
CHI ‘88

How Users Repeat Their Actions on Computers:
Principles for Design of History Mechanisms

Saul Greenberg and Ian H. Witten

Department of Computer Science
The University of Calgary,

Calgary, Alberta, Canada T2N lN4
Abstract
Several striking characteristics of how often people re-
peat their actions on interactive systems are abstracted
from usage data gleaned from many users of different
classes over a period of months. Reformulated as emp-
irically-based general principles, these provide design
guidelines for history mechanisms specifically and mod-
ern user interfaces generally. Particular attention is
paid to the repetition of command lines, and to the
probability distribution of the next line given a sequen-
tial “history list” of previous ones. Several ways are
examined of conditioning this distribution to enhance
predictive power. A brief case study of actual use of a
widely-used history system is also incIuded.

Keywords: Command-based systems; command re-
use; history mechanisms; human-computer interaction;
design principles.

Introduction
Flexible interfaces create an environment in which users
can pursue goals not considered specifically by any one
application package. This paper addresses those top-
level interfaces that provide a rich set of executable ac-
tions and objects. Actions are traditionally invoked by
typing simple commands, although some modern SYS-

terns augment or replace this primitive dialogue style
with menus, forms, natural language, graphics, and SO

on [19]. Typically, these interfaces either provide uni-
form access to all system actions or group these actions
in some pre-defined way.

Human usage of such computers is characterized by cer-
tain patterns of activity that are ill supported by con-
temporary interfaces. In particular, although it is well
known that users often repeat actions, most systems do
little to allow them to review and re-execute previous
ones. Typically, they must be laboriously re-typed or re-
selected through menu navigation. Those systems that

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

01988 ACM-O-89791-2659/88/0004/0171 $00.75

do provide assistance offer ad hoc “history” mechanisms
that employ a variety of recall strategies:

History through glass teletypes. Special textual
syntactic constructs allow previous events to be
recalled, usually by position on an event list (rel-
ative or absolute), or by pattern-matching. Exam-
ples are the UNIX csh (121 and the INTERLISP-D
Programmer’s Assistant (161.

History through graphical selection. A menu of
previous events is presented which are manipu-
lated graphically. HISTMENU[~] and MINIT ‘s
“window management window” [4] are two exam-
ples.

History through editing. Any text appearing in the
dialogue transcript can be copied to and edited
further in the command input area. Examples
include Apollo’s DOMAIN window ‘pads” [l] and
command interpreters running within the emacs
editor (141.

History for menu navigation. Previously chosen
menu items become more readily available than
the default. The “bookmarks” capability of the
Symbolics Document Examiner is one example 1151.
Another is an adaptive algorithm that favourably
relocates previously chosen items in a menu hier-
archy [20], which has found success in an experi-
mental telephone directory [9,17].

History through prediction. Within the current
context, the system estimates for each token al-
ready seen the probability that it will be the next
one typed. The one(s) with the highest proba-
bilites are made available for selection (eg UPre-
diet” [22] and the “Reactive Keyboard” (211).

History through programming by example. Fixed
sequences of actions are saved as a procedure, per-
haps allowing some generalizations to be made

PI-
Most history mechanisms are based on the simple premise
that the last n user inputs are a reasonable working set
of candidates for re-selection. But is this premise cor-
rect? Might other strategies work better? Indeed, is
the dialogue sufEiciently repetitive to warrant history
mechanisms in the first place? As existing systems are
designed through intuition rather than from empirical
knowledge of user interactions, it is difficult to judge
how effective they really are or what scope there is for
improvement.

