
ar
X

iv
:2

20
7.

08
77

7v
2

 [
cs

.L
O

]
 1

8
A

ug
 2

02
2

Semantic Analysis of Normalisation by Evaluation

for Typed Lambda Calculus∗

Marcelo Fiore†

Department of Computer Science and Technology

University of Cambridge

August 2022

Abstract

This paper studies normalisation by evaluation for typed lambda calculus from a categorical
and algebraic viewpoint. The first part of the paper analyses the lambda definability result of
Jung and Tiuryn via Kripke logical relations and shows how it can be adapted to unify defin-
ability and normalisation, yielding an extensional normalisation result. In the second part of the
paper the analysis is refined further by considering intensional Kripke relations (in the form of
Artin-Wraith glueing) and shown to provide a function for normalising terms, casting normali-
sation by evaluation in the context of categorical glueing. The technical development includes
an algebraic treatment of the syntax and semantics of the typed lambda calculus that allows
the definition of the normalisation function to be given within a simply typed metatheory. A
normalisation-by-evaluation program in a dependently-typed functional programming language
is synthesised.

Introduction

Normalisation by evaluation for typed lambda calculus was first considered by Berger and Schwicht-
enberg [9] from a type and proof theoretic viewpoint, and later investigated from the point of view
of logic [8], type theory [11], category theory [4, 14, 34], and partial evaluation [15, 17]. This work
gives a new categorical and algebraic perspective on the topic.

Outline. Normalisation by evaluation will be broadly viewed as the technique of giving seman-
tics in (metalanguages for) non-standard models from which normalisation information can be
extracted (cf. [31]). In this light, we will investigate the following problems.

I. Extensional normalisation problem: To define normal terms and establish that every term
βη-equals one in normal form.

That is, writing Lτ(Γ) for the set of terms of type τ in context Γ , to identify a set of normal
terms Nτ(Γ) ⊆ Lτ(Γ) and show that for every term t ∈ Lτ(Γ) there exists a normal term
N ∈ Nτ(Γ) such that t =βη N.

∗This is a slight revision, with an implementation, of the full version, with proofs, of February 2003 for the
extended abstract [19] published in October 2002.

†This research was supported by an EPSRC Advanced Research Fellowship (2000–2005) and partially supported
by EPSRC grant EP/V002309/1 (2021–2024).

1

http://arxiv.org/abs/2207.08777v2

II. Intensional normalisation problem: To define, and prove the correctness of, a normalisation
function associating normal forms to terms.

More precisely, to construct functions

nfτ,Γ : Lτ(Γ) // Nτ(Γ)

satisfying the following three properties.

(1) For all normal terms N ∈ Nτ(Γ), the syntactic equality nfτ,Γ (N) = N holds.

(2) For all terms t ∈ Lτ(Γ), the semantic equality nfτ,Γ (t) =βη t holds.

(3) For all pair of terms t, t ′ ∈ Lτ(Γ), if t =βη t ′ then nfτ,Γ (t) = nfτ,Γ (t
′).

In the context of normalisation by evaluation, the correctness condition (1) has seldom been
considered —the exception being [34]. However, it is both natural and interesting. For
instance, together with the correctness condition (3) it implies that βη-equal normal terms
are syntactically equal, which in turn, together with the correctness condition (2), entails
the stronger version of extensional normalisation that every term βη-equals a unique normal
term.

These problems will be respectively dealt with in Parts I and II of the paper. Part I provides a
unifying view of definability and normalisation leading to an extensional normalisation result. This
analysis, besides unifying the two hitherto unrelated problems of definability and normalisation,
motivates and elucidates the notions of neutral and normal terms, which are here distilled from
semantic considerations. Part II shows that an intensional view of Part I amounts to the traditional
technique of normalisation by evaluation. This development leads to a treatment of normalisation
by evaluation via the Artin-Wraith glueing construction, finally formalising the observation that
normalisation by evaluation is closely related to categorical glueing [12].

More in detail, the paper is organised as follows. Section I.1 briefly recalls the syntax and
categorical semantics of the typed lambda calculus. Section I.2 presents an analysis of the lambda
definability result of Jung and Tiuryn via Kripke logical relations [26] leading to an extensional
normalisation result. Section II.1 describes the rudiments of a theory of typed abstract syntax with
variable binding which is used to put the typed lambda calculus in an algebraic framework. This
algebraic view is exploited in Section II.2 to structure the development of an intensional version of
Section I.2 culminating in the technique of normalisation by evaluation.

Related work. The treatment of extensional normalisation presented here is similar to Tait’s ap-
proach to strong normalisation via computability predicates [38, 25] for the typed lambda calculus,
and also to Krivine’s approach to normalisation [27, Chapter III] for the untyped lambda calculus.
The precise relationships need to be investigated.

The analysis of normalisation by evaluation pursued here is categorical and, as such, is related
to [4, 14, 34, 3].

The approach of C̆ubrić, Dybjer, and Scott [14] is in the context of so-called P-category theory;
which is, roughly, a version of category theory equipped with an intensional notion of equality
formalised by partial equivalence relations. The intensional information needed for the purpose of
normalisation will be captured here in the context of traditional category theory via Artin-Wraith
glueing.

2

In Altenkirch, Hofmann, and Streicher [4], normalisation by evaluation is reconstructed categor-
ically in a model obtained via an ad hoc twisted-glueing construction. This model embodies objects
with both syntactic and semantic components, and translations between them essentially encoding
a correctness predicate. In contrast, we adopt a purely semantic view, working with intensional
logical relations in models given by the traditional categorical-glueing construction [40].

Another important point of departure between this work and the other categorical ones is
the algebraic treatment of the subject, which led to a deeper understanding of the normalisation
function.

Part I

I.1 Typed lambda calculus

For the purpose of establishing notation, we briefly recall the syntax and semantics of the typed
lambda calculus. For details see, e.g., [28, 13, 39].

Syntax. The types of the simply typed lambda calculus are given by the grammar

τ ::= θ | 1 | τ1 ∗ τ2 | τ1=>τ2 (1)

where θ ranges over base types. We write T̃ for the set of simple types generated by a set of base
types T.

The grammar for the terms is

t ::= x | 〈〉 | π1(t) | π2(t) | 〈t1, t2〉 | t(t
′) | λ x : τ. t

where x ranges over (a countably infinite set of) variables. The notion of free and bound variables
are standard. As usual, we will identify terms up to the renaming of bound variables.

Typing contexts, with types in a set T , are defined as functions V // T where the domain
of the context, V , is a finite subset of the set of variables. Under this view, for a variable x, a
type τ, and a context Γ , we let (x : τ) ∈ Γ stand for x ∈ dom(Γ) and Γ(x) = τ. For distinct variables
xi (i = 1, n), we use the notation 〈xi : τi〉i=1,n for the context { x1, . . . , xn } // T mapping xi to τi.
For a context Γ , a variable x, and a type τ, the notation Γ, x : τ presupposes x 6∈ dom(Γ) and denotes
the context dom(Γ) ∪ { x } // T mapping every y ∈ dom(Γ) to Γ(y), and x to τ.

The well-typed terms Γ ⊢ t : τ in context (where Γ is a typing context, t is a term, and τ is a
type) are given by the usual rules; see Figure 1.

Semantics. The appropriate mathematical universes for giving semantics to the typed lambda
calculus are cartesian closed categories [28, 13, 39]; i.e., categories with terminal object, binary
products, and exponentials (for which we respectively use the notation 1, ×, and +3).

For an interpretation s : T // S of base types in a cartesian closed category, we let s[[]] : T̃ // S
be the extension to simple types as prescribed by a chosen cartesian closed structure. That is, s[[θ]] =
s(θ) (for θ ∈ T), s[[1]] = 1, and s[[τ ∗ τ ′]] = s[[τ]]× s[[τ ′]] and s[[τ=>τ ′]] = s[[τ]] +3 s[[τ ′]] (for τ, τ ′ ∈ T̃).
As usual, the interpretation of types is extended to contexts by setting s[[Γ]] =

∏
x∈dom(Γ) s[[Γ(x)]]

for all contexts Γ . Finally, the semantics of a term Γ ⊢ t : τ as a morphism s[[Γ]] // s[[τ]] in S is
denoted s[[Γ ⊢ t : τ]].

3

Γ ⊢ x : τ
(x : τ) ∈ Γ

Γ ⊢ 〈〉 : 1

Γ ⊢ t : τ1 ∗ τ2
Γ ⊢ πi(t) : τi

(i = 1, 2)

Γ ⊢ ti : τi (i = 1, 2)

Γ ⊢ 〈t1, t2〉 : τ1 ∗ τ2

Γ ⊢ t : τ ′=>τ Γ ⊢ t ′ : τ ′

Γ ⊢ t(t ′) : τ

Γ, x : τ ′ ⊢ t : τ

Γ ⊢ λ x : τ ′. t : τ ′=>τ

Figure 1: Well-typed terms

I.2 From definability to normalisation

Kripke relations were introduced by Jung and Tiuryn in [26] for the purpose of characterising
lambda definability. We will analyse this result and provide a corresponding extensional normali-
sation result.

Kripke relations. For a functor σ : C // S, a C-Kripke relation R of arity σ over an object A
of S is a family {R(c) ⊆ S(σ(c), A) }c∈|C| satisfying the following condition.

(Monotonicity) For every ρ : c ′ // c in C and every a : σ(c) // A in R(c), the map a ◦ σ(ρ) :

σ(c ′) // A is in R(c ′).

In other words, a C-Kripke relation R of arity σ over an objectA is a unary predicate R � � // S(σ(), A)

over the C
op-variable set of A-valued morphisms S(σ(), A) : Cop // Set in the functor category

SetC
op

of Cop-variable sets, referred to as presheaves.
The category of Kripke relations K〈σ〉 of arity σ : C // S has objects given by pairs (R,A) con-

sisting of an objectA of S and a C-Kripke relation of arity σ over A, and morphisms f : (R,A) // (R ′, A ′)

given by maps f : A // A ′ in S such that, for all a : σ(c) // A in R(c), the composite f ◦ a : σ(c) // A ′

is in R ′(c). Composition and identities are as in S.

Example 1 The category of C-Kripke relations of arity the unique functor to the terminal category
is (isomorphic to) the complete Heyting algebra of subterminal objects of the presheaf topos SetC

op

.

The following proposition is well-known (see, e.g., [2, 30]).

Proposition 2 Let C be a small category and let S be a cartesian closed category. For a functor
σ : C // S, the category of Kripke relations K〈σ〉 is cartesian closed and the forgetful functor
K〈σ〉 // S : (R,A)

✤ // A preserves the cartesian closed structure strictly.

4

The cartesian closed structure of K〈σ〉 is given as follows.

(Products) The terminal object is (⊤, 1) where 1 is terminal in S and where ⊤(c) = {σ(c) // 1 }

for all c in C.

The product (R,A) × (R ′, A ′) of (R,A) and (R ′, A ′) is

(R,A)
πoo (R∧ R ′, A×A ′)

π ′
// (R ′, A ′)

where A
πoo A×A ′ π ′

// A ′ is the product of A and A ′ in S, and where a : σ(c) // A×A ′ is
in (R∧ R ′)(c) iff π ◦ a : σ(c) // A is in R(c) and π ′ ◦ a : σ(c) // A ′ is in R ′(c).

(Exponentials) The exponential (R,A) +3 (R ′, A ′) of (R,A) and (R ′, A ′) is

(R ⊃ R ′, A +3 A ′)× (R,A)
ε // (R ′, A ′)

where (A +3 A ′)×A
ε // A ′ is the exponential of A and A ′ in S, and where f : σ(c) // A +3 A ′

is in (R ⊃ R ′)(c) iff for every ρ : c ′ // c in C and a : σ(c ′) // A in R(c ′), the composite
ε ◦ 〈f ◦ σ(ρ), a〉 : σ(c ′) // A ′ is in R ′(c ′).

The Fundamental Lemma of logical relations is a consequence of Proposition 2.

Lemma 3 (Fundamental Lemma [33, 35]) For an interpretation of base types I : T // K〈σ〉 :

θ ✤ // (Rθ,I0(θ)), the interpretation

I0[[Γ ⊢ t : τ]] : I0[[Γ]] // I0[[τ]] in S

of a term Γ ⊢ t : τ yields a morphism I[[Γ]] // I[[τ]] in K〈σ〉; that is, for I[[Γ]] = (RΓ ,I0[[Γ]]) and
I[[τ]] = (Rτ,I0[[τ]]), the following diagram

RΓ //� _

��

Rτ� _

��
S(σ(),I0[[Γ]])

I0[[Γ⊢t:τ]]◦
// S(σ(),I0[[τ]])

commutes in SetC
op

(for a necessarily unique natural map RΓ
// Rτ).

Definability. The definability result of Jung and Tiuryn [26] uses Kripke relations varying over
a poset of contexts ordered by context extension. Here, however, to parallel the development with
the one to follow in Part II, we will consider Kripke relations varying over a category of contexts
and context renamings.

Definition 4 For a set of types T , we let F ↓ T be the category with objects given by contexts Γ

with types in T , and with morphisms Γ // Γ ′ given by type-preserving context renamings; that is,
by functions ρ : dom(Γ) // dom(Γ ′) such that for all variables x ∈ dom(Γ), the types Γ(x) and
Γ ′(ρx) are equal. We write F[T] for (F ↓T)op.

