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Abstract

Traffic measurement and monitoring are an important compoofenetwork management and traffic engi-
neering. With high-speed Internet backbone links, efficeard effective packet sampling techniques for traffic
measurement and monitoring are not only desirable, butiatseasingly becoming a necessity. Since the utility
of sampling depends on tleecuracyandeconomyf measurement, it is important tmntrol sampling error. In
this paper we propose and analyzesaaptive, stratifiedandom packet sampling technique flaw-leveltraffic
measurement. In particular, we addressttteoretical and practical issudavolved. Through theoretical stud-
ies and experiments, we demonstrate that the proposedisgrtgghnique provides unbiased estimation of flow
size withcontrollable error boundin terms of both packet and byte counts &ephantlows, while avoiding
excessive oversampling.

. INTRODUCTION

Traffic measurement and monitoring serve as the basis fode mainge of IP network operations, management
and engineering tasks. Particulaflgw-levelmeasurement are required for applications such as trafffdipg,
usage-based accounting, traffic engineering, traffic matmd QoS monitoring. Traditionally, every packet
traversing a measurement point is captured by a router (&igjuwhile forwarding it, or by a middlebox [36]
(e.g., a measurement probe) attached to a switch interfaeeliok. With today’s high-speed (e.g., Gbps or
Tbps) links, such an approach may no longer be feasible. IBeclow statistics are typically maintained by
software, the processing speed cannot matcHileespeed Furthermore, théarge number of flowsbserved
on today'’s high-speed links introduces scalability isdndgaffic measurement. Capturing every packet requires
too much CPU capacity, cache memory, 1/0 and network barttwidr updating, storing, and exporting flow
statistics records. Packet sampling has been suggestedcasable alternative to address this problem. Both
the Internet IETF (Internet Engineering Task Force) wagkgmoups, IPFIX (IP Flow Information Export) and
PSAMP (Packet Sampling), have recommended the use of psakgiling. Static sampling method such as “1
out of k" is being used by Cisco and Juniper for high-speed core ro({{a3], [34]).

The foremost and fundamental question regarding sampiitgaccuracy This is especially pertinent in the
Internet, where traffic is known to fluctuate dynamically drefjuently. Inaccurate packet sampling not only
defeats the purpose of traffic measurement and monitoringworse, can lead to wrong decisions by network
operators. An important related concern is the efficiencpaxfket sampling. Excessive oversampling should
also be avoided for the measurement solution to be scalegecially in the presence of high day/night traffic
fluctuations, which are well known (see Figure 8 for exampléerefore, it is important toontrol the accuracy
of estimation in order tdalance the trade-off between the utility and overhead disuement Given the
dynamic nature of network traffistatic sampling, where fixed sampling rate is used, does not alwassre
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the accuracy of estimation, and tends to oversample at peadds when economy and timeliness are most
critical [37].

Packet sampling fditow-level measuremeigt a particularly challenging problem. One issue is therdite of
flows: flows can vary drastically in their volumes. The dynesrof flows is another issue: flows arrive at random
time and stay active for a random duration; the rate of a flosv,({ihe number of packets generated by a flow per
unit of time) may also vary over time, further complicatitng tmatter of packet sampling.

How can we ensure accuracy of measurememtyabimicflows? How many packets does one need to sample
in order to producdlow measurememwith a pre-specified error bourti How to decide on a sampling rate to
avoid excessive oversampling while ensuring accuracy? tégeerform sampling procedure and estimate flow
volume? How easily can it be implemented at line speed? Twamthese questions, we advance a theoretical
framework and develop aadaptivepacket sampling technique usietratified random sampling

The technique is targeted faiccurate(i.e., with boundedsampling errors) estimation ddrge or elephant
flows based on sampling. That we focus only on large flows isfigd by many recent studies ([19], [16],
[18]) that demonstrate the prevalence of “elephant and pliemomenon” for flows defined at various levels of
granularity: a small percentage of flows typically accodiots large percentage of the total traffic. Therefore, for
many monitoring and measurement applications accurateagsin of flow statistics for elephant flows is often
sufficient. We employ stratified random sampling to circumthe issues caused by flow dynamics. Through
theoretical analysis, we establish the properties of t@gsed adaptive stratified random sampling technique
for flow-level measurement. Using real network traffic tsgage demonstrate that the proposed technique indeed
produces the desired accuracy of flow volume estimationlevatithe same time achieving significant reduction
in the amount of packet samples and flow cache size.

