
I

Invited Editorial

r i
Inspiring Our Undergraduate

Students' Asperations

Michael B. Feldman
Department of Computer Science

School of Engineering and Applied Science
The George Washington University

Washington, DC 20052
mfeldman @seas.gwu.edu

http://www.seas.gwu.edu/faculty/mfeldman

"Hook 'em with a quote," my writer wife advises me. "Draw them in with an anecdote" By the
"more is better" theory, 1'll try to draw you in with four anecdotes. As the humorist Dave Barry

would put it, l 'm not making this up.

Some Defining Experiences
Summer 1965. I think I contributed to
the Y2K problem. After my junior

y e a r in a BSEE program, my first
"real" summer job (camp counselor
did not count) landed me in a local
branch office of a large (very large)
computer company. I was an intern
attached to a sales team, learning to
special ize in customer appl icat ions
while the sa lesmen specia l ized in
mainframe configuration and pricing.

My prior computing experience
c o n s i s t e d of one 3-week Fortran
project in my numer ica l -methods
course. When I re turned from a
mandatory 2-week crash course in the
assembler language of the era, the
salesmen unburdened themselves of a
pesky intern by parking me at a large
state agency, suggesting to the data
processing manager that I was there to
help him. I assume they didn ' t tell
him I was just an intern; he put me
straight to work designing and coding
a module of the agency 's new payroll
software. I knew just enough about
software development to be real ly
dangerous to someone 's business. For
all I know, my code is still running
there, with 2-digi t year f ields, in
emulat ion mode, computing incorrect
overtime payments.

Fall 1975. In my first semester as
a green assistant professor, I was
ass igned to teach a sophomore
assembler course. To one non-degree

student in the course, I suggested that
perhaps a vendor -sponsored short
course might serve her needs better
than a curriculum-based one. This
was not possible: the employer would
reimburse tuition only if the course
carried academic credit.

The student earned a "mercy C."
Shor t ly thereafter, m y s tern-faced
department chairman showed me a
blistering letter from this student's
supervisor. No employee of his would
ever enroll in another of our courses. I
had focused too much on designing
assemble r programs, a lgor i thms,
number representations, and so on,
and had thus failed to cover the entire
Sys tem/360 instruct ion set.
Trembling, 1 explained that I had
fo l lowed the adver t i sed course
outline. The chairman grinned and
r ipped up the letter. "Don ' t worry,
Mike; you did the right thing. We are
educators , not trainers. The
employers don ' t get it."

Summer 1988. A friend managed
the division that educated software
developers who were using his
company 's compiler and CASE tool
products. The company decided to
change his divis ion tit le from
"Educat ion" to "Training." (They
changed little else, just the name.)
The division's business picked up. A
survey revealed that their customers
perce ived " t ra ining" to be useful,

while "educat ion" was "academic"
and therefore useless.

Spring 1998. A technica l
manager from a large (very large)
sof tware company vis i ted m y
depar tment . He was recrui t ing
graduating seniors himself because he
did not trust Human Resources to find
him the best people. For 45 minutes,
he treated me to a withering critique
of our program. We focused too much
attention on "engineering" (his word)
and not enough on how to make
software " rea l ly fast." He was
unlikely to hire any of our graduates;
he was not looking for "engineers"; he
needed a few "bril l iant hackers."

My stories span 34 years; our
technologies have changed immensely
in that time. The 1965 mainframe cost
millions, had punched-card input and
a 32K core memory, crashed several
t imes a day, and lived in an isolated
air-conditioned room, cared for by
lab-coated technicians. My current
PowerBook regularly runs MacOS,
Windows, and X GUIs and
applications at 200MHz clock speed.
It fits in my briefcase with room to
spare, and cost (in constant currency)
roughly the same as the tuition for that
1975 s tudent ' s one G W course.
Computers are no longer isol~/ted
batch processors; they so pervade our
lives that much of society is in panic
over the predictions of disaster next

SIGCSE Bulletin ?.~y~ 4 June 1999 Vol 31. No. 2

http://crossmark.crossref.org/dialog/?doi=10.1145%2F571535.571537&domain=pdf&date_stamp=1999-06-01

New Year's day.
And yet, in some ways nothing

has changed. Computer science
education is booming, yet we read
news articles about self-taught high-
school kids who say they can make it
in this field without college degrees.
Employers hire them, too, which tends
to prove them right. Our own image of
computer science often seems light-
years away from industry's image of
our field, and the image gap has not
closed much in three decades. What 's
going on here?