5

With respect to an interpretation s : T // S of base types in a cartesian closed category, we
write s[[]] for the canonical semantic functor F[T̃] // S interpreting contexts and their renamings.
This is explicitly given by

s[[ρ]] = 〈s[[Γ ′ ⊢ ρx : τ]]〉(x:τ)∈Γ = 〈πρx〉x∈dom(Γ) : s[[Γ ′]] // s[[Γ]]

for all ρ : Γ // Γ ′ in F ↓T̃.
For every type τ ∈ T̃, the definability relation

Dτ(Γ) = { s[[Γ ⊢ t : τ]] | Γ ⊢ t : τ } ⊆ S(s[[Γ]], s[[τ]])

is an F[T̃]-Kripke relation of arity s[[]] : F[T̃] // S over s[[τ]], and the family of definability relations
{Dτ }τ∈T̃ has the following logical characterisation.

Lemma 5 (Definability Lemma [26, 2]) Let s : T // S be an interpretation of base types in a
cartesian closed category. Setting Rθ = Dθ for all base types θ ∈ T and letting Rτ be given by
the cartesian closed structure of the category of Kripke relations K〈s[[]] : F[T̃] // S〉 for the other
types τ ∈ T̃, it follows that Rτ = Dτ for all types τ ∈ T̃.

The usual proof of the Definability Lemma is by induction on the structure of types using the
explicit description of the cartesian closed structure in categories of Kripke relations given above;
see [26, 2] (and [22] for the case with sum types). However, there is a more conceptual argument
based on establishing that the definability relations satisfy the following closure properties:

D1 = ⊤

Dτ ∗ τ ′ = Dτ ∧Dτ ′

Dτ=>τ ′ = Dτ ⊃ Dτ ′

which is, in effect, what the usual calculations really amount to.
The above analysis can be refined further. Indeed, the fact that neither of the following inclu-

sions
Dτ ⊆ Rτ ⊆ Dτ (2)

in isolation is strong enough to re-establish the inductive hypothesis in the Definability Lemma,
suggests considering a more general situation in which the Kripke logical relations Rτ are bounded
by possibly distinct Kripke relations (unlike the situation in (2)).

We are thus led to the following Basic Lemma. Notice the mixed-variance treatment of expo-
nentiation. This is akin to Krivine’s approach to normalisation for the untyped lambda calculus
using adapted pairs of subsets of lambda terms [27, Chapter III, pages 33–39].

Lemma 6 (Basic Lemma) Consider an interpretation I0 : T // S of base types in a cartesian
closed category S.

With respect to a functor σ : C // S, let 〈(Aτ,I0[[τ]])〉τ∈T̃ and 〈(Bτ,I0[[τ]])〉τ∈T̃ be two families
of Kripke relations in K〈σ〉 indexed by types such that

B1 = ⊤

Aσ ∗ τ ⊆ (Aσ ∧Aτ) (Bσ ∧Bτ) ⊆ Bσ ∗ τ

Aσ=>τ ⊆ (Bσ ⊃ Aτ) (Aσ ⊃ Bτ) ⊆ Bσ=>τ

6

For a family of Kripke relations 〈(Rθ,I0[[θ]])〉θ∈T in K〈σ〉 indexed by base types, let 〈(Rτ,I0[[τ]])〉τ∈T̃
be the family of Kripke relations indexed by types induced by the cartesian closed structure of K〈σ〉.

If Aθ ⊆ Rθ ⊆ Bθ for all base types θ ∈ T, then

1. Aτ ⊆ Rτ ⊆ Bτ for all types τ ∈ T̃, and thus

2. for all terms Γ ⊢ t : τ (with Γ = 〈xi : τi〉i=1,n) and morphisms ai : σ(c) // I0[[τi]] in
Aτi(c) (1 ≤ i ≤ n, c ∈ |C |), we have that I0[[Γ ⊢ t : τ]] ◦ 〈a1, . . . , an〉 : σ(c) // I0[[τ]] is in
Bτ(c).

Proof: The proof of the first part is by induction on the structure of types. This uses the facts
that

R ⊆ ⊤ for all (R, 1) in K〈σ〉

and that, for Kripke relations (Ri, Ai) and (R ′
i , Ai) in K〈σ〉 (i = 1, 2),

if R1 ⊆ R ′
1 and R2 ⊆ R ′

2 then (R1 ∧ R2) ⊆ (R ′
1 ∧ R ′

2) and (R ′
1 ⊃ R2) ⊆ (R1 ⊃ R ′

2)

which follows from the functoriality of binary products and exponentials using the observation that,
for (R,A) and (R ′, A) in K〈σ〉,

R ⊆ R ′ ks +3 idA : (R,A) // (R ′, A) in K〈σ〉 .

The proof of the second part follows from considering the interpretation I : T // K〈σ〉 map-
ping a base type θ to the Kripke relation (Rθ,I0[[θ]]) and noticing that, by the first part and the
Fundamental Lemma of logical relations, the diagram below in SetC

op

AΓ
� � //
� p

!!❈
❈❈

❈❈
❈❈

❈
RΓ� _

��

// Rτ� _

��

� � // BτnN

}}④④
④④
④④
④④

S(σ(),I0[[Γ]])
I0[[Γ⊢t:τ]]◦

// S(σ(),I0[[τ]])

(3)

commutes, where for Γ = 〈xi : τi〉i=1,n, AΓ = Aτ1 ∧ . . .∧Aτn and RΓ = Rτ1 ∧ . . .∧ Rτn. �

The Basic Lemma yields the Definability Lemma by considering Aτ = Dτ = Bτ in the category
of Kripke relations K〈s[[]] : F[T̃] // S〉 for the given interpretation s : T // S. We will now
see that the Basic Lemma can be also applied to obtain an extensional normalisation result (see
Lemma 9).

Normalisation. For an interpretation s : T // S of base types in a cartesian closed category we
aim at defining families { (DMτ, s[[τ]]) }τ∈T̃ and { (DNτ, s[[τ]]) }τ∈T̃ of F[T̃]-Kripke relations of arity

s[[]] : F[T̃] // S of definable morphisms such that

(i) DN1 = ⊤

(ii) DMσ ∗ τ ⊆ (DMσ ∧DMτ) (iii) (DNσ ∧DNτ) ⊆ DNσ ∗ τ

(iv) DMσ=>τ ⊆ (DNσ ⊃ DMτ) (v) (DMσ ⊃ DNτ) ⊆ DNσ=>τ

(vi) DMθ ⊆ DNθ (θ ∈ T)

(vii) πx : s[[Γ]] // s[[τ]] ∈ DMτ(Γ) ((x : τ) ∈ Γ)

7

so that, by the second part of the Basic Lemma, we get (setting Rθ = DMθ for all θ ∈ T, and
ai = πi : s[[Γ]] // s[[τi]] for Γ = 〈xi : τi〉i=1,n) that, for all terms Γ ⊢ t : τ,

s[[Γ ⊢ t : τ]] : s[[Γ]] // s[[τ]] is in DNτ(Γ) . (4)

The above will be achieved by distilling the semantic closure properties (i)–(vii) into two syn-
tactic typing systems ⊢M and ⊢N with respect to which the definitions

DMτ(Γ) = { s[[Γ ⊢ M : τ]] | Γ ⊢M M : τ } (5)

DNτ(Γ) = { s[[Γ ⊢ N : τ]] | Γ ⊢N N : τ } (6)

will provide the required Kripke relations (see Proposition 8). The conditions (i)–(vii) amount,
roughly, to the following properties.

• The system ⊢M should contain variables (condition (vii)), and be closed under projections (con-
dition (ii)) and under the application to terms in the system ⊢N (condition (iv)).

• The system ⊢N should contain the unit (condition (i)), and should be closed under pair-
ing (condition (iii)) and under abstraction (condition (v)).

• Every term of base type in the system ⊢M should be in the system ⊢N (condition (vi)).

Formally, the systems are given by the rules in Figure 2.

Thus, from purely semantic considerations, we have synthesised the notions of neutral normal
forms (viz., those derivable in the system ⊢M) and of long βη-normal forms (viz., those derivable in
the system ⊢N), henceforth respectively referred to as neutral and normal terms, and characterised
as follows.

Proposition 7

1. (Neutral terms)

Γ ⊢M t : τ ks +3 [∃ (x : τ) ∈ Γ. t = x]

∨ [∃ Γ ⊢M M : τ ∗ τ ′. t = π1(M)] ∨ [∃ Γ ⊢M M : τ ′ ∗ τ. t = π2(M)]

∨ [∃ Γ ⊢M M : τ ′=>τ , Γ ⊢N N : τ ′. t = M(N)]

2. (Normal terms)

• Γ ⊢N t : 1 ks +3 t = 〈〉

• Γ ⊢N t : τ1 ∗ τ2 ks +3 [∃ Γ ⊢N N1 : τ1 , Γ ⊢N N2 : τ2. t = 〈N1,N2〉]

• Γ ⊢N t : τ=>τ ′ ks +3 [∃ Γ, x : τ ⊢N N : τ ′. t = λ x : τ.N]

• For θ a base type, Γ ⊢N t : θ ks +3 Γ ⊢M t : θ.

Neutral and normal terms are closed under context renamings and thereby semantically induce
Kripke relations.

8

Γ ⊢M x : τ
(x : τ) ∈ Γ

Γ ⊢M M : τ1 ∗ τ2
Γ ⊢M πi(M) : τi

(i = 1, 2)

Γ ⊢M M : τ=>τ ′ Γ ⊢N N : τ

Γ ⊢M M(N) : τ ′

Γ ⊢N 〈〉 : 1

Γ ⊢N Ni : τi (i = 1, 2)

Γ ⊢N 〈N1,N2〉 : τ1 ∗ τ2

Γ, x : τ ⊢N N : τ ′

Γ ⊢N λ x : τ.N : τ=>τ ′

Γ ⊢M M : θ

Γ ⊢N M : θ
(θ a base type)

Figure 2: Neutral and normal terms

Proposition 8 Let s : T // S be an interpretation of base types in a cartesian closed category.
For all types τ ∈ T̃, the definitions (5) and (6) respectively yield F[T̃]-Kripke relations DMτ and
DNτ of arity s[[]] : F[T̃] // S satisfying conditions (i)–(vii).

Proof: The first part is a corollary of the facts that

Γ ⊢M M : τ ks +3 ∀ ρ : Γ → Γ ′ in F ↓T̃. Γ ′ ⊢M M[ρx/x]x∈dom(Γ) : τ (7)

and
Γ ⊢N N : τ ks +3 ∀ ρ : Γ → Γ ′ in F ↓T̃. Γ ′ ⊢N N[ρx/x]x∈dom(Γ) : τ . (8)

The second part follows by the construction of the systems ⊢M and ⊢N. �

From Proposition 8, we have (4) and therefore, from (6) and Proposition 7(2), we obtain the
following Extensional Normalisation Lemma.

Lemma 9 (Extensional Normalisation Lemma) Let s : T // S be an interpretation of base types
in a cartesian closed category. For every term Γ ⊢ t : τ there exists a long βη-normal term
Γ ⊢N N : τ such that

s[[Γ ⊢ t : τ]] = s[[Γ ⊢ N : τ]] : s[[Γ]] // s[[τ]]

in S.

Specialising the Extensional Normalisation Lemma for the canonical interpretation of types
in the free cartesian closed category generated by them we obtain the following syntactic re-
sult (cf. [36]).

9

Corollary 10 Every simply typed term is βη-equal to one in long βη-normal form.

The above does not give information about the long βη-normal form associated to a term
because Kripke relations are extensional predicates. What is needed instead for this purpose is
a notion of intensional Kripke relation in which the extension of the predicate is witnessed (or
realised). Technically, this amounts to revisiting the development in categories obtained by the
Artin-Wraith glueing construction [40]. This will be done in Part II. To do it at an appropriate
abstract, syntax-independent level we will first consider the typed lambda calculus algebraically.

Part II

II.1 Algebraic typed lambda calculus

We provide an algebraic setting for the syntax and semantics of the typed lambda calculus following
and extending the theory of [21]. In particular, we describe the typed abstract syntax of simply
typed and of neutral and normal terms as initial algebras, and show how the usual semantics
corresponds to unique algebra homomorphisms from the initial (term) algebras to suitable semantic
algebras.

II.1.1 Syntax

Categories of contexts, which we study next, play a crucial role in describing abstract syntax with
variable binding; see [21] for further details.

Free (co)cartesian categories. The category of untyped contexts and renamings F with objects
given by finite subsets of (the countably infinite set of) variables and morphisms given by all
functions is the free cocartesian category on one generator.

More generally, the free cocartesian category over a set T can be described as the comma
category F ↓T of contexts with types in the set T and type-preserving context renamings. (That
is, F ↓ T is the category with objects given by maps Γ : V // T where V is in F, and with
morphisms ρ : Γ // Γ ′ given by functions ρ : dom(Γ) // dom(Γ ′) such that Γ = Γ ′ ◦ ρ.) The initial
object (0 // T) in F ↓T is the empty context; whilst the coproduct in F ↓T is

(V
Γ // T) + (V ′ Γ ′

// T) = (V + V ′ [Γ,Γ ′] // T)

As before, we write F[T] for (F ↓ T)op. Further, we write 〈 〉 : T // F[T] for the universal

embedding (mapping τ to (1
τ // T)) and exhibiting F[T] as the free cartesian category over T .