171

http://crossmark.crossref.org/dialog/?doi=10.1145%2F57167.57196&domain=pdf&date_stamp=1988-05-01

CHI ‘88

I/SampleName/~(/~(/ :;I; ;g

Novice Programmers 55 80.4% 7.2 H/55 20% 2.03
Experienced Programmers 36 74.4% 9.7 33/36 92% 4.23
Computer Scientists- 52 67.7% 8.2 37/52 71% 4.04
Non-Programmers 25 69.4% 8.1 9125 36% 4.35

Total 168 73.8% 9.6 90/168 54% 3.89

Table 1: Sample sizes, recurrence rates and history uses of each group

This paper investigates user behavior relevant to the
design of history mechanisms. The primary objective is
to formulate general principles of how users repeat their
actions on computers. The investigation is based upon
analyzing long-term records of user-computer interac-
tion with an imperative interface, collected as described
in the following section. The research questions raised
in the subsequent section help focus exploration of the
large data set, and the results are analyzed from a va-
riety of perspectives. A discussion follows in the last
section, where specific principles are developed.

The UNIX csh command interpreter was used as a ve-
hicle for this study, as it has been for many earlier in-
vestigations of how users interact with command-based
interfaces. Its popularity makes it relatively easy to
find and observe diverse sample groups of users in a re-
alistic setting I. Although the command interface no
longer represents current ideas in interface design, it is
a,ssumed that observed usage patterns are fundam.en-
tai to similar computer-based imperative interactions.
Studies of UNIX usage have already affected the de-
sign of leading-edge systems. For example, [6] described
a multiple virtual-workspace interface to support user
task switching, motivated by the UNIX study of 121.

Data Collection
Command-line data was collected continuously for four
months from users of the Berkeley 4.2 UNIX csh com-
mand interpreter [12]. The start of every login session
was noted, and all commands and arguments passed to
csh were recorded sequentially. Each command entry
was annotated with the current working directory, his-
tory and alias usage, and system errors (if any). From
the user’s point of view, the monitoring facility was
unobtrusive - the modified command interpreter was
identical in all visible respects to the standard version.

Four target groups were identified, representing a total
of 168 users with a wide cross-section of computer ex-
perience and needs (Table 1). Salient features of each
group are described below.

Novice Programmers. Conscripted from an introduc-
tory Pascal course, these have little or no previ-
ous exposure to programming, operating systems,
or UNIX-like command-based interfaces. Subjects

lBut see [3] for problems encountered even here.

spend most of their computer time learning how
to program and use the basic system facilities.

Experienced Programmers. Members were senior
Computer Science undergradluates, expected to have
a fair knowledge of programming languages and
the UNIX environment. As well as coding, word
processing, and employing more advanced UNIX
facilities to fulfil course requirements, subjects also
use the system for social and exploratory pur-
poses.

Computer Scientists. This group, comprised of Fac-
ulty, graduates and researchers from the Depart-
ment of Computer Science, is very familiar with
UNIX. Tasks performed are less predictable and
more varied than other groups, spanning advanced
program development, research investigations, so-
cial communication, maintaining databases, word-
processing, satisfying personal requirements, and
so on.

Non-programmers. Word-processing and document
preparation is the dominant activity of this group,
made up of office staff and members of the Faculty
of Environmental Design. Little program develop-
ment occurs - tasks are usually performed with
existing application packages. Knowledge of UNIX
is the minimum required to get the job done.

Considerable variation was present in the .number of
command lines entered by individual subjects (mean =
1712,std dev == 1499).

Data Anal.ysis
Four questionI; particularly relevant to history mecha-
nisms are addressed here. They all concern the statistics
of complete command lines entered by the user, since
llistory mechanisms usually involve the whole command
line. First, we look at how often ;a user actually repeats
command lines over the course of a dialogue. Second,
we describe the probability distribution tha.t the next
command line will match a user’s previous inputs by
location in an event list. Third, since this d.istribution
depends upon a simple model of arranging and match-
ing the user’s command history, alternative models are
evaluated which condition the distribution in different
ways. Finally, we note how people actually use the ex-
isting UNIX csh history facility.

172

CHI ‘88
In the following discussion, a command line is a sin-
gle complete line (up to a terminating carriage return)
entered by the user. This is a natural unit because com-
mands are only interpreted by the system when the re-
turn key is typed. Command lines typically comprise an
action (the command), an object (eg files, strings) and
modifiers (options). A sequential record of command
lines entered by a user over time, ignoring boundaries
between login sessions, is called a history list. Unless
stated otherwise, the history list is a true record of ev-
ery single line typed - duplicates are not pruned. The
distance between two command lines is the difference
between their positions on the list. A working set is a
small subset of items on the history list. The number
of different entries in the history list is the command
line vocabulary. Although white space is ignored, syn-
tactically different but semantically identical lines are
considered distinct.