Defining Ourselves
"Our field is new and constantly
changing," we tell each other. Well,
yes, but anything that's fifty years old
is no baby. Our technologies are
constantly changing, but deep down
we can find some invariants.

Perhaps we 've been using the
"new and changeable" factor as an
excuse to sidestep the question of how
to define ourselves as computer
scientists and as computer science
educators. We must articulate our
mission more effectively to our
students and their employers, if we are
to convince them that a graduate of our
four-year program is significantly
better than the typical self-trained
high-school kid.

I maintain that computer science
is a profession. My American
Heritage Dictionary CD-ROM says:

"pro-fes-sion n. 1. An
occupation requiring considerable
training and specialized study: the
professions of law, medicine, and
engineering. 2. The body of
qualified persons in an occupation
or field: members of the teaching
profession. 3. An act or instance
of professing; a declaration. 4.
An avowal of faith or belief. 5. A
faith or belief: believers of various
professions."

I think computer science meets all five
of these definitions. I will focus on the
first two here and return to the others
shortly.

Most of our computer science

students see their college study as
direct preparation for employment.
This they have in common with
engineering, business, medical, and
law students. In contrast, my younger
son is double-majoring in English
literature and music. Like most
liberal-arts students, he is confident
he'll find gainful employment, but has
few illusions that his job will stem
directly from college courses.

Aside from all my majors, I am
advising a growing number of students
who are minoring in computer
science. Many of them are pre-meds.
When I express my joy at how
computer- savvy tomorrow's
physicians will be, they usually
answer, "It 's simpler than that; I want
to have a fallback in case I don' t get
into medical school." Don' t you love
the refreshing candor of the
Generation X-ers?

Friends who teach in liberal arts-
based computer science programs
often claim their programs are not
professional. I think they may be
deluding themselves: Whatever they
claim, their students are studying
computer science because it will get
them a job! (Okay, Okay, some of
them are headed for graduate school,
but that's because they think two
computer science degrees will get
them a better job than just one.)

Like it or not, then, our students
are heading for a profession. But what
profession? As far as I know, the only
definition of computer science with
even a rough consensus is this one:

"...[T]he discipline spans both
advancing the fundamental
understanding of algorithms and
information processes in general, as well
as the practical design of efficient reliable
software and hardware to meet given
specifications... In computer science
there is an inherent intermingling of the
theoretical concepts of computability and
algorithmic efficiency with the modem
practical advancements in electronics
that continue to stimulate advances in the
discipline. It is this close interaction of
the theoretical and design aspects of the

field that binds them together in a single
discipline."

"...[A] well-educated computer
scientist should be able to apply the
fundamental concepts and techniques
of computation, algorithms, and
computer design to a specific design
problem. The work includes detailing
of specifications, analysis of the
problem, and provides a design that
functions as desired, has satisfactory
performance, is reliable and
maintainable, and meets desired cost
criteria. Clearly, the computer
scientist must not only have sufficient
training in the computer science areas
to be able to accomplish these tasks,
but must also have a firm
understanding in areas of mathematics
and science, as well as a broad
education in liberal studies to provide
a basis for understanding the societal
implications of the work being
performed."

The more I read this "mission
statement," the more I think it
describes who we are, what we do, and
how we should educate. Its precepts
are invariant to technological fads. I
wonder if we could all agree on it.
When I 've tried to open a discussion
of this definition on the SIGCSE
members listserv, I cited its source as
CSAB [CSAB 99], and the thread was
thus diverted into a discussion of the
merits of CSAB accreditation per se.
I 'm not lobbying for accreditation
here, just for adopting that definition
of our profession. I t 's the best
definition we have [

Religion In CS Education
The last three parts of the dictionary
definition of "profession" focus on
embracing "religious" tenets--articles
of faith that are neither proved nor
refuted.

In describing our debates about
technical matters, we use terms that
evoke evangelism, religious wars,
crusades. With no disrepect to my
Muslim colleagues, I observe that I 've
heard the term "jihad" bandied about
in computer science education circles.

Vol 31. No. 2 June 1999 5 :~:.~3:©~3 SIGCSE Bulletin

Inspiring (continued from page 5)

Computer folks do have a natural
tendency to use wry humor and
hyperbole, but there 's some truth in
this description.

David Kay (Kay 1996) has
written eloquently in these pages on
"bandwagons" (a more polite term
than "crusades") in computer science
education. The current pr imacy of the
"object-oriented parad igm" in first-
year computer science education is the
most recent example. I ' m not taking
sides here on the merits of O-O; rather,
I point out that we have neither proven
nor refuted that teaching it in our intro
courses "works" bet ter than other
approaches. We accept it on faith and
come too close to labeling dissenters
or skeptics as heretics.