Typed abstract syntax with variable binding. The semantic universe on which to consider

the algebras for the typed lambda calculus over a set of base types T is the functor category SetF↓̃T

of F ↓T̃-variable sets, referred to as (covariant) presheaves. (Recall that SetF↓̃T has objects given by
functors F ↓T̃ // Set and morphisms ϕ : P // P ′ given by natural transformations; that is, families
of functions ϕ = {ϕΓ : P(Γ) // P ′(Γ) }

Γ∈|F↓̃T|
such that ϕΓ ′ ◦ P(ρ) = P ′(ρ) ◦ ϕΓ for all ρ : Γ // Γ ′

in F ↓T̃.)
The structure of SetF↓̃T allowing the interpretation of variables and binding operators is de-

scribed below.

10

• The presheaf of variables of type τ ∈ T̃ is

Vτ = y〈τ〉 (9)

in SetF↓̃T where

F[T̃] � � y // SetF↓̃T

Γ
✤ // (F ↓T̃)(Γ,)

is the Yoneda embedding.

Hence, Vτ(Γ) ∼= { x | (x : τ) ∈ Γ }.

• For every type τ ∈ T̃, the parameterisation functor ×〈τ〉 : F[T̃] // F[T̃] induces the following
situation

F[T̃]

Lan
∼=

� � y //

×〈τ〉

��

SetF↓̃T

×y〈τ〉

��
⊣

F[T̃] �
�

y
// SetF↓̃T

Set(+〈τ〉)

OO

(10)

Thus, in SetF↓̃T, the exponential PVτ of the presheaf Vτ and a presheaf P can be explicitly
described as P(+ 〈τ〉).

Hence, PVτ(Γ) ∼= P(Γ + 〈τ〉).

A typed lambda algebra over a set of base types T is a T̃-sorted algebra with carrier given by a

family { Xτ }τ∈T̃ of presheaves in SetF↓̃T equipped with the following operations:

(Variables) Vτ
// Xτ

(Unit) 1 // X1

(First Projection) Xτ∗τ ′ // Xτ

(Second Projection) Xτ ′∗τ
// Xτ

(Pairing) Xτ × Xτ ′ // Xτ∗τ ′

(Application) Xτ ′=>τ × Xτ ′ // Xτ

(Abstraction) (Xτ ′)Vτ // Xτ=>τ ′

Informally, one thinks of the sets Xτ(Γ) (τ ∈ T̃, Γ ∈ |F ↓T̃ |) as the τ-sorted elements of the algebra X

in the context Γ . Note that under this interpretation the abstraction operation corresponds to a
natural family of mappings

Xτ ′(Γ + 〈τ〉) // Xτ=>τ ′(Γ)

associating an element of sort τ ′ in the context Γ + 〈τ〉 (that is, the context Γ extended with a fresh
variable of type τ) with an element of sort τ=>τ ′ in the context Γ .

In the tradition of categorical algebra, the category of typed lambda algebras can be defined as

the category of Σ-algebras for a signature endofunctor Σ on (SetF↓̃T)T̃. This endofunctor is induced

11

by the above operations as follows, for θ ∈ T and τ, τ ′ ∈ T̃:

(ΣX)θ = Vθ + Eθ(X)

(ΣX)1 = V1 + 1+ E1(X)

(ΣX)τ∗τ ′ = Vτ∗τ ′ + (Xτ × Xτ ′) + Eτ∗τ ′(X)

(ΣX)τ=>τ ′ = Vτ=>τ ′ + (Xτ ′)Vτ + Eτ=>τ ′(X)

where
Eτ(X) =

∐
τ ′∈T̃ Xτ∗τ ′ + Xτ ′∗τ + (Xτ ′=>τ × Xτ ′)

is the signature endofunctor corresponding to the projections and application operations onto τ.
The initial Σ-algebra L = { Lτ }τ∈T̃ with its structure

Vθ + Eθ(L)
∼= // Lθ

V1 + 1+ E1(L)
∼= // L1

Vτ∗τ ′ + (Lτ × Lτ ′) + Eτ∗τ ′(L)
∼= // Lτ∗τ ′

Vτ=>τ ′ + (Lτ ′)Vτ + Eτ=>τ ′(L)
∼= // Lτ=>τ ′

(11)

can be explicitly described as the family of presheaves of terms

Lτ(Γ) = { t | Γ ⊢ t : τ }

with presheaf action given by variable renaming (that is, by the mapping associating Γ ⊢ t : τ to
Γ ′ ⊢ t[ρx/x]x∈dom(Γ) : τ for any ρ : Γ // Γ ′ in F ↓T̃), and with operations

varτ : Vτ
// Lτ

unit1 : 1 // L1

fst
(τ ′)
τ : Lτ∗τ ′ // Lτ

snd
(τ ′)
τ : Lτ ′∗τ

// Lτ

pairτ∗τ ′ : Lτ × Lτ ′ // Lτ∗τ ′

app
(τ ′)
τ : Lτ ′=>τ × Lτ ′ // Lτ

absτ=>τ ′ : (Lτ ′)Vτ // Lτ=>τ ′

corresponding to the typing rules in Figure 1.

A full theory of typed abstract syntax with variable binding incorporating substitution along
the lines of [21] can be developed (see, e.g., [20, 23]). This is however not necessary for the purposes
of the paper.

The notions of neutral and normal terms are given by mutual induction (see Figure 2) and,
as such, the associated algebraic notion corresponds to considering a signature endofunctor on the

12

product category (SetF↓̃T)T̃ × (SetF↓̃T)T̃. This endofunctor, with components 〈Σ1, Σ2〉, is defined
below:

{
(Σ1(X,Y))τ = Vτ + Eτ(X,Y)

(Σ2(X,Y))θ = Vθ + Eθ(X,Y)

(Σ2(X,Y))1 = 1

(Σ2(X,Y))τ∗τ ′ = Yτ × Yτ ′

(Σ2(X,Y))τ=>τ ′ = (Yτ ′)Vτ

where
Eτ(X,Y) =

∐
τ ′∈T̃

Xτ∗τ ′ + Xτ ′∗τ + (Xτ ′=>τ × Yτ ′)

for θ ∈ T and τ, τ ′ ∈ T̃.
We write (M,N) for the initial 〈Σ1, Σ2〉-algebra with structure, for θ ∈ T and τ, τ ′ ∈ T̃, as

follows:

{
Vτ + Eτ(M,N)

∼= // Mτ

Vθ + Eθ(M,N)
∼= // Nθ

1
∼= // N1

Nτ ×Nτ ′

∼= // Nτ∗τ ′

(Nτ ′)Vτ
∼= // Nτ=>τ ′

(12)

Note that we have an isomorphism

norm : Mθ
∼= Vθ + Eθ(M,N) ∼= Nθ (13)

for all θ ∈ T.
Explicitly, the presheaves Mτ and Nτ can be respectively described as the neutral and normal

terms
Mτ(Γ) = { M | Γ ⊢M M : τ } Nτ(Γ) = { N | Γ ⊢N N : τ }

with presheaf action given by variable renaming (recall (7) and (8)), and with operations

varτ : Vτ
// Mτ

fst
(τ ′)
τ : Mτ∗τ ′ // Mτ

snd
(τ ′)
τ : Mτ ′∗τ

// Mτ

app
(τ ′)
τ : Mτ ′=>τ ×Nτ ′ // Mτ

varθ : Vθ
// Nθ

fst
(τ ′)
θ : Mθ∗τ ′ // Nθ

snd
(τ ′)

θ : Mτ ′∗θ
// Nθ

app
(τ ′)
θ : Mτ ′=>θ ×Nτ ′ // Nθ

unit1 : 1
∼= // N1

pairτ∗τ ′ : Nτ ×Nτ ′

∼= // Nτ∗τ ′

absτ=>τ ′ : (Nτ ′)Vτ
∼= // Nτ=>τ ′

(14)

corresponding to the typing rules in Figure 2.
Note that every Σ-algebra X induces a canonical 〈Σ1, Σ2〉-algebra structure on the pair (X,X)

and hence, by initiality, homomorphic interpretations (M,N) // (X,X). Applying this observation

13

to the initial Σ-algebra L we obtain the embeddings M // // L and N // // L of neutral and normal
terms into terms.

Structural induction. Initial algebras have the following associated structural induction princi-
ple [29].

Let α : FA // A be an initial algebra for an endofunctor F, if the subobject m : P // // A

satisfies the closure property of being a sub F-algebra of A, in the sense that the diagram

FP

Fm

��

//❴❴❴ P
��

m

��
FA

α

∼= // A

commutes for a (necessarily unique) map FP // P, then m : P // // A is an isomor-
phism.

(15)

For the initial Σ-algebra L (resp. the initial 〈Σ1, Σ2〉-algebra (M,N)) the structural induction
principle corresponds, in elementary terms, to proving a property of terms (resp. of neutral and
normal terms) by induction (resp. simultaneous induction) on their derivation. The structural
induction principle for the initial 〈Σ1, Σ2〉-algebra (M,N) features in the proof of Theorem 21.

II.1.2 Semantics

As we will see below, every interpretation of base types in a cartesian closed category induces a
canonical semantic typed lambda algebra with respect to which the unique algebra homomorphism
from the initial (term) algebra is the usual semantics of simply typed terms.

Nerve functor. Every functor σ : C // S induces the following situation

C

σ⇓Lan

� � y //

σ
##❍

❍❍
❍❍

❍❍
❍❍

❍ SetC
op

S
〈σ〉

;;✇✇✇✇✇✇✇✇✇✇

(16)

where 〈σ〉(A) = S(σ(), A) and where (σΓ)Γ ′ = σΓ ′,Γ : C(Γ ′, Γ) // S(σ(Γ ′),σ(Γ)). We refer to
〈σ〉 : S // SetC

op

as the σ-nerve functor and to the presheaf 〈σ〉(A) as the σ-nerve of A.

Two important properties of nerve functors follow.

Proposition 11 For a functor σ : C // S where C is small, the nerve functor 〈σ〉 : S // SetC
op

preserves limits. Further, for σ and C cartesian and S cartesian closed, it also commutes with
exponentiation by representables in the sense that there is a canonical natural isomorphism

S

∼=〈σ〉
��

σ(Γ) +3 () // S

〈σ〉
��

SetC
op

()y(Γ)
// SetC

op

for all Γ ∈ |C |.

14

Proof: The first part is well-known and follows from the canonical natural isomorphism

S(σ(Γ), L) ∼= lim∆∈D S(σ(Γ),D(∆))

f ✤ // 〈π∆ ◦ f 〉∆∈D
(Γ ∈ C)

available for any diagram D : D // S with limit 〈π∆ : L // D(∆) 〉∆∈D in S.
For the second part, note that for Γ ∈ |C | we have the following situation (generalising (10))

C

Lan
∼=

� � y //

×Γ

��

SetC
op

×y(Γ)

��
⊣

C
� �

y
// SetC

op

Set(×Γ)op

OO

from which it follows that (Py(Γ))(∆) ∼= P(∆ × Γ) naturally in ∆ ∈ C. We thus obtain a canonical
isomorphism

(〈σ〉A)y(Γ)(∆) ∼= (〈σ〉A)(∆× Γ) = S(σ(∆× Γ), A)

∼= S(σ(∆)× σ(Γ), A)

∼= S(σ(∆),σ(Γ) +3 A) = 〈σ〉(σ(Γ) +3 A)(∆)

natural in Γ, ∆ ∈ C and A ∈ S. �

Initial algebra semantics. Using the nerve functor 〈s[[]]〉 : S // SetF↓̃T induced by the cartesian
extension s[[]] : F[T̃] // S of an interpretation s : T // S of base types in a cartesian closed
category, the operations

π1 : s[[τ]]× s[[τ ′]] // s[[τ]]

π2 : s[[τ ′]]× s[[τ]] // s[[τ]]

ε : (s[[τ]] +3 s[[τ ′]])× s[[τ]] // s[[τ ′]]

in S can be lifted to SetF↓̃T to provide a semantic typed lambda algebra structure on the family

C = { S(s[[]], s[[τ]]) }
τ∈T̃ = { 〈s〉(s[[τ]]) }

τ∈T̃ (17)

The operations are as follows:

1. Vτ
s[[]] // 〈s〉(s[[τ]])

2. 1
∼= // 〈s〉(s[[1]])

3. 〈s〉(s[[τ ∗ τ ′]])
〈s〉(π1) // 〈s〉(s[[τ]])

4. 〈s〉(s[[τ ′ ∗ τ]])
〈s〉(π2) // 〈s〉(s[[τ]])

5. 〈s〉(s[[τ]])× 〈s〉(s[[τ ′]])
∼= // 〈s〉(s[[τ ∗ τ ′]])

6. 〈s〉(s[[τ ′=>τ]])× 〈s〉(s[[τ ′]])
∼= // 〈s〉((s[[τ ′]] +3 s[[τ]])× s[[τ ′]])

〈s〉(ε) // 〈s〉(s[[τ]])

7. (〈s〉(s[[τ ′]]))Vτ
∼= // 〈s〉(s[[τ=>τ ′]])

(18)

15

(Note that item 1 relies on diagram (16) while items 2, 5, 6, and 7 rely on Proposition 11. Similar
applications of this proposition will be used throughout without further reference.)

By initiality, the semantic typed lambda algebra induces semantic homomorphic interpretations
ℓ : L // C and (m,n) : (M,N) // (C,C). These are related as shown below

M

m
 ❆

❆❆
❆❆

❆❆
❆
// // L

ℓ

��

Noooo

n
��⑦⑦
⑦⑦
⑦⑦
⑦⑦

C

(19)

Indeed, by the initiality of (M,N), (19) directly follows from the fact that the homomorphism
property of ℓ : L // C amounts to the commutativity of the diagrams in Appendix A and that the
homorphism property of (m,n) : (M,N) // (C,C) amounts to the commutativity of the diagrams
in Appendix B.