The remainder of the paper is organized as follows. In Sedtiove provide an overview of the challenges
in packet sampling for flow-level measurement and our pregapproaches. In Section Il we formally state
the flow volume estimation problem. We then analyze how semg@rrors can be bounded within pre-specified
accuracy parameters under dynamic traffic condition. Ini@e¢V we discuss practical implementation issues
involved. Experimental results using network traffic treeee presented in Section V. The paper is concluded in
Section VI.

II. OVERVIEW: CHALLENGES AND OUR APPROACH

A flow is a sequence of packets that share certain common piegp&calledflow specificatiohand have some
temporal locality as observed at a given measurement p@iapending on the application and measurement



TABLE |
SUMMARY OF TRACES USED

Name Trace Date Avg Load | Duration
I, OC3 Auck-lI Oct. 2001 | 152Kbps 4hr
Iy OC3 Tier-1 Backbone| Aug. 2002| 49.1Mbps | 30min
II3 | OC12 Tier-1 Backbone Aug. 2002| 43.4Mbps | 30min
I, | OC48 Tier-1 Backbone Aug. 2002| 510.9Mbps| 30min
II; | OC12 Tier-1 Backbone Aug. 2002| 5.2Mbps 24hr
g 0OC12 AIX Oct. 2001 | 21.6Mbps | 90sec

objectives, flows may be defined in various manners such aseddestination IP addresses, port numbers, pro-
tocol or combinations thereof. They can be further groupebtlaaygregated into various granularity levels such as
network prefixes or autonomous systems. Our analysis, ¢irmybounded accuracy in flow volume estimation,
applies toanykind of flow definition. For illustrational consistency, ini$ paper we present flow statistics and
experiemental results using flows®tuple(source/destination IP addresses, port numbers and ptotomber)
with a 60sec timeout value as our basic flow definition. The 5-tuple definitis at the finest granularity using
packet header traces. The traces used in this study areettiom both public and commercial OC3, OC12,
and OC48 links. The public traces are from NLANR [7] and contia link traces are from tier-1 ISP backbone
network. The trace statistics are listed in Table I.

As illustrated in Figure 1, flow measurement in routers wak$ollows. When a packet arrives, it is classified
into a flow. If the flow state is already present in the flow cat¢he corresponding flow information is updated.
Otherwise, a new entry is created in the cache. When no nekepacives within a given timeout period since
the arrival of the last packet, this flow is terminated andflbv statistics are exported to a collector entity [6].

There are several challenging issues in packet samplirfipfedevel measurement. In this section we provide
an overview of these challenges and our proposed approach.

A. Flow Characteristics and the Impact on Packet Sampling

Clearly, flows are quite diverse in their sizes. Note thateaxely small flows (e.g., with 10 or fewer packets)
may not be detected at all using packet sampling, thus itdvbalinfeasible to achieve any reasonable degree
of accuracy. Figure 3 shows the cumulative probabilityritigtion of flow sizes in terms of packet count (i.e.,
number of packets) for flows in the traces. The major#y%) of the flows are small (e.g., with 10 or fewer
packets), while a small percentage of them are large (eith /more thanl0® or 10° packets).

Fortunately, for many traffic monitoring and measurememliegtions, it is sufficient to provide an accurate
estimate of flow sizes for onljarge flows. This is due to the fact that the small percentage ofeldigws
typically accounts for a large percentage of total traffitisTis evident in Figure 4 where we order the flows
based on their packet counts, and plot the cumulative piiityathey account for total traffic (in terms of packet
count). We see that less that% of the top-ranked flows are responsible for more tRé¥ of the total traffic
different links. The aforementioned phenomenon has béderree to as the “elephants and mice phenomenon”
in the literature, and has been observed at various gratiegasuch as point-to-multipoint router level [19],
network prefix level [16] and inter-AS level [18]. The obsation suggests that meaningful traffic monitoring
and measurement objectives (e.qg., for traffic engineermgrafiling) can often be achieved by concentrating
only on a relatively small percentage of large (i.e., elephBiows.
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Fig. 3. Many small flows. Fig. 4. Elephants-mice behavior.

This motivates us to develop a packet sampling techniquactoirately estimateelephantflows. Such a
technique reduces the per-packet processing overheaadsuatdssification and flow statistics update. In addition,
many small flows may not be detected by sampling, leading églaation in flow cache size.

