariant
that each (x, y) considered is indeed a pair of parameter values passed to f in
the given f -reduction.

An efficient decision method for (3), one that avoids such inefficiencies as
exhaustive checking, would yield an efficient, parallel, run-time test of asso-
ciativity. But, in general, (3) is undecidable. That is, no algorithm can input
(f , x, y), where f is any bounded-loop program and (x, y) is any member of the
domain of f , and correctly decide (3). To see this, let (x, y) = (−1, 1) and use
the construction in the first paragraph of the proof of Theorem 3.2.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 5, September 2002.

562 • Arthur Charlesworth

One can similarly obtain an analogous limitative result for commutativity,
in which one of the two variables in the commutativity equation is left free.

Remark 5.1. Related computational complexity results are known, based
on the additional assumption that the bounded-loop program for f is a multi-
plication table. If a P-complete decision problem is also in NC, then all problems
solvable on a single processor in polynomial time are in NC. (A decision prob-
lem is in NC if it is solvable in polylogarithmic time on a polynomial number of
processors.) The decision problem GEN is defined as follows: given a set X , a
subset A ⊆ X , and an element x ∈ X ; determine whether or not x is contained
in the smallest subset of X that includes A and is closed under f . Here are
three known results: The GEN problem is P-complete. The GEN problem is P-
complete even if f is commutative and A is a singleton set. If f is associative,
the GEN problem is in NC; in fact it is NLOG complete. For further details and
precise definitions, see Jones and Laaser [1977] and Greenlaw et al. [1995].

6. LIMITATIONS ON PROGRAMMER-CONSTRUCTED RUN-TIME CHECKS

Our final theorem shows that, in general, it is even impossible for a programmer
to construct a boolean function subprogram that the programmer-defined f can
use, at the beginning of its work, to carry out run-time checks of (3).

This is a particularly strong limitation, since one is permitted to use knowl-
edge of the specific properties of f in programming such a boolean function
subprogram. (In contrast, there is no analogous strong limitation related to
the halting problem. For any given input-free program P there is indeed a
boolean function subprogram that indicates whether or not P halts: it is either
the function that always returns true or the function that always returns false.
The unsolvability of the halting problem only implies that no algorithm can take
any given P and determine which of the two boolean function subprograms is
appropriate for P .)

THEOREM 6.1. There exists a bounded-loop program f such that the follow-
ing problem is undecidable: Given a pair of parameter values x and y, does the
following hold?

∀w ∈ X : f (w, f (x, y)) = f (f (w, x), y).

PROOF. We use a coding of all input-free programs having the property that
(i) each natural number n is the code of an input-free program Pn and (ii) there is
a bounded-loop program for obtaining the program Pn from its code n. Define
the code n of a program P to be the position of P in a list of all input-free
programs, in which shorter programs precede longer programs, using the fact
that input-free is a syntactical concept and the observation that max(n, 62) is
an upper bound on the length of P in characters. (The number of input-free
programs of length n exceeds n, for programs having 62 or more characters. For
instance, the order of declaration of the variables in

program P; var x1, x2, x3, x4, x5: Integer; begin x1 := 0 end.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 5, September 2002.

Undecidability of Associativity and Commutativity Analysis • 563

function f(x, y: TripleType): TripleType;
var HaltFound: Boolean;

i, Count, Max: Integer;
z: TripleType;

begin
HaltFound := False; Count := 0;
if x.TraceMe then

begin z := x; Max := y.Max; Count := Count + 1 end;
if y.TraceMe then

begin z := y; Max := x.Max; Count := Count + 1 end;
if Count = 1 then
{Exactly one of x and y request a trace, z equals the value of the parameter
requesting a trace, and Max equals the other parameter’s Max value.}

begin
... Prepare to begin tracing the program having code z.Code.
for i := 1 to Max do

if not HaltFound then
begin

... Trace the execution of next step of the program having code z.Code.

... If that step causes that program to halt, assign True to HaltFound.
end

end;
if HaltFound then

begin z.TraceMe := False; z.Max := x.Max + y.Max; f := z end
else

f := Zero
end;

Fig. 2. The function f used in the proof of Theorem 6.1.

can be permuted to obtain 120 input-free programs, each of length 62; the given
program contains 62 characters and we declare 5 variables to ensure that the
number of such permutations exceeds the program length.)

Let #P denote the code of P . Define a type TripleType that consists of records
of the form (Code, TraceMe, Max), where the integer field Code can store the
code of a program, the boolean field TraceMe can indicate whether a trace of
that program is requested, and the integer field Max can store a suggested
number of steps for tracing such a program. Let P1 be an input-free program
that halts in its first step and let Zero be the constant with value (#P1, False, 0).

Let f be the bounded-loop program in Figure 2 and suppose there is a deci-
sion method for determining whether or not

∀w ∈ X : f (w, f (x, y)) = f (f (w, x), y).

We show this implies a decision method for the input-free halting problem. Let
P be any input-free program and let xP have the value (#P, True, 0). We claim
that P fails to halt if and only if

∀w ∈ X : f (w, f (xP , xP)) = f (f (w, xP), xP). (4)

To see this, note that if P fails to halt, then both f (xP , xP) and f (w, xP) equal
Zero so both sides of the equation equal Zero and (4) holds. On the other hand,

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 5, September 2002.