Indeed, we don ' t even try to prove
these things. If we were trying, for
example, to validate the O-O paradigm
in first-year courses, we 'd see lots of
empirical research comparing different
course approaches, carefully following
successive cohorts of students through
four years, developing metrics to help
us conclude whether one or another
approach prepares them more
effect ively for their profession.
S IGCSE conferences would have
mul t ip le sessions on it, "duel ing
s t u d i e s " - - t w o studies showing
opposite resu l t s - -would cry out for
repl ica t ion to sort out the
contradiction.

In fact, we don ' t see much
research of this genre. In many
institutions, such resea rch- -empi r ica l
research in g e n e r a l - - i s l abe led
"outside the mainstream of computer
science" and therefore not rewarded
with promotion, tenure, and collegial
respect. As one who 's directed a half
dozen empirical dissertations and sat
on committees for nearly a dozen
others, I can attest to the difficulty of
such research. But how can we afford
not to do it? We can only hope to be
credible to our friends in industry if
we are willing to subject our beliefs to
r igorous control led study and peer

review, and to reward those who do the
studies.

A colleague at another university
told me his faculty had debated some
sweeping lower-division curr iculum
changes. The arguments pro and con
were "religious." The first vote was a
draw, with one abstention. After some
an imated ha l lway discussion, they
held a second vote. The abstainer
voted for the changes, and the changes
were implemented. None of those
pushing for the change were willing to
teach the new courses. My colleague,
downhearted, asked me how I 'd like
teaching in a department that was so
rancorous ly d iv ided on curr iculum
matters . One wonders how the
students there must feel!

This may be an extreme case, but
i t 's indicative of our collective lack of
consensus on important things, and
especial ly on curricular matters. I ' m
idealistic enough to believe that we
can do better, and that some solid
research would help us immeasurably
in doing so.

What Should Oup Students
Aspire to?
Our f lesh-and-blood lives depend on
computers. Recently a major auto
manufacturer recal led a very large
number of cars to upgrade the
sof tware ROMs in their a i rbag
computers; a number of bags had
deployed when the cars merely ran
over potholes. Was the code buggy?
Correct with respect to buggy specs?
We don ' t know, of course, but the
result was an unpleasant surprise to a
number of drivers. Someone 's former
students wrote the old, and the new,
versions of that airbag software.

On an icy Mary land hil l in
February, when I press f irmly on my
car 's brake pedal, I entrust my life to
its anti lock breaking system. Should I
have to worry that my ABS computer
isn ' t running the latest software patch?
Someone ' s former students will be
writing tomorrow's ABS software.

Our businesses ' lives depend
on computers too. Continuing with
the car example, a mechanic 's work

comes to a screeching halt if a storage
leak in the database manager freezes
the PC when he looks up a front
suspension system on the - se rv ice -
manual CD-ROM. The mechanic
cannot order a rep lacement water
pump if the computer in the parts
warehouse has crashed. The
customers get impatient if they cannot
pay their fuel or repair bill because the
credi t card ne twork is down.
Someone ' s former students are
deve lop ing the da tabases and the
network software.

Our students should aspire to do
impor tant things, to contr ibute to
making the world just a bit better
through computing. As educators in
computer science, we must therefore
inspire our s tudents to aspire to
develop critical systems; our systems
are, in fact, all critical.

An Example
Let me br ief ly descr ibe my CS1
course, " In t roduct ion to Sof tware
Development." This course has no
prerequisite; 75-80% of its students
are in the second semester of the
Compute r Sc ience and Compute r
Engineering majors. [Feldman 99a]

It is s imply not true that most
students have done programming in
high school. Asked in a survey form
at the start of the course to "briefly
describe any programming experience
you have had before this course," fully
50-60% of the students c laim no prior
experience. This number has been
stable for at least the last five years.

There is a strong emphasis on
l i fe-cycle documenta t ion using the
Koffman case study model [Feldman
99b]. Equally strong is the stress on
testing plans. Projects---due every
week or t w o - - a r e taken from
numerica l , in fo rmat ion-process ing ,
and simulation domains.

The final project this semester
simulates a highway speed survey in
which "cars" arrive at r andom
intervals, traveling at random speeds.
Their speeds are displayed in very
large digi ts ; this emula tes those
t ra i le r -mounted huge d i sp lays the

SIGCSE Bulletin 6 June 1999 Vol 31. No. 2

police use to warn us that we're
speeding.