An elephant flow can be defined in various ways, e.g., in tefhaspacket count, a byte count (i.e., number
of bytes), or even some measure of burstiness. In this pagedefine it in terms of a packet count. Packet
count is an important measure of a flow, since many tasks interare done on per-packet basis such as packet
classification, flow statistic update, and routing decisi@rset of flows with large packet count contains flows
with large byte count, as is evident in Figure 5, where we ofesthat flows with large byte count also have large
packet count. This is because a flow consists of packets vdiweg cannot be arbitrarily laryeHowever, as can
be seen in the figure, the opposite is not alwaysrE@ure 6 shows packet count, byte count and average packet
size of top-ranked flows over time. The flows are ranked in eackunt over the trace. It shows that the average
packet size varies among flows. Thus flow ranks in packet cmayt not be equivalent to ranks in byte count.
Therefore, it is important to measure also byte count ollgracket count flows. Traffic variabilityithin a flow
is another important factor that we must consider. Fromi€ig we see that the rate of a flow (i.e., the number
of packets/bytes generated by a flow per unit of time) varietnd the flow duration. This gives a difficulty of
defining an elephant flow. A flow’s classification may changerdime as its rate changes, if classified as an
elephant or a mice over a fixed interval for all simultaneocow$l

Based on the above observations, we classify flows basgdoportion of packet count over a time interval
that encompasses the flow duratidrhe proportion tells us how bursty a flow is compared to offraultaneous
flows. Since the proportion is defined over the time intervall@sing a flow, it eliminates the rate fluctuation
impact. A flow is referred to as aslephantflow in our study if itspacket counproportion is larger than a
pre-specified threshold. (We will provide a more rigoroufindigon of an elephant flow in Section 1ll.) This
definition of elephant flows captures flow characteristicpaufket count, byte count as well as burstiness

Note that by relying only on packet count in the definition lejphant flows, the resulting sampling technique

1The maximum packet size is limited by MTU (Maximum TransritiasUnit) on a link. Also note that the linear lines in Figura®
due to the dominant packet size® (570, 1500bytes)

2As an extreme example, while the network game traffic flows terhave large packet counts, their average byte countsvaak. s
Empirical measurement of 'Quake’ client traffic in [24] shothat the mean packet size is around diybytes (standard deviation of
aroundl byte). Thus the resulting byte count of such flows is not varge, while their packet count ranges fra#000 to 39000.

3While packet count and byte count of a flow are closely relarlobserve that flow durations are less correlated to thene tB
space limitation, we do not present these results here.
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is size-independentTo identify flows with large byte count (or large burstingsse only need to identify them
from sampled flows with large packet counts. In contraste-dependent samplimgquires computation of
sampling probability for each object (either a packet or w¥lf81], [30], thus incurring additional per-object
processing overhead.

B. Adaptive Stratified Random Sampling

As pointed out in [37], in order to achieve both the samplieguaiacy and efficiency at the same time, it
is important toadapt sampling rate according to changes in the traffic. Under aycely changing traffic
conditions staticsampling rate may lead toaccurate undersamplingr excessive oversamplin§uch problems
become more acute considering long term daily scale, whareihe traffic rate differs significantly from night
time as shown Figure 8.

Because flows ardynamicin their arrival time and active duration (as seen in Figuxeiteis very hard to
define a sampling frame (i.e., a sampling interval) that igl\far all elephant flows, while allowing us to adjust
the sampling rate in accordance with the changing trafficlitimm to ensure estimation accuracy. We tackle this
problem by usingstratifiedrandom sampling. As illustrated in Figure 2, it ugeedetermined, non-overlapping
time blocks calledstrata For each block, it samples packets with the same probakiilé., via simple random
sampling). At the end of each block, flow statistics are estiiil. Then, naturally, a flow’s volume is summarized
into a single estimation record at the end of the last timelbknclosing the flow. Notice that from each flow’s
point of view, its duration is divided cstratifiedin a fixed time. The predetermined time blocks enable us to
estimate flow volume without knowing dynamic flow arrival #sand their durations while adjusting sampling
rate according to dynamical traffic changes.

A time block is the minimum time scale over which an elephamt/ f(packet count proportion) is identified
It is also the minimum time scale over which the sampling e be adjusted. As will be shown in Section
lll, in order to achieve a desired accuracy, at least a ecertamber of packets must be sampled during the
sampling frame that encompasses an elephant flow duratibe. sdimpling rate is set to collect the required
number of samples in a block in order to bound the estimatioor ®f the smallest (threshold) elephant flow.
Given the arbitrary length of elephant flow duration, the gimg frame for a flow could be one block or a series
of consecutive blocks in the stratified sampling. We proveahcuracy of flow estimation is bounded for the
defined elephant flows with the proposed technique, regeedieflow’s rate variability over multiple blocks.



C. Related Works

Statistical sampling of network traffic was first used in [1&] measuring traffic on the NSFNET backbone
in the early 1990's. Claffyet al. evaluated classical event and time drivgtatic sampling methods to estimate
statistics of distributions of packet size and inter-airittime. In [28], the authors applied a random packet
sampling to evaluate the ATM end-to-end QoS such as cebfeadelay. Hash based sampling proposed in [29]
employs the same hashing function at all links in a networkaimple same set of packets at different links and
in order to infer statistics on the spatial relations of thework traffic.