Explicitly, for τ ∈ T̃, the mapping ℓτ : Lτ
// Cτ is the standard semantic interpretation of

terms

t ∈ Lτ(Γ)
✤ ℓτ // s[[Γ ⊢ t : τ]] ∈ S(s[[Γ]], s[[τ]]) (20)

whilst mτ : Mτ
// Cτ and nτ : Nτ

// Cτ are, respectively, the semantic interpretations of neutral
and normal terms.

II.2 Normalisation by evaluation via categorical glueing

We will now see how, by working with intensional Kripke relations, the analysis of normalisation
given in Section I.2 amounts to normalisation by evaluation. As in that section, we will work with

semantic models of (covariant) presheaves in SetF↓̃T over nerves induced by interpretations s of the
set of base types T in arbitrary cartesian closed categories (see (24)). This level of generality allows

the definition of normalisation functions s-nfτ : Lτ
// Nτ (τ ∈ T̃) in SetF↓̃T over the s[[]]-nerve

of s[[τ]] (Corollary 20) that are parametric on the interpretation s. Crucially, the normalisation
functions will be shown to be parametrically polymorphic, in the sense of being interpretation
independent (Corollary 22). This is methodologically important. Firstly, as in Corollary 10, the
consideration of the universal interpretation of base types into the free cartesian closed category
over them leads to our solution of the intensional normalisation problem (see the discussions after
Corollaries 20 and 22 in § Normalisation function below) stated in the Introduction. Secondly, the
consideration of the trivial interpretation of base types in the trivial cartesian closed category leads
to a normalisation algorithm from which a normalisation program is synthesised (see § Normalisa-
tion algorithm below).

Intensional Kripke relations. The category of intensional C-Kripke relations of arity σ : C // S
is defined as the glueing of SetC

op

and S along the nerve functor 〈σ〉 : S // SetC
op

. That is, as the
comma category SetC

op ↓〈σ〉 of objects given by triples (P, p,A) with P ∈ |SetC
op

|, A ∈ |S |, and
p : P // 〈σ〉(A) in SetC

op

, and of morphisms (P, p,A) // (P ′, p ′, A ′) given by pairs

(ϕ : P // P ′ in SetC
op

, f : A // A ′ in S)

16

such that the diagram

P

p

��

ϕ // P ′

p ′

��
〈σ〉(A)

〈σ〉(f)
// 〈σ〉(A ′)

in SetC
op

commutes.

Example 12 The category of intensional C-Kripke relations of arity the unique functor to the
terminal category is (isomorphic to) the presheaf topos SetC

op

.

As it is well-known (see, e.g., [28, 13, 39]), for S cartesian closed, the glueing category SetC
op ↓〈σ〉

is also cartesian closed. Indeed, the cartesian closed structure of SetC
op ↓〈σ〉 is given as follows.

(Products) The terminal object is (1, t, 1) where t is the unique map 1
∼= // 〈σ〉(1).

The binary product (P, p,A) × (Q,q,B) of (P, p,A) and (Q,q,B) is (P ×Q, r,A × B) where

r is the composite P ×Q
p×q // 〈σ〉(A)× 〈σ〉(B)

∼= // 〈σ〉(A× B).

(Exponentials) The exponential (P, p,A) +3 (Q,q,B) of (P, p,A) and (Q,q,B) is (R, r,A +3 B) in
the pullback diagram

R

pb

//

r

��

QP

qP

��
〈σ〉(A +3 B) // (〈σ〉B)(〈σ〉A)

(〈σ〉B)p
// (〈σ〉B)P

(21)

where the map 〈σ〉(A +3 B) // (〈σ〉B)(〈σ〉A) is the exponential transpose of the composite

〈σ〉(A +3 B)× 〈σ〉(A)
∼= // 〈σ〉((A +3 B)×A)

〈σ〉(ε) // 〈σ〉(B) .

Explicitly, one may take R(c) to be

{
(f : σ(c) → A +3 B , ϕ : y(c)× P → Q)

∀ ρ : c ′ → c. ∀a ∈ P(c ′).

qc ′(ϕc ′(ρ, a)) = ε ◦ 〈f ◦ σ(ρ), pc ′(a)〉

}
(22)

with r projecting pairs onto their first component.

Proposition 13 Let C be a small category and let S be a cartesian closed category. For a
functor σ : C // S, the glueing category SetC

op ↓〈σ〉 is cartesian closed and the forgetful functor
π : SetC

op ↓〈σ〉 // S : (P, p,A)
✤ // A preserves the cartesian closed structure strictly.

Remark. The category of C-Kripke relations K〈σ〉 is a full subcategory of the glueing category
SetC

op ↓〈σ〉 via the mapping (R,A)
✤ // (R, R

� � // 〈σ〉(A), A). On the other hand, every glued object

17

(P, f,A) has an associated Kripke relation given by the extension of the map f (as shown in the
diagram below, where im(f) denotes the image of f)

P

f

��

%% %%❑❑
❑❑

❑

im(f)
lL

zzttt
t

〈σ〉(A)

and the mapping im : (P, f,A)
✤ // (im(f), A) exhibits K〈σ〉 as a reflective subcategory of SetC

op ↓〈σ〉.
For S cartesian closed, as can be readily seen from the explicit descriptions of finite products in
K〈σ〉 and SetC

op ↓ 〈σ〉, the reflection im : K〈σ〉 → SetC
op ↓ 〈σ〉 preserves the cartesian structure

and, therefore, K〈σ〉 is an exponential ideal of SetC
op ↓ 〈σ〉 (as can also be readily seen from

the descriptions of exponentials in K〈σ〉 and SetC
op ↓ 〈σ〉). Thus, for (P, p,A) and (Q,q,A) in

SetC
op ↓〈σ〉, there are inclusions

im((P, p,A) +3(Q,q,B))(c) ⊆ (im(P, p,A)⊃ im(Q,q,B))(c) (c ∈ |C |)

where

im((P, p,A) +3(Q,q,B))(c)

=

{
f : σ(c) → A +3 B

∃ϕ : y(c) × P → Q. ∀ ρ : c ′ → c. ∀a ∈ P(c ′).

qc ′(ϕc ′(ρ, a)) = ε ◦ 〈f ◦ σ(ρ), pc ′(a)〉

}

and
(im(P, p,A)⊃ im(Q,q,B))(c)

=

{
f : σ(c) → A +3 B

∀ ρ : c ′ → c. ∀a ∈ P(c ′). ∃b ∈ Q(c ′).

qc ′(b) = ε ◦ 〈f ◦ σ(ρ), pc ′(a)〉

}
.

These inclusions may be strict; as it happens, for instance, when C
op = F (the category of untyped

contexts and renamings), σ is the unique functor to the trivial cartesian closed category, Q = y(1)

(for a singleton context 1), P = im(Q → 〈σ〉(1)), and c = 0 (the empty context). Indeed, in this
situation, (P +3Q)(c) ∼= SetF(P,Q) = ∅ whilst (im(p) ⊃ im(q))(c) = (P ⊃ P)(c) = { id }. Thus, in
general, the reflection im : K〈σ〉 → SetC

op ↓〈σ〉 does not preserve exponentials.

Now, note that (16) induces the embedding

C
� � y // SetC

op ↓〈σ〉

Γ
✤ // (y(Γ) , y(Γ)

σΓ // 〈σ〉(σΓ) , σ(Γ))

extending both the Yoneda embedding y : C
� � // SetC

op

and the functor σ : C // S

CiIy

ww♥♥♥
♥♥♥

♥♥♥
♥♥ � _

y
��

σ

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼

SetC
op

SetC
op ↓〈σ〉oo // S

P (P, p,A)
✤̟oo ✤ π // A

18

and satisfying the following extended form of the Yoneda Lemma (which we will use in § Normali-
sation function below).

Lemma 14 (Extended Yoneda Lemma) For a functor σ : C // S where C is a small category,
the natural transformation

[y(), (P, p,A)] // P() : (ϕ, f) ✤ // ϕ(id) ,

where [,] denotes the hom-functor of the glueing category SetC
op ↓〈σ〉, is an isomorphism making

the following diagram

[y(), (P, p,A)]
∼= //

π ''PP
PPP

PPP
P

P()

pzz✉✉
✉✉
✉✉
✉

S(σ(), A)

commute.

Proof: Follows from the fact that, for ϕ : y(Γ) // P in SetC
op

and f : σ(Γ) // A in S, the diagram

y(Γ)

σΓ

��

ϕ // P

p

��
S(σ(),σ(Γ))

f◦
// S(σ(), A)

commutes if and only if f = pΓ(ϕΓ (idΓ)). �

Proposition 15 For a functor σ : C // S where C is small, C and σ are cartesian, and S is
cartesian closed, we have that y : C

� � // SetC
op ↓ 〈σ〉 preserves products and that the exponential

(P, p,A)y(Γ) in SetC
op ↓〈σ〉 can be described as (Py(Γ), p ′,σ(Γ)=>A) where p ′ is the composite

Py(Γ) py(Γ) // (〈σ〉A)y(Γ)
∼= // 〈σ〉(σ(Γ) +3 A) .

Proof: The first part follows from the commutativity of

y(Γ × ∆)
∼= //

σΓ×∆

��

y(Γ)× y(∆)

σΓ×σ∆

��
〈σ〉(σΓ)× 〈σ〉(σ∆)

∼=
��

〈σ〉(σ(Γ × ∆))
∼=

// 〈σ〉(σ(Γ)× σ(∆))

for all Γ, ∆ ∈ |C |.
For the second part, since the exponential (P, p,A)y(Γ) is given by pulling back the map py(Γ) :

Py(Γ) // (〈σ〉A)y(Γ) along the composite

〈σ〉(σΓ +3 A)
f // (〈σ〉A)〈σ〉(σΓ) (〈σ〉A)σΓ

// (〈σ〉A)y(Γ)

19

(recall (21)), where f is the exponential transpose of

〈σ〉(σΓ +3 A)× 〈σ〉(σΓ)
∼= // 〈σ〉((σΓ +3 A)× σΓ)

〈σ〉(ε) // 〈σ〉(A) ,

it will be enough to show that the composite

(〈σ〉A)y(Γ)
∼= // 〈σ〉(σΓ +3 A)

f // (〈σ〉A)〈σ〉(σΓ) (〈σ〉A)σΓ
// (〈σ〉A)y(Γ)

is the identity. This is indeed the case as follows from the commutativity of the diagram below

〈σ〉(σΓ +3 A)× y(Γ)
f× id //

id× σΓ

))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚

∼= ×id

��

(〈σ〉A)〈σ〉(σΓ) × y(Γ)

idσΓ × id

))❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙

id× σΓ

��
(〈σ〉A)y(Γ) × y(Γ)

∼= ×id
55❧❧❧❧❧❧❧❧❧❧❧❧❧❧

ε

''❖❖
❖❖❖

❖❖
❖❖

❖❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖
❖❖

❖❖❖
❖❖❖

❖❖❖
❖❖

❖❖
❖❖❖

❖

∼= ×id // (〈σ〉A)(× Γ) × y(Γ)
∼= ×σΓ //

e

 ❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

〈σ〉(σΓ +3 A)× 〈σ〉(σΓ)
f× id //

∼=
��

(〈σ〉A)〈σ〉(σΓ) × 〈σ〉(σΓ)

ε

}}④④
④④
④④
④④
④④
④④
④④
④④
④④
④④
④④
④④
④④
④④

(〈σ〉A)y(Γ) × y(Γ)

ε

ww♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥

〈σ〉((σΓ +3 A)× σΓ)

〈σ〉(ε)

��
〈σ〉(A)

where
eP : P(× Γ)× y(Γ) // P() : (x, ρ)

✤ // (P〈id, ρ〉)(x) (23)

denotes the counit of the adjunction × y(Γ) ⊣ Set(×Γ)op : SetC
op // SetC

op

. �

Glueing syntax and semantics. Let s : T // S be an interpretation of base types in a cartesian

closed category. The embedding y : F[T̃] �
� // SetF↓̃T ↓〈s[[]]〉 restricted to types τ ∈ T̃ yields the glued

object

ντ = y〈τ〉 = (Vτ , Vτ
s[[]] // Cτ , s[[τ]]) in SetF↓̃T ↓〈s[[]]〉

glueing the syntax and semantics of variables. In the same spirit, glueing the syntax and semantics
of neutral and normal terms (see (19)) we obtain the glued objects

µτ = (Mτ , Mτ
mτ // Cτ , s[[τ]])

ητ = (Nτ , Nτ
nτ // Cτ , s[[τ]])

in SetF↓̃T ↓〈s[[]]〉.
Having constructed the 〈Σ1, Σ2〉-algebra structure on (C,C) by lifting the semantic opera-

tions in S (recall (17) and (18)), the homomorphism property of the semantic interpretation
(m,n) : (M,N) // (C,C) (see Appendix B) entails the two propositions below, which show how
the algebraic operations on the initial 〈Σ1, Σ2〉-algebra (M,N) and on the semantic 〈Σ1, Σ2〉-algebra

(C,C) can be glued to yield operations in SetF↓̃T ↓〈s[[]]〉 on the pair of families of glued objects
({µτ }τ∈T̃ , {ητ }τ∈T̃).

20

Proposition 16 Let s : T // S be an interpretation of base types in a cartesian closed category.