Recurrence of command lines

Most history mechanisms simplify redoing the complete
command line, rather than its isolated components. Al-
though it is known that only a small set of commands
account for all user actions [2,7,8,11,13] 2, it is not
known how often complete command lines recur. One
might expect that they would not recur often, given the
limitless possibilities and combinations of commands,
modifiers and arguments.

Surprisingly, this is not the case. Although users extend
their vocabulary of command lines continuously and
uniformly over the duration of an interaction, the ma-
jority of lines entered are recurrences. Table 1 lists the
mean recurrence rate and standard deviation for each
subject group. An analysis of variance of raw scores
rejects the null hypothesis that these means are equal
(F(3,164) = 21.42,~ < .Ol). The Fisher PLSD mul-
tiple comparison test suggests that all differences be-
tween group means are significant (p < .Ol), excepting
the Non-programmers versus Scientists. As the Table
indicates, the mean recurrence rate for groups ranges
between 68% and 80%, with Novice Programmers ex-
hibiting the highest scores. Still, it is reasonable to ap-
proximate the recurrence rate by the population mean
of 74%. That is, about three out of every four command
lines entered by the user already exist on the history list.
Conversely, an average of one out of every four appears
for the first time.

Command line frequency as a function of distance

For any command line entered by a user, the probability
that it has been entered previously is quite high. But
what is the probability distribution of that recurrence
over each previous input? Are recurrence distances, for
example, spread uniformly across the distribution or

2This aspect of our study is reported in greater detail in a corn--
panion paper, which includes a discussion on individual differ-
ences in command selection and use [s]

skewed to the most recently entered items? If a graphi-
cal history mechanism displayed the previous n entries
as a menu (eg HISTMENU [5]), what is the probability
that this includes the next entry?

The recurrence distribution as a measure of distance
was calculated for each user, and group means are plot-
ted in Figure 1. The vertical axis represents the rate
of command line recurrences, while the horizontal axis
shows the position of the repeated command line on the
history list relative to the current one. Taking Novice
Programmers, for example, there is an 11% probability
that the current command line is a repeat of the pre-
vious entry (distance = l), 28% for a distance of two,
and so on. The most striking feature of the Figure is
the extreme recency of the distribution.

The previous seven or so inputs contribute the vast ma-
jority of recurrences. It is not the last but the second to
last command line that dominates the distribution. The
first and third are roughly the same, while the fourth
through seventh give small but significant contributions.
Although probability values continualIy decrease after
the second item, the rate of decrease and the low val-
ues make all distances beyond the previous ten items
practically equivalent. This is illustrated further in the
inset of Figure 1, which plots the same data for the
grouped total as a running sum of the probability over
a wider range of distances. The most recently entered
command lines on the history list are responsible for
most of the accumulated probabilities. In comparison,
all further contributions are slight (although their sum
total is not). The horizontal line at the top represents
a ceiling to the recurrence rate, as 26% of all command
lines entered are first occurrences.

Figure 1 also shows that the differing recurrence rate
between user groups, noted previously in Table 1, can
be attributed to the three previous command lines. Re-
currence rates are practically identical elsewhere in the
distribution. This difference is strongest on the second
to last input, the probability ranging from a low of 10%

for Scientists to a high of 28% for Novice Programmers.