The study in [22] presents an algorithm to bound flow packentestimation error of the toplargest flows
under a static traffic model. A size-dependent flow samplireghad proposed in [30] addresses the issue of
reducing the bandwidth needed for the transmission of d¢raftasurement to a management center for later
analysis. For the purpose of usage-based charging, flowsababilistically sampled depending on their sizes,
assuming flow statistics are known a priori. In [31], a pralstic packet sampling method is used to identify
large byte count flows. Once a packet from a flow is sampledentified, all the subsequent packets belonging
to the flows are sampled. However, by truncating precedingegis, it underestimates byte counts of flows. Fur-
thermore, the approximation used in computing samplinggindity may lead to different sampling probabilities
for the same byte count flows.

Our work differs from the above, in that we use packet sargplinestimate flow volume in terms of both
packet and byte counts withinpse-specified error bound under dynamic traffic conditions

[1l. THEORETICAL FRAMEWORK FOR ADAPTIVE RANDOM SAMPLING

In this section, first we formally define an elephant flow arrdfalate flow estimation problem. For the defined
elephant flows, we analyze the minimum number of samplesregfjusing simple random sampling within a
time unit in order to bound sampling errors. We then desdrmite to determine sampling probability and how
the accuracy is achieved for flows of arbitrary lengths usingtified random sampling. Finally, we establish the
statistical properties of the proposed technique.

A. Elephant Flow Definition and Problem Formulation

In this paper, a flow is referred as an elephant flow if its packent proportion is larger than a pre-specified
threshold over a flow encompassing time interval (for exanpll %). For those elephant flows, the proposed
sampling technigue estimatiew packet count as well as byte count with controlled accyra

First, we formally give a definition of an elephant flow usedhiis paper.

Definition 1—Elephant FlowConsider a discretized time interval that contains an ewmtiration of flowy.
Suppose the interval consists bfconsecutive (time) blocks whefe; packets are seen in bloék: = 1... L).
Letm/ packets belong to flow out of totalm packets. If the proportion of flow packet couysitis greater than
a thresholgy?, then we call the flow aelephant

m_f _ Zﬁ:l m/{

m Zﬁ:1 mp

Determining flow rate over a certain time scale of intereseé&sonable for practical issues. A straightforward
computation of flow rate, i.e., flow size divided by its dusatimay not be meaningful, particularly for very short

flows. For example, the rate for single packet flows is notefined since its duration is considered to be zero.

=pl >p’ (1)



TABLE Il
NOTATION.

Explanation

my, | total number of arriving packets in bloék

ny, | total number of sampled packets in black

p! | proportion of flowf in packet counts

p! | estimated proportion of flovf in packet countsr{v.)
n/ | number of sampled packets of flofr.v.)

m/ | total number of packets of flo

m/ | estimated packet count of flof(r.v.)

v/ | byte count of flowf

of | estimated byte count of flow

Sf | squared coefficient of variation (SCV) of packet sizes of  ffo
p? | elephant flow threshold (in packet count proportion)
S? | threshold in SCV of elephant flow packet sizes

On the other hand, flows with two packets sent back-to-baakdwgive the highest flow rate which is equivalent
to a link rate. For long lived flows, classifying flows over aaion which might be slightly larger than its actual
duration has only minimal impact on the class characteristi

The time scale over which flows are classified can be detethiije certain engineering purpose. total traffic
during a flow’s of a flow as an elephant or a mouse can be donesbkéeping one counter of total packet for
blocks of a flow duration. When the flow expires, the packentquoportion of the flow over the total packet
counts during the blocks indicates whether the flow is anhgepor not. If it is indicated as an elephant, the
flow volume estimation should be accurate with pre-spec#iedr bound.

Our objective is to bound the relative error of packet costingation,7»/ and byte count estimation/ for the
elephant flows. i.e., giveprescribederror tolerance levekn, ¢}, (where(1 —n) ande are referred ageliability
andprecisionrespectively, ané < n < 1), flow packet count and byte count estimation error have todomded

respectively as:
N "
Pr{im m >6}§77,Pr{

m/S
wherep! > p? for flow f. In other words, we want the relative error in flow volume restiion using random
sampling to be bounded hywith a high probabilityl — . Given this formulation of the bounded error sam-
pling problem, the question what is the minimum number of packets that must be sampletbraly so as
to guarantee the prescribed accuracy for diverse and dyodimivs We address this question in the following
subsection.

of —of
of

>6}§n (2)

We have chosen to bound relative error, since it gives geaeduracy regardless of load, link or characteristic.
However, we will also discuss about bounding absolute extdine end of this section. The notations used here
are summarized in Table II.