1. For τ, τ ′ ∈ T̃, the pair of maps

(varτ : Vτ
// Mτ , ids[[τ]])

constitute a map ντ
// µτ in SetF↓̃T ↓〈s[[]]〉.

2. For τ, τ ′ ∈ T̃, the pair of maps

(fst
(τ ′)
τ : Mτ∗τ ′ // Mτ , π1 : s[[τ]]× s[[τ ′]] // s[[τ]])

constitute a map µτ∗τ ′ // µτ in SetF↓̃T ↓〈s[[]]〉.

3. For τ, τ ′ ∈ T̃, the pair of maps

(snd
(τ ′)
τ : Mτ ′∗τ

// Mτ , π2 : s[[τ
′]]× s[[τ]] // s[[τ]])

constitute a map µτ ′∗τ
// µτ in SetF↓̃T ↓〈s[[]]〉.

4. For τ, τ ′ ∈ T̃, the pair of maps

(app
(τ ′)
τ : Mτ ′=>τ ×Nτ ′ // Mτ , ε : (s[[τ ′]] +3 s[[τ]])× s[[τ ′]] // s[[τ]])

constitute a map µτ ′=>τ × ητ ′ // µτ in SetF↓̃T ↓〈s[[]]〉.

Proof: Items 1, 2, 3, and 4 respectively follow from (32), (33), (34), and (35) in Appendix B. �

Proposition 17 Let s : T // S be an interpretation of base types in a cartesian closed category.

1. For a base type θ ∈ T, the pair of isomorphisms

(Mθ
∼= Vθ + Eθ(M,N) ∼= Nθ , ids(θ))

constitute an isomorphism µθ
∼= ηθ in SetF↓̃T ↓〈s[[]]〉.

2. The pair of isomorphisms

(unit1 : 1
∼= // N1 , id1)

constitute an isomorphism 1
∼= // η1 in SetF↓̃T ↓〈s[[]]〉.

3. For τ, τ ′ ∈ T̃, the pair of isomorphisms

(pairτ∗τ ′ : Nτ ×Nτ ′

∼= // Nτ∗τ ′ , ids[[τ]] × s[[τ ′]])

constitute an isomorphism ητ × ητ ′

∼= // ητ∗τ ′ in SetF↓̃T ↓〈s[[]]〉.

21

4. For τ, τ ′ ∈ T̃, the pair of isomorphisms

(absτ=>τ ′ : Nτ ′
Vτ

∼= // Nτ=>τ ′ , ids[[τ]] +3 s[[τ ′]])

constitute an isomorphism ητ ′
ντ

∼= // ητ=>τ ′ in SetF↓̃T ↓〈s[[]]〉.

Proof: Items 1, 2, 3, and 4 respectively follow from (32–39), (40), (41), and (42) (relying on
Proposition 15) in Appendix B. �

Note that the above operations on glued objects are given by pairs of syntactic operations together
with their associated semantic meaning in the case of neutral terms (Proposition 16) and together
with the identity in the case of normal terms (Proposition 17).

Normalisation by evaluation. Let s : T // S be an interpretation of base types in a cartesian
closed category. Consider the interpretation

T
s // SetF↓̃T ↓〈s[[]]〉

θ
✤ // µθ

(24)

By Proposition 13, the semantics of terms induced by s in SetF↓̃T ↓〈s[[]]〉 extends the semantics
induced by s in S; that is, the denotation s[[Γ ⊢ t : τ]] is a pair of the form

(s ′[[Γ ⊢ t : τ]] , s[[Γ ⊢ t : τ]]))

such that, letting
s[[τ]] = (Sτ , στ , s[[τ]]) ,

the diagram
∏

i=1,n Sτi
∏

i=1,n στi
��

s ′[[Γ ⊢ t : τ]] // Sτ

στ

��

∏
i=1,n S(s[[]], s[[τi]])

∼=
��

S(s[[]], s[[Γ]])
s[[Γ ⊢ t : τ]] ◦

// S(s[[]], s[[τ]])

commutes for all Γ = 〈xi : τi〉i=1,n.
We now aim at defining maps Mτ

// Sτ // Nτ (τ ∈ T̃) such that

Mτ
//

mτ ((PP
PPP

PPP
P Sτ //

στ
��

Nτ

nτvv♥♥♥
♥♥♥

♥♥♥

S(s[[]], s[[τ]])

(25)

22

commutes; so that, for all terms Γ ⊢ t : τ (Γ = 〈xi : τi〉i=1,n), the diagram below

∏
i=1,n Mτi

∏
i=1,n mτi ((◗◗

◗◗◗
◗◗◗

◗◗◗
//
∏

i=1,n Sτi
∏

i=1,n στi
��

s ′[[Γ ⊢ t : τ]] // Sτ //

στ

��

Nτ

nτ

��✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡✡
✡

∏
i=1,n S(s[[]], s[[τi]])

∼=
��

S(s[[]], s[[Γ]])
s[[Γ ⊢ t : τ]] ◦

// S(s[[]], s[[τ]])

will commute (cf. diagram (3) of the Basic Lemma (Lemma 6)) and, hence, the evaluation of the
horizontal top composite at the tuple 〈varτi(xi)〉i=1,n of the variables in the context Γ will yield
a normal term in Nτ(Γ) with the same semantics as the given term t (compare the Extensional
Normalisation Lemma (Lemma 9) and see Corollary 20 below). Moreover, as we will show below (see
Corollary 19), the long βη-normal forms associated to two βη-equal terms will be the same.

The abstract way to define the maps in (25) —which in the literature on normalisation by
evaluation are either referred to as unquote and quote or as reflect and reify— is by defining maps

µτ
uτ // s[[τ]]

qτ // ητ in SetF↓̃T ↓〈s[[]]〉

that project in S onto identities (see Proposition 18 below). The definition of these maps is by
induction on the structure of types relying on Propositions 16 and 17 as follows:

1. For a base type θ ∈ T, we define uθ = idµθ
and qθ = (µθ

∼= // ηθ).

2. We let u1 = (µ1
// 1) and q1 = (1

(unit1,id)

∼=
// η1).

3. For types τ, τ ′ ∈ T̃, we define

uτ∗τ ′ : µτ∗τ ′ // s[[τ]]× s[[τ ′]]

as the pairing of the maps

µτ∗τ ′
(fst

(τ ′)
τ ,π1) // µτ

uτ // s[[τ]] and µτ∗τ ′

(snd
(τ)

τ ′ ,π2) // µτ ′

uτ ′ // s[[τ ′]] ,

and let qτ∗τ ′ : s[[τ]]× s[[τ ′]] // ητ∗τ ′ be the composite

s[[τ]]× s[[τ ′]]
qτ×qτ ′ // ητ × ητ ′

(pairτ∗τ ′ ,id)

∼=
// ητ∗τ ′ .

4. For types τ, τ ′ ∈ T̃, we define

uτ=>τ ′ : µτ=>τ ′ // s[[τ ′]]s[[τ]]

as the exponential transpose of the map

µτ=>τ ′ × s[[τ]]
id×qτ // µτ=>τ ′ × ητ

(app
(τ)

τ ′ ,ε) // µτ ′

uτ ′ // s[[τ ′]] ,

23

and let qτ=>τ ′ : s[[τ ′]]s[[τ]] // ητ=>τ ′ be the composite

s[[τ ′]]s[[τ]]
qτ ′

uτvτ

// ητ ′
ντ

(absτ=>τ ′ ,id)

∼=
// ητ=>τ ′

where vτ = (varτ, id) : ντ
// µτ.

Proposition 18 below yields (25) as a corollary.

Proposition 18 For every type τ ∈ T̃, we have the identities

π(uτ) = ids[[τ]] = π(qτ)

for π the forgetful functor SetF↓̃T ↓〈s[[]]〉 // S.

Proof: The proof is by induction on the structure of types.

1. For a base type θ ∈ T, π(uθ) = π(qθ) = ids[[θ]] by definition of uθ and qθ.

2. π(u1) = π(q1) = id1 by definition of u1 and q1.

3. For types τ, τ ′ ∈ T̃,

π(uτ∗τ ′) = 〈 π(uτ) ◦ π1 , π(uτ ′) ◦ π2 〉 , by definition of uτ∗τ ′

= 〈π1 , π2 〉 , by induction

= ids[[τ]]×s[[τ ′]]

and
π(qτ∗τ ′) = π(qτ)× π(qτ ′) , by definition of qτ∗τ ′

= ids[[τ]] × ids[[τ ′]] , by induction

= ids[[τ]]×s[[τ ′]] .

4. For types τ, τ ′ ∈ T̃,

ε ◦ (π(uτ=>τ ′)× ids[[τ]])

= π(uτ ′) ◦ ε ◦ (ids[[τ]] +3s[[τ ′]] × π(qτ)) , by definition of uτ=>τ ′

= ε , by induction

and hence
π(uτ=>τ ′) = ids[[τ]] +3s[[τ ′]] ;

further

π(qτ=>τ ′) = (π(uτ) ◦ π(vτ)) +3 (π(qτ ′)) , by definition of qτ=>τ ′

= ids[[τ]] +3 ids[[τ ′]] , by induction and definition of vτ

= ids[[τ]] +3s[[τ ′]] . �

24

Normalisation function. Every interpretation s : T // S of base types in a cartesian closed

category, induces a normalisation function s-nfτ : Lτ
// Nτ in SetF↓̃T defined as the composite

Lτ
ℓτ // [s[[]], s[[τ]]]

[uv,qτ] // [y(), ητ]
∼= // Nτ

where ℓ denotes the semantics of terms induced by the interpretation s : T // SetF↓̃T ↓〈s[[]]〉 of (24)
and where

(uv)Γ = y(Γ)
vΓ // µ[[Γ]]

uΓ // s[[Γ]]

for
µ[[Γ]] =

∏
(x:τ)∈Γ µτ ,

vΓ = y(Γ)
∼= //

∏
(x:τ)∈Γ ντ

∏
(x:τ)∈Γ vτ

// µ[[Γ]] ,

uΓ =
∏

(x:τ)∈Γ uτ .

Explicitly,
s-nfτ,Γ (t) = (qτ s[[Γ ⊢ t : τ]] (uv)Γ)(idΓ) ∈ Nτ(Γ)

for all terms t ∈ Lτ(Γ).

Having the same denotation, βη-equal terms are identified by the normalisation function.

Corollary 19 Let s : T // S be an interpretation of base types in a cartesian closed category. For
every pair of terms t, t ′ in Lτ(Γ), if t =βη t ′ then s-nfτ,Γ (t) = s-nfτ,Γ (t

′) in Nτ(Γ).

Further, as a consequence of Proposition 18 (see also (25)), we have that a term and its associated
normal form have the same semantics.

Corollary 20 For every interpretation s : T // S of base types in a cartesian closed category, the
diagram

Lτ

ℓτ %%▲▲
▲▲

▲▲
▲▲

▲▲
▲

s-nfτ // Nτ

nτ
yyrrr

rr
rr
rr
rr

S(s[[]], s[[τ]])

commutes for all types τ ∈ T̃.

Considering the universal interpretation f : T // Fccc[T] of the set of base types T into the free
cartesian closed category Fccc[T] over them, by Corollary 20, we have that

t =βη f-nfτ,Γ (t) (26)

and hence, by Corollary 19, that

s-nfτ,Γ (t) = s-nfτ,Γ (f-nfτ,Γ (t))

for all terms t ∈ Lτ(Γ). Thus, the normalisation function f-nfτ is idempotent and therefore fixes
some normal terms. In fact, as we will see below (see (29) in Theorem 21), all normalisation
functions s-nfτ fix all normal terms: that is,

for all N ∈ Nτ(Γ), s-nfτ,Γ (N) = N . (27)

This fixed-point property is important: from it and Corollary 19 it follows that

25

• for all terms t ∈ Lτ(Γ) and normal terms N ∈ Nτ(Γ), if t =βη N then s-nfτ,Γ (t) = N, and

• for every pair of normal terms N,N ′ ∈ Nτ(Γ), if N =βη N ′ then N = N ′;

so that, further using Corollary 20 in the form (26), we have that

• for all terms t ∈ Lτ(Γ), s-nfτ,Γ (t) = f-nfτ,Γ (t).

Thus, the fixed-point property (27) allows one to conclude that:

all interpretations induce the same normalisation function nfτ : Lτ
// Nτ such that, for

every term t ∈ Lτ(Γ), one has that nfτ,Γ (t) ∈ Nτ(Γ) is the unique normal term βη-equal
to t.

We now establish (27). The appropriate induction hypothesis to proceed by induction on the
structure of neutral and normal terms is stated in the theorem below.

Theorem 21 For every interpretation s : T // S of base types in a cartesian closed category, the
diagrams

Mτ

mτ ''PP
PPP

PPP
PPP

PP
∼= [y(), µτ]

[id,uτ] // [y(), s[[τ]]]

[s[[]], s[[τ]]]

[uv,id]

<<②②②②②②②②
(28)

and

Nτ
∼= //

nτ $$❍
❍❍

❍❍
❍❍

❍❍
❍ [y(), ητ]

[s[[]], s[[τ]]]

[uv,qτ]

88qqqqqqqqqq
(29)

commute for all types τ ∈ T̃.