Conditioning the distribution

The recurrence distributions were derived by consider-
ing all user input as one long sequential stream, with
no barriers placed between sessions. We have seen that
a small local working set of command lines accounts for
a high portion of repetitions. Consider a working set of
the seven previous items on the history list. From the
inset in Figure 1, there is a 26% chance that the next
command line has not appeared before, a 43% chance
that it has recurred within the working set, and a 31%
chance that it last appeared further back. This sec-
tion explores the possibility that the distribution can
be conditioned to increase the recurrence probabilities.
Three conditioning techniques are discussed: context
sensitivity by directory; pruning repetitions; and par-

173

CHI ‘88
0 Novces

30,
0 Non Programmers

Cl Expertenced

+ All subjects

AScisnfists

E n

2 4 6 8 10 12 14 16 18 20
lktance Of command line from the current one

Figure 1: Recurrence distribution as a measure of distance

tisl matches. An example of an event list altered by
severa conditions is shown in Table 2, where the first
column represents the complete input sequence.

Directory-sensitive history lists. Users of com-
puter systems perform much task switching [2].
Since many commands are specific to the task
at hand, it is reasonable to assume that context-
sensitive history lists will give better local pre-
dictions. UNIX provides a hierarchical directory
system for maintaining files. As many user ac-
tions reference these files, we hypothesize that the
current working directory defines a context for
command lines. 3 This is tested by contrasting
the recurrence distribution for directory-sensiti-
ve history lists with the standard sequential list.
The second main column of Table 2 illustrates
the directory-sensitive condition, where each s,ub-
column is sensitive to a particular directory. 4
Most command lines here refer to files in the di-
rectory, and are not useful outside the directory.
Some command lines, however, are common to
both.

Pruning repetitions from the history list. The
history lists mentioned so far maintain a record of
every single command line typed. Duplicates are
not pruned off the list. On a history list of Xim-
ited length, duplicates occupy space which could
more fruitfully be used by other command lines.
There are two obvious strategies for pruning re-

“Properly associating a user’s commands with their tasks or
goals is not easy. We recognize that grouping commands by
the current directories (or perhaps by the obvious alternative
of windows) is just an estimate - possibly a poor one -- of
actual task contexts.

41n Unix, users change directories through the cd command.
The I’-” is shorthand for the home directory. Following “/“‘s
indicate sub-directories.

174

dundanci’es, as described by [4]. The ffirst saves
the command line in its original position on the
history list while the secon.d saves it ‘m its Iat-
est position (Table 2). The Ilatter was selected for
study, as not only is local context maintained, but
unique and low probability entries will migrate to
the back of the list over time.

Partial Matches. Instead of the next command line
matching a previous one exactly, partial matching
may be allowed. This is helpful when people make
simple spelling mistakes, the same command and
options are invoked on different arguments, com-
mand lines are extended, and so on. However, the
benefit is highly user-dependent, for the selected
sequence must be altered before it is invoked. We
investigated partial matches by prefix, where the
matched command line is a .prefix of the next com-
mand line, up to and including a complete match.

Combinations. The strategies above are not mutu-
ally exclusive, and all can be combined in a vari-
ety of ways. The bottom half of columns 2 and 3
of Table 2 shows one such possibility, where the
event list is conditioned by directory sensitivity
and pruning.

Data from the Experienced Programmers subject group,
each of whom used more than cone directory, was re-
analyzed by applying the above conditions to the traces.
The cumulative probability distributions of all condi-
tions and their combinations are illustrated graphically
in Figure 2.

Creating context-sensitive directory lists decreases the
overall recurrence rate from 74% to 65%, as command
lines entered in one directory are no longer available in
others. Although this reduction. means that plain se-
quential lists out-perform directory-sensitive ones over
all previous entries, benefits were observed over small

Sequential Directory Sensitive Duplicates Removed
starting in directory context directory context original latest

-/text is -/text is w/figures position position

1 1s 1 1s 6 Is 1 1s 4 edit draft
2 edit draft 2 edit draft 7 edit fig1 2 edit draft 8 edit fig2
3 print draft 3 print draft 8 edit fig2 3 print draft 9 graph fig1
4 edit draft 4 edit draft 9 graph fig1 5 ca -/figures 10 1s
5 cd --/figures 5 ca -/figures 10 ls 7 edit fig1 11 edit fig1
6 1s 13 print draft 11 edit fig1 8 edit fig2 12 cd --/text
7 edit fig1 14 ca --/figures 12 ca --/text 9 graph fig1 13 print draft
8 edit fig2 12 ca --/text 14 cd --/figures
9 graph fig1 with duplicates removed,