B. Required number of samples

Our approach and analysis framework are based on randomlisgm@he assumptions we make in the
analysis are: sample sizds reasonably largex( 30 packets) and the population sizeis large enough compared



to the sample sizerf > n) so that sampling fraction is small. Then, the samplingithistion of sample mean for
random samplebas a normal distribution with meanand standard deviatio%, regardless of the distribution

of population from the Central Limit Theorem: ando are population mean and standard deviation, respectively.
Recall that the requirement of samples being i.i.d (inddpahand identically distributed) for the condition of
the theorem is simply achieved bgndomsampling from the&eommorpopulation.*

In this subsection, we derive the required number of santplpsovide the pre-specified accuracy using simple
random sampling. We extend it to

We explain how the accuracy is achieved for flows active ovdtipie blocks in the next subsection.
1) Flow Packet Count Estimation:Using a simple random sampling, a flow packet count is estichas
following: Consider a unit time interval that containsemtire durationof flow f, in whichm packets are seen.
From thesey packets areandomly sampledn < m), andn/ packets belong to flowf. Then the packet count

of flow f, m! is estimated by using the sample proportigit :
n' f

ml=m.-—=m p
n

3)

A proportion may be considered to be a special case of the mbare a variabld@” takes on only the values
0 and1. For example, suppose we wish to find the proportion of aqaati flow f. Let there ben packets, and
letY; = 1 if ith packet belongs to the floy, andY; = 0 otherwise. Then the number of packets belonging to
the flow f is

m

m/ =3, )
i=1
The flow proportion of packets is computed by to the total packunt during the interval

jomd T Yi
m m

P 5)

LetYy,Ys,...,Y, ben random samples, and packets of them belong to floy. The sample proportion of
flow f is therefore defined as

ﬁf:n_f: Z;’Z:IY}

(6)

Within a time block, a simple random sampling in which a sangpprobability is fixed is used. Then, from the
Central Limit Theorem ofandom samplef5], as the sample size — oo, the sample meagy’ approaches the
population meanp/ and variancef;f = p/(1 — p/)/n regardless of the distribution of population. Thus, the
sample proportion can be written with its mean and variance,

n n

(1 —pf
A p/(1—p/)
Pf%Pf+TY}: (7)

whereY), is a random number of a standard normal distributier\ (0, 1)) and the subscripi stands for packet
count.

“It is important to understand tharandomizing eliminates correlatiofFor example in [35], randomizing technique is used to dgstr
correlation for the purpose of investigating the impactorfg range dependence on the queueing performance.



Now Eg. (2) can be rewritten as follows:

r]

whered(-) is the cumulative distribution function (c.d.f) of the stiand normal distribution.

ﬁf _pf

O'ﬁf

o[
mp’

) o

p!(1—p/ (1—p/)

By solving the inequality in Eq. (8) with respectitpowe can derive the minimum required number of samples
n*P to estimate flow packet count within the given error tolemlavel

_pf
oo ()

Notice that with elephant threshold of packet count praporp?, (1;—59) can be set as a constafly =

(1;(5’9). Then,

£

wherez, = (M)Q.

n>n"f =z, Cyl (10)
With at least»*? number of random samples, simple random sampling can prpwdspecified accuracin, € }
for anyflows whose proportion is larger than a pre-defined eleplaasholdp’.

Eqg. (10) conciselyelatesthe minimum number of packet samptedhe estimatioraccuracyand theelephant
flow threshold Moreover, given accuracy and elephant flow threshold,atvshthat the amount of measurement
needed remainsonstantregardless of the traffic fluctuation.

2) Flow Byte Count Estimation:For the defined elephant flows, we also aim to measure flow mdatc
accurately, in addition to flow packet counts. The actuat loptunt of a flowf is expressed as follows:

ol = mfuf — mpf,uf (1)
wherey/ is the actual average packet size of flswSimilarly the estimated flow byte couff is
of = mfﬂf — mﬁfﬂf (12)

where/i/ is the estimated average packet size of fjow
Notice that two levels of uncertainties are involved for floyte count estimation, namely the estimations of
flow proportion and flow average packet size.

The flow byte count estimation can be quantified with the hélthe following two lemmas, which are the
consistency of sample proportion and an extension of ther@drimit Theorem for a sum of a random number
of random variables, respectively:

Lemma 1: n’?—;r — 1 almost surely as — oc by the strong law of large numbers.