564 • Arthur Charlesworth

suppose P halts, let n be the number of steps in the execution of P , where n > 0,
and let wP = (#P, False, n). Then (4) does not hold, since

f (wP , f (xP , xP)) = f (wP , Zero) = Zero
6= (#P, False, n)
= f ((#P, False, n), (#P, True, 0))
= f ((#P, False, n), xP)
= f (f ((#P, False, n), (#P, True, 0)), xP)
= f (f (wP , xP), xP).

We note the following. The function constructed in this proof is commuta-
tive. The predicate given in the statement of this theorem is not even recur-
sively enumerable, by an argument similar to the second half of the proof of
Theorem 3.2. Theorem 3.2 is not a corollary of Theorem 6.1: it is possible for a
compiler to show that the f in Figure 2 is not associative by performing four
calculations using f . (It could let an input-free program P1 that halts in its
first step play the role of P in the part of the above proof showing that (4) fails
to hold when P halts.)

The undecidability result analogous to Theorem 6.1 for commutativity (in
which one variable is left free) also holds. To see this, define f so it uses sub-
traction rather than addition in calculating the value of z.Max to return when
HaltFound holds.

7. CONCLUSIONS

Previous research demonstrates that when reductions and scans are used in
conjunction with selection and broadcasting, the result is an elegant, yet pow-
erful model of parallel computation. The full power of such a model employs the
use of programmer-defined function subprograms. Such function subprograms
must satisfy an associativity property, and in some situations, a commutativity
property as well.

Our limitative results show that, in general, assurance of such properties
cannot be provided by fully automatic tools, such as compilers. In addition,
neither straightforward construction from a base set of functions nor certain
compiler-generated run-time checks provide a satisfactory, general approach.
Even certain programmer-constructed run-time checks do not suffice.

Our undecidability results suggest the need for developing software tools to
assist programmers with creating associative functions and/or proofs of asso-
ciativity, even if those tools lack full generality.

ACKNOWLEDGMENTS

Dennis Ritchie helped clarify his work with A. R. Meyer on bounded-loop
programs. Each of the three anonymous referees provided helpful suggestions.

REFERENCES

AKL, S. G. AND STOJMENOVIC, I. 1996. Broadcasting with selective reduction: A powerful model of
parallel computation. In Parallel and Distributed Computing Handbook, E. Y. H. Zomaya, Ed.
McGraw-Hill, New York, 192–222.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 5, September 2002.

Undecidability of Associativity and Commutativity Analysis • 565

BALA, V., BRUCK, J., CYPHER, R., ELUSTONDO, P., HO, A., HO, C., KIPNIS, S., AND SNIR, M. 1995. CCL:
A portable and tunable collective communication for scalable parallel computers. IEEE Trans.
Paral. Syst. 6, 2, 154–164.

GREENLAW, R., HOOVER, H. J., AND RUZZO, W. L. 1995. Limits to Parallel Computation: P-
Completeness Theory. Oxford University Press, New York.

HILLIS, W. D. AND STEELE JR., G. L. 1986. Data parallel algorithms. Commun. ACM 29, 12 (Dec.),
1170–1183.

HOPCROFT, J. E. AND ULLMAN, J. D. 1979. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading, Mass.

IBM. 1994. IBM AIX Parallel Environment Parallel Subroutine Reference, Release 2.1 ed. IBM,
Poughkeepsie, New York.

INTEL. 1994. Paragon System C System Calls Reference Manual. Intel, Beaverton, Ore.
JONES, N. D. AND LAASER, W. T. 1977. Complete problems for deterministic polynomial time. The-

oreti. Comput. Sci. 3, 1, 105–117.
KRUSKAL, C. P., RUDOLPH, L., AND SNIR, M. 1985. The power of parallel prefix. IEEE Trans. Com-

put. C-34, 10 (Oct.), 965–968.
MEYER, A. R. AND RITCHIE, D. M. 1967a. The complexity of loop programs. In Proceedings of the

22nd ACM National Meeting.
MEYER, A. R. AND RITCHIE, D. M. 1967b. Computational complexity and program structure. IBM

Research Report RC-1817, Yorktown Heights, NY.
PARASOFT. 1990. Express C User’s Guide, Version 3.0. Parasoft, Pasadena, Calif.
PHILLIPS, I. C. C. 1992. Recursion theory. In Handbook of Logic in Computer Science. Volume 1

Background: Mathematical Structures, S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, Eds.
Oxford University Press, New York, 79–187.

RAMALINGAM, G. 1994. The undecidability of aliasing. ACM Trans. Program. Lang. Syst. 16, 5,
1467–1471.

RAMALINGAM, G. 2000. Context-sensitive synchronization-sensitive analysis is undecidable. ACM
Trans. Program. Lang. Syst. 22, 2, 416–430.

REPS, T. 2000. Undecidability of context-sensitive data-dependence analysis. ACM Trans. Pro-
gram. Lang. Syst. 22, 1, 162–186.

ROGERS, H. 1987. Theory of Recursive Functions and Effective Computability. MIT Press,
Cambridge, Mass.

SNIR, M., OTTO, S., HUSS-LEDERMAN, S., WALKER, D., AND DONGARRA, J. 1996. MPI: The Complete
Reference. MIT Press, Cambridge, Mass.

Received July 2001; revised February 2002; accepted April 2002

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 5, September 2002.