10 ls events saved in latest position
11 edit fig1 1 Is 8 edit fig2
12 cd -/text 4 edit draft 9 graph fig1
13 print draft 13 print draft 10 Is
14 ca -/figures 14 ca -/figures 11 edit fig1

12 ca -/text

Table 2: Four examples of a conditioned event list

t
maximum I

,C
directory-sensitive x pruned x partial matches

---T-
r/

pruned x partial matches /‘IL=

directory-sensitive

50.

directory -sensitive

directory-sensitive x pruned

Sequential

04 . , .
0 2 4 6 e 10 12 14 16 18 20

Distance of command line from the current one

CHI ‘88

Figure 2: Conditioning the probability distribution

175

CHI ‘88
100

0 Novice Programmers
Cl Experienced Programmers
P Computer Scientists
0 Non Programmers
-4 A11 Subjects

0
0 2 4 6 8 10 12 1 4 16 18 20

Distance of command line from the current one

Figure 3: Accumulated distribution of history use as a measure of distance

working sets. The first three directory-sensitive items
are more probable than their equivalent sequential items,
approximately equal for the fourth, and slightly less
likely thereafter. With a working set of ten items, direc-
tory sensitivity increases the overall probability of the
working set by 2.5%.

Although pruning duplicates off the history list does not
alter the recurrence rate, it does shorten the total dis-
tance covered by the distribution. As the working set
size increases, so do the accumulated probabilities when
compared to the standard sequential list (Figure 2).
Pruning duplicates increases the overall probability of
a ten-item working set by 5%.

Pattern matching by prefixes increases the recurrence
rate to 84%. 5 As partial matches are found before
more distant (and perhaps non-existent) exact matches,
an increase is expected in the rate of growth of the cu-
mulative probability distribution. This increase is illus-
trated in Figure 2. Conditioning by partial matching
increases the overalI probability of a ten-item working
set by around 6%.

When conditioning methods are combined, the effects
are slightly less than additive. Figure 2 illustrates these
combinations. For example, a partially-matched, pruned
and directory sensitive history mechanism out-performs
a plain sequential one by 13% with a working set of ten
items.

Actual use of Uniz history

We have seen that user dialogues are highly repetitive
and that the last few command lines have the greatest
chance of recurring - the premise behind most his-
tory systems. But are current history mechanisms .used
well in practice? We investigated this by analyzing each
user’s csh history use.

‘In this context, the recurrence rate is the probability that, any
previous event is a prefix of the current command line.

176

The recurrence rate and its probability distribution,
studied previously, provides a value against which to as-
sess how well history mechanisms are used in practice.
The average rate of re-selecting items through history
cannot exceed the recurrence rate, which was found to
be 74%. By comparing the user’s actual re-selection
rate when using a particular history mechanism with
this maximum., the system’s practical effectiveness can
be judged.

Table 1 shows how many users of UNIX csh in each
sample group actually used history. Although 54% of
all users recalled at least one previous action, this figure
is dominated by the computer sophisticates. Only 20%
of Novice Programmers and 36% of Non-Programmers
used history, compared to 71’% for Computer Scientists
and 92% for Experienced Programmers.

Those who made use of history did so rarely. On aver-
age, 3.9% of command lines referred to an item through
history, although there was great variation (std dev =

3.8;range = 0.05% - - 17.5%). This average rate
varied slightly across groups, as illustrated ‘by the last
column in Table 1, but an analysis of variance indi-
cated that dilferences are not statistically significant
(F(3,86) = 1.02).

In practice, users did not normally refer very far back in
history. With the exception of novices, an average of 79
- 86% of all history uses referred to the last five com-
mand lines. Novice Programmers achieved this range
within the last two command lines. Figure 3, illustrates
the nearsighted view into the past. Each line is the run-
ning sum of the percent of history use accounted for (the
vertical axis) when matched against the distance back in
the command line sequence (the horizontal axis). The
differences between groups for the last few actions re-
flect how far ‘back each prefers to see. Alth.ough most
uses of history recall the last or second last entry, it is
unclear which is referred to more.