Lemma 2—p369, problem 27.14 in [4let X1, X5, ... be independent, identically distributed random vari-
ables with mean. and variances?, and for each positives, let F,, be a random variable assuming positive
integers as values; it needs not be independent ofkth&s. Let W, = ngl X;. Suppose as — oo, L

''n
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converges td almost surely. Then as — oo,

Wn — Fau
o\/n

converges in distribution to & (0, 1) random variable.

(13)

Applying these lemmas, the byte count of a flow can be appratdéch with the sum of two normal random

variables as
f
% (w1 —prp+onb)] (14)

whereY, Y, ~ N(0,1). (The proof can be found in the Appendix.)

of =mp/p +m

From the above Eq. (14), the relative error of flow byte coarstlimmarized as

. Vol (o !

”f_”f:W(“ 1_pr”+UY”): ! Mera_fo NP et Gl - B
/Uf pfuf A /npf P ,Uf ’ p

Then, the required number of samples for flow byte count edgtim can be obtained similarly to the flow packet

count estimation,
1—pf + 8/
e e e

whereS’ = (of /uf)? is thesquared coefficient of variatiofSCV) of packet sizes of flovy.

Eqg. (16) reveals that the required number of samples for afidescount estimation is related to thariability
of packet sizes of a floms well as packet count proportion and accuracy. It alsettedit larger number of samples
are needed for flow byte count estimation compared with tleefonflow packet count estimation from Eq. (10)
as long as the packet sizes of a flow are not unifa$th £ 0).

Our observation shown in Figure 7 sheds light on the probléfiow byte count estimation. Even though the
variability of packet sizes (SCV) of a flow ranges widely imgeal (from0.00007 to 8(!)), it is very limited for
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large flows. This means large flows tend to have packets ofagigizes. One can effectively give a reasonable
bound on SCV of elephant flows, aroufi@(< 1) for example. Therefore, the number of required samples to
bound estimation error for flow byte count can be obtained by

n>n*t=Tlz,- By 17)

_ 0 6
whereB; = (%).

With the required number of samples computed, we will desdniow to decide sampling probability to ensure
the number of samples under dynamic traffic conditions amdthe accuracy is achieved for flows over multiple
blocks in the following subsections.

C. Optimal Sampling Probability and Prediction of Total Rat Count

The optimal sampling probability of a block to producesamples would be

n*

Psp = — (18)
mp
wherem;, is the total number of packets in a blokkn* can ben*? only for flow packet count on*? for flow
byte count as well.

In any case, we cannot accurately choose sampling rate \iegpopulation size (total packet count of the
observation time block) is unknown. We can compute the sagprobability at the beginning of a block by
predicting the total packet count. We employ an AR (Auto4RRegive) model for predicting the total traffic
packet countn, as compared to other time series models, since it is easigmderstand and computationally
more efficient. In particular, using the AR model, the modatameters can be obtained by solving a set of
simple linear equations [3], making it suitable farline implementation

The network traffic predictability has been studied in [2681d37]. The total packet count prediction with AR
model is justified by empirical studies using real netwogffic traces in [37]. The predictability may depend
on the time scale (block size) of observation. We observexhgtpositive correlations for a wide range of time
scale fromlmin to 30min for long traces andsec to 10sec for short O0sec) traces.

We now briefly describe how the total packet couyt of the hth block can be estimated based on the past
packet counts using the AR\ model. Using the AR{) model [3],m;, can be expressed as

u
myp = Z a;mp_; + ep (19)
i=1
wherea;, i = 1,...,u, are the model parameters, ardis the uncorrelatederror (which we refer to as the
prediction erro.
The model parameteis, 1 = 1,...,u, can be determined by solving a set of linear equations mgedf v

past values ofn;'s, wherev > 1 is a configurable parameter independent adnd is typically referred to as the
memory size.

Let 7, denote theoredictedpacket count of théth block. Using the the AR() prediction model, we have

U
’ﬁ’lh = Z a;mp_;. (20)
i=1
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In predicting thetotal packet countn, we assume thactual packet count of a block is known at the end of
the block. Note that having the actual total packet countdsonable to assume in current routers and does not
change the nature of the adaptive random sampling techmigy@opose.

Using the AR prediction model, at the end of each block, thel@hparametersaf) are computed [3]. The
complexity of the AR prediction model parameter computatsoonly O (v) wherewv is the memory size. Through
empirical studies, we have found that AR(1) with a small mgnsize (around 5) is sufficient to yield a good
prediction.

For the currently active flows, their statistics are updatsiehg the sampling rate at the end of a bldcls
follows:

o o mp
m,{ = m,{fl + n—hn£ (21)
~ N mp , f .

v,{ = Dy 4+ n—hn,{,u,{ (22)

Figure 9 shows the flow chart of the adaptive random sampliaggalure.