Proof: The proof uses the induction principle associated to the initial 〈Σ1, Σ2〉-algebra (M,N)

(see (15)) by considering the equalisers

Pτ
// ıτ // Mτ and Qτ

// τ // Nτ

of (28) and (29) respectively, and showing that the family

(ıτ, τ) : (Pτ,Qτ) // // (Mτ,Nτ) (τ ∈ T̃)

is a sub 〈Σ1, Σ2〉-algebra, from which it follows that ıτ and τ are isomorphisms and hence that (28)
and (29) commute. The details are spelled out in Appendix C. �

Remark. In elementary terms, the above categorical proof amounts to establishing the identities

s[[Γ ⊢ M : τ]] (uv)Γ = uτ (M[], s[[Γ ⊢ M : τ]])

and
qτ s[[Γ ⊢ N : τ]] (uv)Γ = (N[], s[[Γ ⊢ N : τ]])

for M ∈ Mτ(Γ) and N ∈ Nτ(Γ), by simultaneous induction on the derivation of neutral and normal
terms (cf. [34]).

26

The commutativity of diagram (29) amounts to property (27) and hence, as explained above,
all normalisation functions coincide.

Corollary 22 For every interpretation s : T // S of base types in a cartesian closed category and
for the universal interpretation f : T // Fccc[T] of base types into the free cartesian closed category
over them, the identity

s-nfτ = f-nfτ : Lτ
// Nτ in SetF↓̃T

holds.

Summarising, we have obtained normalisation functions

nfτ,Γ : Lτ(Γ) // Nτ(Γ) (τ ∈ T̃, Γ ∈ |F ↓T̃ |)

satisfying the correctness properties below.

• For all context renamings ρ : Γ // Γ ′ in F ↓T̃,

(nfτ,Γ t)[ρ] = nfτ,Γ ′(t[ρ])

for every term t ∈ Lτ(Γ).

• For all normal terms N ∈ Nτ(Γ),
nfτ,Γ (N) = N .

• For all terms t ∈ Lτ(Γ),
nfτ,Γ (t) =βη t .

• For all terms t, t ′ ∈ Lτ(Γ),

if t =βη t ′ then nfτ,Γ (t) = nfτ,Γ (t
′) .

Normalisation algorithm. The simplest description of the normalisation function from which
to extract an algorithm is the one induced by the trivial interpretation t of base types in the trivial

cartesian closed category as, in this case, the glueing category SetF↓̃T ↓〈t[[]]〉 is simply (isomorphic

to) the presheaf category SetF↓̃T (recall Example 12). In fact, previous categorical analysis of
normalisation by evaluation have centred around this interpretation [4, 34].

Explicitly, the unquote and quote maps

Mτ
uτ // s[[τ]]

qτ // Nτ (τ ∈ T̃) (30)

in SetF↓̃T, with respect to the interpretation of base types s : θ
✤ // Mθ, are (in the internal language

of SetF↓̃T) as follows:

1. uθ(M) = M

qθ(M) = norm(M), where norm : Mθ

∼= // Nθ (see (13))

2. u1(M) = ()

q1() = unit1()

27

3. uτ∗τ ′(M) = (uτ(fst
(τ ′)
τ M) , uτ ′(snd

(τ)
τ ′ M))

qτ∗τ ′(x, x ′) = pairτ∗τ ′(qτ(x) , qτ ′(x ′))

4. uτ=>τ ′(M) = λλ xs[[τ]].uτ ′(app
(τ)
τ ′ (M, qτ x))

qτ=>τ ′(f) = absτ=>τ ′(λλ vVτ . qτ ′(f(uτ(varτ v))))

and the normalisation function is given by

nfτ,Γ (t) = qτ(s[[Γ ⊢ t : τ]] 〈uτi(varτi xi)〉i=1,n) (31)

for all terms t ∈ Lτ(Γ) where Γ = 〈xi : τi〉i=1,n.
These functions can be directly implemented, for instance, in metalanguages supporting abstract

syntax with variable binding, like HOAS [32], Fresh O’Caml [24], the Scope-and-Type Safe Universe
of Syntaxes with Binding [1], and the SOAS Framework [23]. Indeed, for concreteness, we here
synthesise an elementary implementation in Agda considered as a dependently-typed functional
programming language1.

Syntax. We consider simple types over a countably infinite set of base types (see (1)):

-- base types
T : Set
T = Nat

-- simple types

data T̃ : Set where

θ : T → T̃

1 : T̃

∗ : T̃ → T̃ → T̃

=> : T̃ → T̃ → T̃

Typing contexts (Definition 4) are inductively generated by context extension from an empty
context:

-- typing contexts
data F↓ : Set → Set where

· : {T : Set} → F↓T
:: : {T : Set} → F↓T → T → F↓T

We then have a family of variable indices (recall (9)) given as follows:

-- variable indices
data V : {T : Set} → T → F↓T → Set where

• : {T : Set} {τ : T } {Γ : F↓T } → V τ (Γ :: τ)
↑ : {T : Set} {τ σ : T } {Γ : F↓T } → V σ Γ → V σ (Γ :: τ)

for which context renamings (Definition 4) are considered:

-- context renamings

F↓ : (T̃ : Set) → F↓T̃ × F↓T̃ → Set

F↓T̃ (∆ , Γ) = {τ : T̃} → V τ ∆ → V τ Γ

1The code is available from www.cl.cam.ac.uk/~mpf23/Notes/Notes.html.

28

www.cl.cam.ac.uk/~mpf23/Notes/Notes.html

The abstract syntax of simply typed terms (see (11)) is implemented by the inductive family
below:

-- simply typed terms

data L : T̃ → F↓T̃ → Set where

var : {τ : T̃} {Γ : F↓T̃} → V τ Γ → L τ Γ

unit : {Γ : F↓T̃} → L 1 Γ

pair : {τ σ : T̃} {Γ : F↓T̃} → L τ Γ → L σ Γ → L (τ ∗ σ) Γ

fst : {τ σ : T̃} {Γ : F↓T̃} → L (τ ∗ σ) Γ → L τ Γ

snd : {τ σ : T̃} {Γ : F↓T̃} → L (τ ∗ σ) Γ → L σ Γ

abs : {τ σ : T̃} {Γ : F↓T̃} → L σ (Γ :: τ) → L (τ => σ) Γ

app : {τ σ : T̃} {Γ : F↓T̃} → L (τ => σ) Γ → L τ Γ → L σ Γ

Analogously, the abstract syntax of neutral and normal terms (see (12) and (14)) is implemented
by the following mutually-inductive families:

-- neutral and normal terms
mutual

data M : T̃ → F↓T̃ → Set where

varm : {τ : T̃} {Γ : F↓T̃} → V τ Γ → M τ Γ

fstm : {τ σ : T̃} {Γ : F↓T̃} → M (τ ∗ σ) Γ → M τ Γ

sndm : {τ σ : T̃} {Γ : F↓T̃} → M (τ ∗ σ) Γ → M σ Γ

appm : {τ σ : T̃} {Γ : F↓T̃} → M (τ => σ) Γ → N τ Γ → M σ Γ

data N : T̃ → F↓T̃ → Set where

varn : {i : T} {Γ : F↓T̃} → V (θ i) Γ → N (θ i) Γ

fstn : {i : T} {σ : T̃} {Γ : F↓T̃} → M (θ i ∗ σ) Γ → N (θ i) Γ

sndn : {i : T} {τ : T̃} {Γ : F↓T̃} → M (τ ∗ θ i) Γ → N (θ i) Γ

appn : {i : T} {τ : T̃} {Γ : F↓T̃} → M (τ => θ i) Γ → N τ Γ → N (θ i) Γ

unitn : {Γ : F↓T̃} → N 1 Γ

pairn : {τ σ : T̃} {Γ : F↓T̃} → N τ Γ → N σ Γ → N (τ ∗ σ) Γ

absn : {τ σ : T̃} {Γ : F↓T̃} → N σ (Γ :: τ) → N (τ => σ) Γ

Their presheaf actions (recall (7) and (8)) will be needed:

-- neutral and normal presheaf actions
mutual

[]m : {τ : T̃} {∆ Γ : F↓T̃} → M τ ∆ → F↓T̃(∆ , Γ) → M τ Γ
varm x [ρ]m = varm (ρ x)
fstm m [ρ]m = fstm (m [ρ]m)
sndm m [ρ]m = sndm (m [ρ]m)
appm m n [ρ]m = appm (m [ρ]m) (n [ρ]n)

[]n : {τ : T̃} {∆ Γ : F↓T̃} → N τ ∆ → F↓T̃(∆ , Γ) → N τ Γ
varn x [ρ]n = varn (ρ x)
fstn m [ρ]n = fstn (m [ρ]m)
sndn m [ρ]n = sndn (m [ρ]m)
appn m n [ρ]n = appn (m [ρ]m) (n [ρ]n)
unitn [ρ]n = unitn

29

pairn n1 n2 [ρ]n = pairn (n1 [ρ]n) (n2 [ρ]n)
absn n [ρ]n = absn (n [lift ρ]n)

where

lift : {τ : T̃} {∆ Γ : F↓T̃} → F↓T̃(∆ , Γ) → F↓T̃(∆ :: τ , Γ :: τ)
lift • = •

lift ρ (↑ x) = ↑(ρ x)

Note the treatment of abstraction guaranteeing fresh bindings.

Semantics. We implement the presheaf semantics of types induced by the interpretation of base
types as neutral terms (see (24)). Note that for higher types the implementation glosses over the
naturality condition required of presheaf exponentials (see (22)).

-- type semantics

[[]] : T̃ → F↓T̃ → Set
[[θ i]] Γ = M (θ i) Γ
[[1]] = ⊤
[[τ ∗ σ]] Γ = [[τ]] Γ × [[σ]] Γ

[[τ => σ]] Γ = {∆ : F↓T̃} → F↓T̃(Γ , ∆) → [[τ]] ∆ → [[σ]] ∆

[] : {τ : T̃} {∆ Γ : F↓T̃} → [[τ]] ∆ → F↓T̃(∆ , Γ) → [[τ]] Γ
[] {θ } = []m
[] {1} =
[] { ∗ } (x1 , x2) ρ = (x1 [ρ] , x2 [ρ])
[] { => } f ρ ρ ′ = f (ρ ′ ◦ ρ)

The semantic interpretation of terms (see (20)) follows:

-- term semantics

Π : F↓T̃ → (T̃ → F↓T̃ → Set) → F↓T̃ → Set
Π · = ⊤
Π (Γ :: τ) P ∆ = (Π Γ P ∆) × (P τ ∆)

[[]] : {τ : T̃} {Γ : F↓T̃} → L τ Γ → {∆ : F↓T̃} → Π Γ [[]] ∆ → [[τ]] ∆
[[var x]] ε = ε 〈 x 〉

where

〈 〉 : {τ : T̃} {Γ ∆ : F↓T̃} → Π Γ [[]] ∆ → V τ Γ → [[τ]] ∆
ε 〈 • 〉 = π2 ε
ε 〈 ↑ x 〉 = π1 ε 〈 x 〉

[[unit]] =
[[pair t1 t2]] ε = ([[t1]] ε , [[t2]] ε)
[[fst t]] ε = π1 ([[t]] ε)
[[snd t]] ε = π2 ([[t]] ε)
[[abs t]] ε f x = [[t]] (ε [f]Π , x)

where

[]Π : {Ξ ∆ Γ : F↓T̃} → Π Ξ [[]] ∆ → F↓T̃(∆ , Γ) → Π Ξ [[]] Γ
[]Π {·} =
[]Π { :: } (ε , x) ρ = (ε [ρ]Π , x [ρ])

[[app t1 t2]] ε = [[t1]] ε (λ x → x) ([[t2]] ε)

Normalisation by evaluation. The unquote and quote functions (see (30)) are implemented:

-- unquote and quote
mutual

30

u : {τ : T̃} {Γ : F↓T̃} → M τ Γ → [[τ]] Γ
u {θ } m = m
u {1} =
u { ∗ } m = (u (fstm m) , u (sndm m))
u { => } m ρ x = u (appm (m [ρ]m) (q x))

q : {τ : T̃} {Γ : F↓T̃} → [[τ]] Γ → N τ Γ
q {θ } (varm x) = varn x
q {θ } (fstm m) = fstn m
q {θ } (sndm m) = sndn m
q {θ } (appm m n) = appn m n
q {1} = unitn
q { ∗ } (x1 , x2) = pairn (q x1) (q x2)
q { => } f = absn(q(f ↑ (u (varm •))))

Remark. A technical point to note is that the implementation of q { => } f arises from the
functorial action of presheaf exponentiation (in particular with respect to the evaluation map (23)),
which in this case instatiates to the equivalent expression absn(q(f [↑] (λ x → x) (u (varm •)))).

Finally, the normalisation function (see (31)) is:

-- nbe

nf : {τ : T̃} {Γ : F↓T̃} → L τ Γ → N τ Γ
nf t = q ([[t]] (Π (u ◦ varm) xs))

where

Π : (f : {τ : T̃} {∆ : F↓T̃} → V τ ∆ → [[]] τ ∆) {Γ ∆ : F↓T̃} → Π Γ V ∆ → Π Γ [[]] ∆
Π {·} =
Π f { :: } (xs , x) = (Π f xs , f x)

xs : {Γ : F↓T̃} → Π Γ V Γ
xs {·} =
xs { :: } = (xs [↑]v , •)

where

[]v : {Ξ ∆ Γ : F↓T̃} → Π Ξ V ∆ → F↓T̃(∆ , Γ) → Π Ξ V Γ
[]v {·} =
[]v { :: } (xs , x) ρ = (xs [ρ]v , ρ x)

Conclusion

We have given a new categorical view of normalisation by evaluation for typed lambda calculus,
both for extensional and intensional normalisation problems.