CHI ‘88

It was also noticed that history was generally used to
access or slightly modify the same small set of com-
mand lines repeatedly within a login session. If history
was used to recall a command line, it was highly prob-
able that subsequent history recalls will be to the same

command.

Subjects indicated that they are discouraged from using
csh by its difficult syntax, the incomprehensible manual

entry, and the fact that previous events are not normally

kept on display. Also, the typing overhead necessary to
specify all but the simplest retrievals makes them feel
that it is not worth the bother.

Discussion
Our analyses of command line recurrences within the
UNIX csh dialogue produced specific results in several
areas. Based on these results we formulate some empir-
ically-based general principles of how users repeat their
actions on computers.

1. A substantial portion of each user’s previ-
ous actions are repeated. In spite of the large

number of options and arguments that could qual-
ify a command, command lines are repeated sur-

prisingly often.

2. New command lines are composed regularly.
Although many actions are repeated, a sizeable
proportion are new.

3. Users exhibit considerable recency. The ma-
jor contributions to the recurrence distribution are
provided by the last few command lines entered,
independent of context.

4. Some actions remain outside the local work-
ing set. A significant number of recurring items
are not covered by the last few items. Doubling

or even tripling the size of the working set does

not increase the coverage significantly.

5. Working sets can be improved by suitable
conditioning. A perfect “history oracle” would
always predict the next user command line cor-
rectly, if it was a repeat of a previous one. As
no such oracle exists, we can only contemplate
and evaluate methods that offer the user reason-
able candidates for re-selection. Although sim-
ply looking at the previous n user actions is rea-
sonably effective, context sensitivity, pruning du-
plicates and partial matches increase coverage to
some degree. 6

6. When using history, users continually re-
call the same command lines. UNIX users
generally use history for recalling the same events
within a log-in session.

GBllt conditioning strategies are not always appropriate. prun-
in& for example, would interfere with the undo capabilities
provided by some systems (eg (51).

7. Unix csh history does poorly. Most people
(especially novices and non-programmers) don’t
use it. Those who do, don’t use it much.

c Teneral design guidelines are self-evident from these

principles. Once the style of interface is specified, the

guidelines formed could become much more specific. For
example, if a menu of the previous n items are to be dis-
played, and no user data is available, the best value of
n could be estimated from the recurrence distributions
shown in this paper. Similarly, the complexity required
by syntactic constructs used to retrieve command lines
in glass-teletype history mechanisms can be judged (ie
constructs retrieving probable command lines should be

simple). Or perhaps context conditioning for window-
based interfaces are defined by window context, rather
than by directory. It is beyond the scope of this short
paper to discuss all possibilities.

Conclusions
This paper has set out empirically-justified principles of
how people repeat command lines, and indicated that
the high recurrence rate observed justifies the inclusion

of history mechanisms to certain user interfaces. Using
these principles, designers now have a basis for evalu-
ating and fine-tuning existing history mechanisms, or
creating new ones.

There are still many unanswered questions. We have
not formed any hypotheses of why users repeat their
actions the way they do. Nor do we know how gener-
alizable our results are. We are now in the process of
extending this investigation, both through further anal-

ysis and through applying our results to the design and
implementation of a window-based history mechanism,
and are working towards integrating history with task-
oriented workspaces [101.

References

[l] Apollo (1986) “DOMAIN System User’s Guide”
Apollo Computer Inc, Chelmsford, Mass

[2] Bannon, L., Cypher, A., Greenspan, S., and Monty,
M. (1983) “E va ua 1 t ion and analysis of users’ activ-

ity organization” Proc ACM CHI 89 Human Fac-
tors in Computing Systems 54-57, Boston, Decem-
ber 12-15.

[3] Bannon, L. and O’Malley, C. (1984) “Problems in
evaluation of human-computer interfaces: a case
study” Interact ‘84 - First IFIP Conference on
Human-Computer Interaction, & 280-284, London,
UK, Sept 4-7.