D. Accuracy of Stratified Random Sampling: Statistical rtips

In our proposed sampling method, we colleciual number of random samples*) for eachstratum on
average. Consider a flow whose enclosing interval consistsnumber of blocks. Therftom the flow’s point of
view, n* - L packets are sampled for ttieblocks and for each block a simple random sampling is usetha$
equivalent to atratified random sampling with equal number of samples patusn In the previous subsection,
we have shown that simple random sampling wittsamples provides the prescribed accuracy for the estimatio
of flows whose duration fall within a block. Here, we first ex@ statistical properties of the stratified random
sampling. Then we show how a stratified random sampling wijtlaenumber of.* samples per stratum also
gives at least the prescribed accuracy for flows who livelfatocks.

Stratified random sampling is known to providebiased estimatorfor the population mean, total, and pro-
portion, in that their expectations are equal to the valdig@pulation E(5/) = p/, E(6/) = 7). The technique
is alsoconsistentsince the estimation of stratified random sampling appreathe population parameter as the
number of samples increases. ij.,— p/ asn — oo (orm).

Efficiencyof a sampling describes how closely a sampling distribuiiazoncentrated around the value of the
population (population parameter). For consistent esgtirsaefficiency can be measured by ttagiance where
a smaller variance is preferred. An estimator of a smalleéaxae would give moraccurateestimation, given
the same number of samples. Mean square error (MSE) is aefndlgused metric to compare estimators. Let
X be a random variable of the population (in general) &htle the estimated mean of the population. (In case
of proportion, X takes on 1 if a packet belongs to flofvand 0 otherwise.) As in the following equation, the
variance itself becomes MSE for an unbiased estimator.

MSE(X) = E(X — p)? = Var(X) + bias’ (23)

Thus it is important to study variance carefully. Noticetttine analysis and the required number of samples in the
previous subsections is based on simple random samplindirsWeompare the variance of proposed stratified
random sampling with simple random sampling. The variaridetal estimation i/ or ©f) is easily found by
using the results of a variance mieanestimation f/ or /./). For example,

Var(mf) = Var(mp) = m*Var(p?) (24)
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Hence, we simplify the discussion of the variance taean estimation.
The variance of simple random sampling witlsamples is

0.2

Var()?gim,n) = (25)
wheres? is the population variance [1]. Thus, the accuracy (or veed of a simple random sampling depends on
the variance of the actual populatios’] and a sample sizex]. The following theorem states that our proposed
sampling bounds the variance of relative error by the pezifipd accuracy parameters.

Theorem 3:Usingn* random packets, the variance of the relative error in esimgdlow packet count and
byte count is bounded above by the pre-specified accuracy:

ol —m/f 1

Var (L fm > < = (26)
m Zp
of — of 1

Var (U fU > < — 27)
v Zp

wherez, = (M)Q.

£

Now, we consider flows with arbitrary duration which stayieet. (> 1) blocks. We establish the following
theorem to show the proposed stratified random samplinggesyvhe pre-specified error tolerance. The proof
can be found in the Appendix.

Theorem 4:The variance ostratifiedrandom sampling witlequalnumber ofn* samples for eaclh strata is
smaller than the variance eimplerandom sampling with. samples.

A A

VaT(Xstr(eq),n*L) < VaT(XSim,n*) (28)

This means that the accuracy in estimation of a flow with eabjtduration satisfies the given bound with the
proposed stratified random sampling, whefesamples are collected at each time block.

Another important property to consider for flow is about aggtion. Flow statistics may furtheggregated
into a bigger flowlater for different engineering purpose. It can be easitynghthat theaccuracyof the estima-
tion is conservedor aggregated flows.

Stratified random sampling gives smaller variance of edtim#better accuracy) than simple random sampling
when the variances within blocks are small compared to thiarnvee for all the interval. Given a number of
samplesn, stratified random sampling increases the accuracy, wheaplea are selectegroportionally to the
population size in the stratum [1]. i.e.,

Va'r(Xstr(prop),n) < Va'r(Xsim,n) (29)

If we additionally update flow statistics within a blogkthoutchanging sampling probability, it turns out to be
a stratified random sampling. Then the sample sizes in qwatsubblock) become proportional to the popula-
tion size. Therefore, one may update flow statistics momenatfhan once per block to increase an accuracy of
estimation.
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E. Bounding Absolute Error