Extensional normalisation was obtained from a basic lemma unifying definability and normal-
isation. Our analysis has the important methodological consequence of providing guidance when
looking for normal forms. Indeed, a basic lemma based on the definability result of Fiore and
Simpson [22] via Grothendiek logical relations led to syntactic counterparts of the normal forms of
Altenkirch, Dybjer, Hofmann, and Scott [3] and has been applied to establish extensional normali-
sation for the typed lambda calculus with empty and sum types [6]. Along this line of research, one
can study normalisation for other calculi for which definability results based on Kripke relations
have been obtained —as classical linear logic [37], for instance.

31

The approach to normalisation by evaluation presented in the paper is novel, chiefly, in the
following respects.

• The refinement from the extensional setting to the intensional one leading to the formalisation
of normalisation by evaluation via categorical glueing.

• The use of an algebraic framework to structure both the development and proofs culminating
in the definition of the normalisation function within a simply typed metatheory.

• The synthesis of a normalisation-by-evaluation program in a dependently-typed functional
programming language.

The obtained abstract normalisation algorithm synthesises various concrete implementations.
Its specialisation to particular implementations of abstract syntax directly yields normalisation
programs for concrete syntactic representations. In particular, we have provided a normalisation-
by-evaluation program for the type-and-scope safe, intrinsically-typed encoding of typed lambda
terms [5, 7, 1]. How the abstract setting is related to representations of binding based on generating
globally unique identifiers, say as in [18], needs to be investigated.

The role of categorical glueing in our analysis is reminiscent of realisability. It would be in-
teresting to understand whether there are connections to the modified realisability approach of
Berger [8].

Acknowledgements. The basis for this work, which was motivated by a question of Roberto
Di Cosmo, was done during a visit to PPS, Université Paris 7 in July 2001 organised by Paul-André
Melliès and supported by the CNRS. Discussions with Pierre-Louis Curien and Vincent Danos are
gratefully acknowledged.

References

[1] G. Allais, R. Atkey, J. Chapman, C. McBride, and J. McKinna. A type- and scope-safe universe
of syntaxes with binding: Their semantics and proofs. Journal of Functional Programming,
31, 2021.

[2] M. Alimohamed. A characterization of lambda definability in categorical models of implicit
polymorphism. Theoretical Computer Science, 146(1–2):5–23, 1995.

[3] T. Altenkirch, P. Dybjer, M. Hofmann, and P. Scott. Normalization by evaluation for typed
lambda calculus with coproducts. In Proceedings of the 16th Annual IEEE Symposium on
Logic in Computer Science, pages 203–210, 2001.

[4] T. Altenkirch, M. Hofmann, and T. Streicher. Categorical reconstruction of a reduction-free
normalization proof. In Category Theory and Computer Science, volume 953 of Lecture Notes
in Computer Science, pages 182–199. Springer-Verlag, 1995.

[5] T. Altenkirch and B. Reus. Monadic Presentations of Lambda Terms Using Generalized
Inductive Types. In Proceedings of the 13th International Workshop on Computer Science
Logic, volume 1683 of Lecture Notes in Computer Science, pages 453–468. Springer-Verlag,
1999.

32

[6] V. Balat, R. Di Cosmo, and M. Fiore. Extensional normalisation and type-directed partial
evaluation for typed lambda calculus with sums. In Proceedings of the 31st ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (POPL’04), pages 64–76, 2004.

[7] N. Benton, C.-K. Hur, A. Kennedy, and C. McBride. Strongly typed term representations in
Coq. Journal of Automated Reasoning, 49(2):141–159, 2012.

[8] U. Berger. Program extraction from normalization proofs. In [10], pages 91–106, 1993.

[9] U. Berger and H. Schwichtenberg. An inverse of the evaluation functional for typed λ-calculus.
In Proceedings of the 6th Annual IEEE Symposium on Logic in Computer Science, pages 203–
211, 1991.

[10] M. Bezem and J. Groote, editors. Typed Lambda Calculi and Applications, volume 664 of
Lecture Notes in Computer Science. Springer-Verlag, 1993.

[11] C. Coquand. From semantics to rules: A machine assisted analysis. In E. Börger, Y. Gurevich,
and K. Meinke, editors, Proc. Computer Science Logic’93, volume 832 of Lecture Notes in
Computer Science. Springer-Verlag, 1994.

[12] T. Coquand and P. Dybjer. Intuitionistic model constructions and normalization proofs. Math-
ematical Structures in Computer Science, 7:75–94, 1997. (Preliminary version in Preliminary
Proceedings of the 1993 TYPES Workshop.).

[13] R. Crole. Categories for Types. Cambridge University Press, 1994.

[14] D. C̆ubrić, P. Dybjer, and P. Scott. Normalization and the Yoneda embedding. Mathematical
Structures in Computer Science, 8:153–192, 1997.

[15] O. Danvy. Type-directed partial evaluation. In Partial Evaluation — Practise and Theory,
Proceedings of the 1998 DIKU Summer School, volume 1706 of Lecture Notes in Computer
Science, pages 367–411. Springer-Verlag, 1998.

[16] O. Danvy and P. Dybjer, editors. Proceedings of the 1998 APPSEM Workshop on Normal-
ization by Evaluation (NBE’98), BRICS Note NS-98-8. Department of Computer Science,
University of Aarhus, 1998.

[17] A. Filinski. A semantic account of type-directed partial evaluation. In Principles and Practice
of Declarative Programming, volume 1702 of Lecture Notes in Computer Science, pages 378–
395. Springer-Verlag, 1999.

[18] A. Filinski. Normalization by evaluation for the computational lambda-calculus. In Typed
Lambda Calculi and Applications, Lecture Notes in Computer Science. Springer-Verlag, 2001.

[19] M. Fiore. Semantic analysis of normalisation by evaluation for typed lambda calculus. In
Proceedings of the 4th ACM SIGPLAN international conference on Principles and practice of
declarative programming (PPDP ’02), pages 26–37, 2002.

[20] M. Fiore and C.-K. Hur. Second-order equational logic. In Proceedings of the 19th EACSL
Annual Conference on Computer Science Logic (CSL 2010), volume 6247 of Lecture Notes in
Computer Science, pages 320–335, 2010. Springer-Verlag, 2010.

33

[21] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In Proceedings of
the 14th Annual IEEE Symposium on Logic in Computer Science, pages 193–202, 1999.

[22] M. Fiore and A. Simpson. Lambda definability with sums via Grothendieck logical relations.
In Typed Lambda Calculi and Applications, volume 1581 of Lecture Notes in Computer Science,
pages 147–161. Springer-Verlag, 1999.

[23] M. Fiore and D. Szamozvancev. Formal metatheory of second-order abstract syntax In Pro-
ceedings of the 49th ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL 2022), 2022.

[24] Fresh O’Caml. In www.cl.cam.ac.uk/~amp12/fresh-ocaml/.

[25] J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures dans l’arithmétique
d’ordre supérieur. Thèse de doctorat d’état, Université Paris 7, 1972.

[26] A. Jung and J. Tiuryn. A new characterization of lambda definability. In [10], pages 245–257,
1993.

[27] J. Krivine. Lambda-Calculus, Types and Models. Computers and their Applications. Masson
and Ellis Horwood, 1993.

[28] J. Lambek and P. Scott. Introduction to higher order categorical logic, volume 7 of Cambridge
studies in advanced mathematics. Cambridge University Press, 1986.

[29] D. Lehmann and M. Smyth. Algebraic specification of data types: A synthetic approach.
Math. Systems Theory, 14:97–139, 1981.

[30] Q. Ma and J. Reynolds. Types, abstraction and parametric polymorphism, part 2. In Math-
ematical Foundations of Programming Semantics, volume 598 of Lecture Notes in Computer
Science, pages 1–40. Springer-Verlag, 1992.

[31] P. Martin-Löf. About models for intuitionistic type theories and the notion of definitional
equality. In Proceedings of the 3rd Scandinavian Logic Symposium, pages 81–109, 1975.

[32] F. Pfenning and C. Elliot. Higher-order abstract syntax. In Proc. of the ACM SIGPLAN ’88
Symposium on Language Design and Implementation, 1988.

[33] G. Plotkin. Lambda-definability and logical relations. Technical report, School of Artificial
Intelligence, University of Edinburgh, 1973.

[34] J. Reynolds. Normalization and functor categories. In [16], pages 33–36, 1998.

[35] R. Statman. Logical relations and the typed lambda calculus. Inf. and Control, 65:85–97,
1985.

[36] T. Streicher. Categorical intuitions underlying semantic normalisation proofs. In [16], pages
9–10, 1998.

[37] T. Streicher. Denotational completeness revisited. In Electronic Notes in Theoretical Computer
Science, volume 29. Elsevier Science Publishers, 2000.

34

www.cl.cam.ac.uk/~amp12/fresh-ocaml/

[38] W. Tait. Intensional interpretation of functionals of finite type I. Journal of Symbolic Logic,
32, 1967.

[39] P. Taylor. Practical Foundations of Mathematics, volume 59 of Cambridge studies in advanced
mathematics. Cambridge University Press, 1999.

[40] G. Wraith. Artin glueing. Journal of Pure and Applied Algebra, 4:345–348, 1974.

A Homomorphism property of ℓ : L → C

Vτ

varτ

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ s[[]]

%%▲▲
▲▲

▲▲
▲▲

▲▲
▲

Lτ
ℓτ

// S(s[[]], s[[τ]])

1
unit1

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

∼=
❑❑

❑❑
❑

%%❑❑
❑❑

❑

L1
ℓ1

// S(s[[]], s[[1]])

Lτ∗τ ′

fst
(τ ′)
τ

��

ℓτ∗τ ′ // S(s[[]], s[[τ ∗ τ ′]])

π1◦

��
Lτ

ℓτ
// S(s[[]], s[[τ]])

Lτ ′∗τ

snd
(τ ′)
τ

��

ℓτ ′∗τ // S(s[[]], s[[τ ′ ∗ τ]])

π2◦

��
Lτ

ℓτ
// S(s[[]], s[[τ]])

Lτ × Lτ ′

pairτ∗τ ′

��

ℓτ×ℓτ ′ // S(s[[]], s[[τ]])× S(s[[]], s[[τ ′]])

∼=
��

Lτ∗τ ′
ℓτ∗τ ′

// S(s[[]], s[[τ ∗ τ ′]])

Lτ ′=>τ × Lτ ′

app
(τ ′)
τ

��

ℓτ ′=>τ×ℓτ ′ // S(s[[]], s[[τ ′=>τ]])× S(s[[]], s[[τ ′]])

∼=
��

S(s[[]], (s[[τ ′]] +3 s[[τ]])× s[[τ ′]])

ε◦

��
Lτ

ℓτ
// S(s[[]], s[[τ]])

(Lτ ′)Vτ

absτ=>τ ′

��

(ℓτ ′)Vτ

// (S(s[[]], s[[τ ′]]))Vτ

∼=
��

Lτ=>τ ′
ℓτ=>τ ′

// S(s[[]], s[[τ=>τ ′]])

35

B Homomorphism property of (m,n) : (M,N) → (C,C)

Vτ

varτ

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤ s[[]]

%%▲▲
▲▲

▲▲
▲▲

▲▲
▲

Mτ mτ

// S(s[[]], s[[τ]])

(32)

Mτ∗τ ′

fst
(τ ′)
τ

��

mτ∗τ ′ // S(s[[]], s[[τ ∗ τ ′]])

π1◦

��
Mτ mτ

// S(s[[]], s[[τ]])

(33)

Mτ ′∗τ

snd
(τ ′)
τ

��

mτ ′∗τ // S(s[[]], s[[τ ′ ∗ τ]])

π2◦

��
Mτ mτ

// S(s[[]], s[[τ]])

(34)

Mτ ′=>τ ×Nτ ′

app
(τ ′)
τ

��

mτ ′=>τ×nτ ′ // S(s[[]], s[[τ ′=>τ]])× S(s[[]], s[[τ ′]])

∼=
��

S(s[[]], (s[[τ ′]] +3 s[[τ]])× s[[τ ′]])

ε◦

��
Mτ mτ

// S(s[[]], s[[τ]])

(35)

Vθ

varθ

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ s[[]]

%%▲▲
▲▲

▲▲
▲▲

▲▲
▲

Nθ nθ

// S(s[[]], s[[θ]])

(36)

Mθ∗τ ′

fst
(τ ′)
θ

��

mθ∗τ ′ // S(s[[]], s[[θ ∗ τ ′]])

π1◦

��
Nθ nθ

// S(s[[]], s[[θ]])

(37)

Mτ ′∗θ

snd
(τ ′)
θ

��

mτ ′∗θ // S(s[[]], s[[τ ′ ∗ θ]])

π2◦

��
Nθ nθ

// S(s[[]], s[[θ]])

(38)

36

Mτ ′=>θ ×Nτ ′

app
(τ ′)
θ

��

mτ ′=>θ×nτ ′ // S(s[[]], s[[τ ′=>θ]])× S(s[[]], s[[τ ′]])

∼=
��

S(s[[]], (s[[τ ′]] +3 s[[θ]]) × s[[τ ′]])

ε◦

��
Nθ nθ

// S(s[[]], s[[θ]])

(39)

1
unit1 ∼=

⑧⑧
⑧

��⑧⑧
⑧

∼=
❑❑

❑❑
❑

%%❑❑
❑❑

❑

N1 n1

// S(s[[]], s[[1]])

(40)

Nτ ×Nτ ′

pairτ∗τ ′ ∼=

��

nτ×nτ ′ // S(s[[]], s[[τ]])× S(s[[]], s[[τ ′]])

∼=
��

Nτ∗τ ′
nτ∗τ ′

// S(s[[]], s[[τ ∗ τ ′]])

(41)

(Nτ ′)Vτ

absτ=>τ ′ ∼=

��

(nτ ′)Vτ

// (S(s[[]], s[[τ ′]]))Vτ

∼=
��

Nτ=>τ ′
nτ=>τ ′

// S(s[[]], s[[τ=>τ ′]])

(42)

C Proof of Theorem 21

For ıτ : Pτ
// // Mτ and τ : Qτ

// // Nτ the equalisers of (28) and (29) respectively, we show that
({ Pτ }τ∈T̃, { Qτ }τ∈T̃) is a sub 〈Σ1, Σ2〉-algebra of (M,N). That is, that we have the following situation

Σ1(P,Q) //❴❴❴
��

Σ1(ı,)

��

P
��

ı

��
Σ1(M,N) ∼= // M

Σ2(P,Q) //❴❴❴
��

Σ2(ı,)

��

Q
��

��
Σ2(M,N) ∼= // N

Below, we will use the following conventions: (H) indicates commutativity by the homomor-
phism property; (I) and (J) respectively indicate commutativity by the definition of ı and ; and
(Q) and (U) respectively indicate commutativity by the definition of q and u.