[4] Barnes, D.J. and Bovey, J.D. (1986) “Managing
command submission in a multiple-window envi-
ronment” Software Engineering Journal, 1 (5) 177-
183, September

177

CHI 738

151

PI

VI

PI

PI

Bobrow, D.G. (1986) ‘“HistMenu” in Lisp User Li-
brary Packages Manual, Koto Release, Xerox Arti-
ficial Intelligence Systems, 215-216, April

Card, S.K. and Henderson Jr., A (1987) “A mul-
tiple, virtual-workspace interface to support user
task switching” in Proceedings of ACM CHI+GI
1987 Human Factors in Computing Systems and
Graphics Interface 53-59, Toronto, April 5-Q.

Draper, S.W. (1984) “The nature of expertise in
Unix” Interact '84 - First IFIP Conference on
Human-Computer Interaction, 2 182-186, London,
UK, Sept 4-7.

Greenberg, S. and Witten, I.H. (1988) “Direct’ing
the user interface: how people use command-based
systems” in Proceedings of the 3rd IFAC Confer-
ence on Man-Machine Systems Oulu, Finland, June
14-16 (in press).

Greenberg, S. and Witten, I.H. (1985) “Adaptive
personalized interfaces - a question of viability”
Behaviour and Information Technology, 4 (1) 31-
45.

[lo] Greenberg, S., and Witten, I.H. (1985) “Interactive
end-user creation of workbench hierarchies within
a window interface” Proc Canadian Information
Processing Society National Conference Montreal,
Quebec, June

[ll] Hanson, S.J., Krsut, R.E., and Farber, J.M. (1984)
“Interface design and multivariate analysis of UNIX
command use” ACM Transactions on Ofice Infor-
mation Systems, 2 (l), March.

[12] Joy, W. (1980) “A n introduction to the C shell” in
Unix Programmer’s Manual, Seventh Edition, Vol-
ume 2c University of California, Berkely, California

[13] Peachey, J.B., Bunt, R.B., and Colbourn, C. J. (1981
“Bradford-Zipf phenomena in computer system”
Proc Canadian Information Processing Society Na-

tional Conference, 155-161, Saskatoon, Saskatche-
wan, May.

[14] Stallman, 1R.M. (1981) “EMACS the extensibIe, cus-
tomizable self-documenting display editor” ACM
Sigplan Notices - Proceedings of the ACM sigplan

SIGOA symposium on text manipulation, 16 (6),
147-155

[151 Symbolics (1985) “Using the online documentation
system” in User’s Guide to Symbol&s Computers
Symbolics, Inc.

[16] Teitelman, W., Masinter, L. (1981) “The Interlisp
programming environment” IEEE Com:puter, 14
(4), 25-34

[171 Trevallyan, R., and Browne, D.P. (1987) “A self-
regulating adaptive system” in Proceedings of ACM
CHI+GI l987 Human Factors in Computing Sys-

tems and Graphics Interface 3.03-107, Toronto, April
5-9.

[18] Witten, I.H. MacDonald, B..A., and Greenberg, S.
(1987) “Specifying procedures to office systems”
Automating Systems Development Conference, Le-
icester, April 14-16

[19] Witten, 1-H. and Greenberg, S. (1985) ‘YJser inter-
faces for office systems” in Oxford Surveys in Infor-

mation Technology, edited by P. Zorkoczy, 69-104,
Oxford University Press.

[20] Witten, I.H., Cleary, J., and Greenberg, S. (1984)
“On frequency-based menu-splitting algorithms” Int
J Man-Machine Stduies, 21 (2) 135-148, August.

[2l] Witten, I.H., Clear-y, J.G., andDarragh, .J.J. (1983)
“The reactive keyboard: A new technology for text
entry” Proc Canadian Information Processing Con-

ference 151-156, Ottawa, Ontario, May

[22] Witten, I.H. (1982) “An interactive computer ter-
minal interface which predicts user entries” Proc
IEE Conference on Man-machine Interaction 1-5,

Manchester, England, July

178