This p ro jec t - -and the ones
leading up to it involves concepts
from graphics (the large digits are
treated as a "font" that is displayed
using a simple coordinate
transformation), file management (the
"font" is loaded from a file and the
arriving cars' statistics are logged to a
file), real-time systems (if a "car"
arrives three seconds after the previous
one, the program waits three seconds
before displaying the new speed), and
simulation (we could replace our car-
arrivals package with a physical radar
unit).
Technical "mantras" in the course:

1. Every object---even a scalar
one---has a well-defined set of
values, in a range that is natural to
the application, with a well-
defined set of valid methods.

2. Software should behave
predictably for any plausible input
values, not just for "correct" ones.
Psychological "mantras":

3. Inexperience is not equivalent
to stupidity. There is no "stupid
question."
4. This is not a "filter course".

Our goal is that you should succeed in
it. If everyone earns an A, everyone
will get an A.

I and my graduate TAs answer
lots of email from students. They send
listing files with interwoven compiler
diagnostics, and we supply hints on
correcting their errors. This system of
"virtual office hours" allows students
to ask questions asynchronously, often
very late at night, and gives us
priceless feedback on the kinds of
errors beginners really make. Once
the students realize we are
approachable, they start emailing us
about advising issues, career choices,
and other matters.

The grade profiles are interesting:
While the top few students are
generally "experienced", and the
bottom few are generally
"inexperienced," the great majority of
students are distributed up and down
the same curve, regardless of

experience. The few who fail are
completely clueless or completely
negligent, or both.

About 75-80% of the students
typically remain through the final
exam. It 's hard to find reliable
retention data from other institutions,
but I did hear that the retention in a
similar CS1 course at another local
university is 50% or less.

This gratifying data tends to
support my claim that a carefully
designed CS 1 course, coupled with a
very beginner-friendly compiler and
knowledgeable, enthusiastic, and
approachable instructor, can be
challenging and interesting to students
with and without experience, and can
"hook" them on doing important
things. It draws them into the major
and, generally, keeps them in the
major.

My colleague who teaches the
senior capstone course is neutral in the
language and paradigm wars. The
student-designed senior projects are,
for the most part, exciting and
sophisticated, using the latest hot tools
and techniques. My colleague
interviews his graduating seniors
extensively; their consensus is that the
CS1/CS2 sequence is doing the right
stuff, the right way, with the right
language (Ada 95).

How Should We Inspire Our
Students' Asperations?
My nephew invited me to his "white-
coat ceremony" of induction into the
first year of medical school. What
impressed me most about this rite of
passage was that the students' white
coats symbolize their membership in
the profession, not after they graduate,
but from the start. Under the eye of
older, more experienced members,
they are expected to become ever more
expert at the technical aspects of
medicine, but also always to act as the
professionals they are, always
showing unassailably ethical behavior
in dealing with colleagues and
patients, always ready to recognize
their own limitations. My nephew
came away inspired; he knew his work

would be both a joy and challenge.
Important work.

Our first-year undergraduates
don' t have quite the perspective that
medical students do after four years
of college, but maybe we can still
invent analogues of the white-coat
ceremony in our first-year
orientations. I 'd love to have a
SIGCSE discussion of how we could
make our entering students feel a part
of an honorable profession, ready to
undertake the joy and the challenge of
our important work.

Throughout the curriculum, we
must educate our students for a
career, not just train them for a
summer internship, co-op, or first job
after graduation. We must teach
them how to distinguish the truly new
from the old wine in glitzy new
bottles. We must demonstrate t h e

relevance of our material to the
profession, and its importance to the
world. In this era of ever more
pervasive computers, we must inspire
a sense of pride in craftmanship, in
correct code, in courteous program
style, in usable documentation. We
can do this; we must do this. Our
students are relying on us, and after
they graduate, the world will be
relying on them.

References
[CSAB 1998] CSAB, Computer Science
- the Profession, http://www.csab.org.
[Feldman 1999a] Feldman, M.B., CSci
51, Introduction to Software Development,
<http://www.seas.gwu.edu/classes/csci51>,
[Feldman 1999b] Feldman, M.B., and
E.B. Koffman, Ada 95 Problem Solving
and Program Design (3rd edition, ISBN
0-201-36123-X), Addison-Wesley-
Longman, 1999.
[Kay 1996] Kay, D.G., Bandwagons
Considered Harmful, or The Past as
Prologue in Curriculum Change, ACM
SIGCSE Bulletin, vol. 28, no. 4 (Dec.
1996), also online at
<http://www.ics.uci.edu/-kay/pubs/band
wagons.html>.

Vol 31. No. 2 June 1999 7 i~::y<:~:i!7~ SIGCSE Bulletin