1. For τ ∈ T̃, the map Vτ
varτ // Mτ equalises diagram (28), and hence factors through

Pτ
// ıτ // Mτ, because the diagram

37

1

varτ,〈τ〉(id〈τ〉)
❚❚❚❚

❚❚❚❚

**❚❚❚
❚❚❚❚

❚

vτ

,,

id
s[[τ]]

&&

(H) Mτ〈τ〉

−p

p
−

∼= //

mτ,〈τ〉

��

[y〈τ〉, µτ]

[id,uτ]

��

[s[[τ]], s[[τ]]]
[uτvτ,id]

// [y〈τ〉, s[[τ]]]

in Set

commutes.

2. For τ, τ ′ ∈ T̃, the map Pτ∗τ ′ //
ıτ∗τ ′ // Mτ∗τ ′

fst
(τ ′)
τ // Mτ equalises diagram (28), and hence

factors through Pτ
// ıτ // Mτ, as shown by the diagram below.

Pτ∗τ ′

ıτ∗τ ′ //

ıτ∗τ ′

��

(I)

Mτ∗τ ′
fst

(τ ′)
τ //

mτ∗τ

��
(H)

Mτ

mτ

��

[s[[]], s[[τ]]× s[[τ ′]]]
[id,π1]

//

[uv,id]

��

[s[[]], s[[τ]]]

[uv,id]

��

Mτ∗τ ′

fst
(τ ′)
τ

��

∼= // [y(), µτ∗τ ′]

[id,(fst
(τ ′)
τ ,π1)]
��

[id,uτ∗τ ′] //

(U)

[y(), s[[τ]]× s[[τ ′]]]

[id,π1]
◗◗◗

◗

((◗◗
◗◗

Mτ ∼= // [y(), µτ]
[id,uτ]

// [y(), s[[τ]]]

Analogously, for τ, τ ′ ∈ T, the map Pτ ′∗τ
//
ıτ ′∗τ // Mτ ′∗τ

snd
(τ ′)
τ // Mτ equalises diagram (28),

and hence also factors through Pτ
// ıτ // Mτ.

3. For τ, τ ′ ∈ T̃, the map Pτ ′=>τ × Qτ ′ //
ıτ ′=>τ×τ ′ // Mτ ′=>τ × Nτ

′ app
(τ ′)
τ // Mτ equalises dia-

38

gram (28), and hence factors through Pτ
// ıτ // Mτ, as shown by the diagram below.

Pτ ′=>τ × Qτ ′

ı
τ ′=>τ

×
τ ′ //

id×(n
τ ′ τ ′)

❙❙❙
❙❙❙

))❙❙❙
❙❙❙

ı
τ ′=>τ

×id

��

Mτ ′=>τ × Nτ ′

app
(τ ′)
τ //

m
τ ′=>τ

×n
τ ′

��
(H)

Mτ

mτ

��
Pτ ′=>τ × [s[[]], s[[τ ′]]]

(mτ ′=>τıτ ′=>τ)× id

//

ı
τ ′=>τ

×id

��

[s[[]], s[[τ]]s[[τ
′]]]× [s[[]], s[[τ ′]]]

[uv,id]×id

��

∼= // [s[[]], s[[τ]]s[[τ
′]] × s[[τ ′]]]

[id,ε] //

[uv,id]

��

[s[[]], s[[τ]]]

[uv,id]

��

Mτ ′=>τ × Qτ ′

id×(n
τ ′ τ ′)//

id×
τ ′

��

Mτ ′=>τ × [s[[]], s[[τ ′]]]

∼=×id

��

(I)

(J)

[y(), µτ ′=>τ]× [s[[]], s[[τ ′]]]
[id,u

τ ′=>τ
]×id
//

id×[uv,id]

��

[y(), s[[τ]]s[[τ
′]]]× [s[[]], s[[τ ′]]]

id×[uv,id]

��
[y(), µτ ′=>τ]× [y(), s[[τ ′]]]

[id,u
τ ′=>τ

]×id
//

∼=
❱❱❱❱

❱❱❱❱
❱

**❱❱❱
❱❱❱❱

❱❱id×[id,q
τ ′]

��

[y(), s[[τ]]s[[τ
′]]]× [y(), s[[τ ′]]] ∼= // [y(), s[[τ]]s[[τ

′]] × s[[τ ′]]]

[id,ε]

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽

��✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽

[y(), µτ ′=>τ]× [y(), ητ ′]

∼=
❱❱❱❱

❱❱❱❱
❱

++❱❱❱❱
❱❱❱❱

❱

[y(), µτ ′=>τ × s[[τ ′]]]

[id,id×q
τ ′]

��

[id,u
τ ′=>τ

×id]✐✐✐✐✐✐✐

44✐✐✐✐✐✐✐

(U)

Mτ ′=>τ × Nτ ′

app
(τ ′)
τ

��

∼=×∼=❥❥❥❥❥❥

55❥❥❥❥❥❥

∼= // [y(), µτ ′=>τ × ητ ′]

[id,(app
(τ ′)
τ ,ε)]

��
Mτ ∼= // [y(), µτ]

[id,uτ]

// [y(), s[[τ]]]

4. For θ ∈ T, the map Vθ
varθ // Nθ equalises diagram (29) with τ = θ, and hence factors

through Qθ
// θ // Nθ because the diagram

1

id
s[[θ]]

◗◗◗
◗◗◗

((◗◗◗
◗◗◗

varθ,〈θ〉(id〈θ〉) //

(varθ,ids[[θ]])

qθuθvθ

55

(H)

Nθ〈θ〉

−p

p
−

∼=
❚❚❚

❚❚❚
❚❚

))❚❚❚
❚❚❚

❚❚nθ,〈θ〉

��

[s[[θ]], s[[θ]]]
[uθvθ,qθ]〈θ〉

// [y〈θ〉, ηθ]

in Set

commutes.

5. For θ ∈ T and τ ′ ∈ T̃, the map Pθ∗τ ′ //
ıθ∗τ ′ // Mθ∗τ ′

fst
(τ ′)
θ // Nθ equalises diagram (29) with

τ = θ, and hence factors through Qθ
// θ // Nθ, as shown by the diagram below (which depends

39

on the diagram in item 2 above with τ = θ).

Pθ∗τ ′

ıθ∗τ ′

ww♥♥♥
♥♥♥

♥♥♥
♥♥♥

ıθ∗τ ′

��

ıθ∗τ ′

&&▼▼
▼▼

▼▼
▼▼

▼▼

Mθ∗τ ′

fst
(τ ′)
θ

��

Mθ∗τ ′

fst
(τ ′)
θ
��

Mθ∗τ ′

fst
(τ ′)
θ

��
Nθ

nθ

��

Mθ
∼=oo ∼= //

∼=
��

mθ
♦♦♦

♦♦

ww♦♦♦
♦♦

Nθ

∼=

yy

[s[[]], s[[θ]]]

[uv,id] &&◆◆
◆◆◆

◆◆◆
◆◆◆

−p

p
−

[uv,qθ]

++

[y(), µθ]

∼= [id,uθ]

��

(Q)(U)

[y(), s[[θ]]]

[id,qθ]

��

[y(), ηθ]

Analogously, for θ ∈ T and τ ′ ∈ T̃, the map Pτ ′∗θ
//
ıτ ′∗θ // Mτ ′∗θ

snd
(τ ′)
θ // Nθ equalises dia-

gram (29) for τ = θ, and hence also factors through Qθ
// θ // Nθ.

6. For θ ∈ T and τ ′ ∈ T̃, the map Pτ ′=>θ × Qτ ′ //
ıτ ′=>θ×τ ′ // Mτ ′=>θ × Nτ ′

app
(τ ′)
θ // Nθ equalises

diagram (29) with τ = θ, and hence factors through Qθ
// θ // Nθ, as shown by the diagram

below (which depends on the diagram in item 3 above with τ = θ).

Pτ ′=>θ × Qτ ′

ıτ ′=>θ×τ ′

vv♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠

ıτ ′=>θ×τ ′

��

ıτ ′=>θ×τ ′

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗

Mτ ′=>θ ×Nτ ′

app
(τ ′)
θ

��

Mτ ′=>θ ×Nτ ′

app
(τ ′)
θ
��

Mτ ′=>θ ×Nτ ′

app
(τ ′)
θ

��
Nθ

nθ

��

Mθ
∼=oo ∼= //

∼=
��

mθ
♠♠♠

♠♠

vv♠♠♠
♠♠

Nθ

∼=

ww

[s[[]], s[[θ]]]

[uv,id] ''PP
PPP

PPP
PPP

P
−p

p
−

[uv,qθ]

,,

[y(), µθ]

∼= [id,uθ]

��

(Q)(U)

[y(), s[[θ]]]

[id,qθ]

��

[y(), ηθ]

40

7. Diagram (29) with τ = 1 commutes, and hence the map 1
unit1

∼=
// N1 factors through the

equaliser Q1
// 1
∼=
// N1.

8. For τ, τ ′ ∈ T̃, the map Qτ × Qτ ′ //
τ×τ ′ // Nτ ×Nτ ′

pairτ∗τ ′

∼=
// Nτ∗τ ′ equalises diagram (29), and

hence factors through Qτ∗τ ′ //
τ∗τ ′ // Nτ∗τ ′ , as shown by the diagram below.

Qτ × Qτ ′

τ×τ ′ //

τ×τ ′

��

(J)

Nτ ×Nτ ′

pairτ∗τ ′

∼=
//

nτ×nτ ′

��
(H)

Nτ∗τ ′

nτ∗τ ′

��

[s[[]], s[[τ]]]× [s[[]], s[[τ ′]]] ∼= //

[uv,qτ]×[uv,qτ ′]

��

[s[[]], s[[τ]]× s[[τ ′]]]

[uv,id]

��

[y(), ητ]× [y(), ητ ′]

∼=
❚❚❚

❚❚❚
❚

))❚❚❚
❚❚❚

❚

[y(), s[[τ]]× s[[τ ′]]]
[id,qτ×qτ ′]

uu❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧

[id,qτ∗τ ′]

��

Nτ ×Nτ ′ ∼= //

∼=×∼=❧❧❧❧❧❧

55❧❧❧❧❧❧

pairτ∗τ ′ ∼=

��

[y(), ητ × ητ ′]

[id,(pairτ∗τ ′ ,id)] ∼=
❘❘❘

❘❘❘

))❘❘
❘❘❘

❘

(Q)

Nτ∗τ ′ ∼= // [y(), ητ∗τ ′]

9. For τ, τ ′ ∈ T̃, the map (Qτ ′)Vτ //
(τ ′)Vτ

// (Nτ ′)Vτ
absτ=>τ ′

∼=
// Nτ=>τ ′ equalises diagram (29), and

hence factors through Qτ=>τ ′ //
τ=>τ ′ // Nτ=>τ ′ , as shown by the diagram below.

(Qτ ′)Vτ
(τ ′)Vτ

//

(τ ′)Vτ

��

(J)

(Nτ ′)Vτ
absτ=>τ ′

∼=
//

(nτ ′)Vτ

��
(H)

Nτ=>τ ′

nτ=>τ ′

��

[s[[]], s[[τ ′]]]
Vτ

∼= //

[uv,qτ ′]Vτ

��

[s[[]], s[[τ ′]]s[[τ]]]

[uv,id]

��

[y(), ητ ′]
Vτ

∼=
PPP

PPP

''PP
PPP

P

[y(), s[[τ ′]]s[[τ]]]
[id,qτ ′

uτvτ]

vv♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥

[id,qτ=>τ ′]

��

(Nτ ′)Vτ ∼= //

(∼=)Vτ
qqqq

88qqqq

absτ=>τ ′ ∼=

��

[y(), (ητ ′)ντ]

[id,(absτ=>τ ′ ,id)] ∼=
◗◗◗

◗◗◗

((◗◗
◗◗◗

◗

(Q)

Nτ=>τ ′ ∼= // [y(), ητ=>τ ′]

41

	A Homomorphism property of :LC
	B Homomorphism property of (m,n):(M,N)(C,C)
	C Proof of Theorem 21