So far we described boundinglative error in estimating flow packet and byte count. We have ddrihe
required sample size by linearly separating accuracy peterfrom traffic parameter as

n o accuracy traffic parameter (30)
For the objective ofibsoluteerror bound
Pr{‘mf—mf‘>6}SnorPr{‘{)f—vf‘>6}§n (31)

the required sample size can be obtained by a similar asalgsid in bounding relative error. Then, the required
number of samples can be derived as

nZn*’p:zp-pf(l—pf)-mQOrnZn*’b:zp- {pf(l—pf)uf—i-af] -m? (32)

for flow packet and byte count estimation respectively (Sg&of detail). It can be summarized in the following
form:
n o accuracy traffic parameter m? (33)

Assumingp/ < 0.5, the required sample size depends omttasimunrflow proportion whose estimation error
should be bounded. Supposé? is computed using’. Since the accuracy is not guaranteed for flows whose
proportion are larger thap/, the largest flow proportion should be known ahead. Stillarg probability is
much higher than the one for relative error bound in gendénakst is quadratically proportional to total packet
count ¢n?). For flow byte count estimation, two parameters of a flow +age packet size of a floy/ and its
variances/ - should be known as opposed to one parameter of flow SCV fativelerror. Furthermore, unlike
SCV, mean packet size of a flgw varies widely among all the flows as observed in Figure 6. §Jsiaximum
packet size (500bytes for example) would givevgerylarge number in the required number of samples (often as
many as total packet count) resulting in oversampling fonyrelephant flows with smaller average packet size.

Therefore, bounding relative error is more practical, aiglsuitable for the type of applications such as traffic
profiling and engineering, where flows responsible for moste traffic are of interest.

IV. PRACTICAL CONSIDERATIONS

In this section, we discuss the issues involved in the implaation of the proposed sampling technique. We
first discuss how to determine the flow timeout value and ifssich on the performance of our method. Then we
discuss how to reduce the overhead of random number gesrerati

A. Flow Timeout Value

The choice of timeout values may change the flow statistica fgven traffic even with full measurement (i.e.,
no sampling). While a large timeout value leads to maintgninnecessarily large number of flow states, a small
timeout may break otherwise large, long-lived flows into Bendlows. The impact of timeout values on flow
statistics and a performance trade-off were studied in, [14].

With introduction of sampling, timeout value should be &t appropriately due to increased inter-packet
arrival time of a flow. Suppos#Oy,,; is used for a flow definition when no sampling is used. With cand
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Fig. 9. Adaptive random sampling for flowig. 10.  Systematic sampling on periodiig. 11. Trade-off in random number genera-
volume measurement. population. tion.

sampling, intra-flow inter-packet arrival time of samplssiricreased by the inverse of the sampling rate on
averagepq,q). Thus, one can use the timeout value under sampling as

TO

Pavg

TOsqmp = (34)
However, in the proposed adaptive random sampling, the lf@gmm@te changes adaptively over time. So we
exponentially average the sampling rate as follows.

Pavg,i = QP; + (1 - a)pavg,ifl (35)

wherep; is the sampling probability of a blockandp,., ; is the averaged sampling probability in blocto be
used for a timeout value. Given a timeout value for full measwent (0sec), we rarely observe truncation of
elephant flows throughout the experiments. It is because énar definition, an elephant flow is expected to have
a high packet rate on average over the flow’s duration, thudngat less sensitivéo a timeout value.

B. Utility of Systematic Sampling and Random Number Geioerat

Systematic sampling is a popular sampling design emplogedisco and Juniper routers ([33], [34]). In
general, 1-out-of: systematic sampling involves random selection of one eh¢fnem the firstk elements, and
selection of every:;th element thereafter requiring only one random number rg¢ioe and a counter. Random
sampling involves a random number generation per-packetn Ehough modern routers already have the feature
implemented for a mechanism such as RED (Random Early Datgctvith a choice of sampling rate from our
analysis one may want to consider using systematic samfaireysimplicity. However, understanding accuracy
of systematic sampling has to precede its utility.

The performance of systematic sampling can be explainddthét concept of correlation between samples of
an experiment (sample set). The variance of sample meag sigtematic sampling is given by [1], [2]

A o2
VaT(Xsys,n) = ;[1 + (n - 1)9] (36)

wherep is a measure of the correlation between pairs of samplesnviitb same systematic sample.

E(X;j — ) (X5 — )
E(X;j — p)

p= (37)
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Where,—ﬁgpg1,@‘:1,...,kandj,j’:1,...,n,j7£j’.

Thus, a theoretical accuracy of systematic sampling is rautigally assessable, as knowledge oftalys-
tematic samples is necessary to calculate the variancestefragtic samples. Eq. (36) also shows that whien
positive, the estimator isot consistentsince the accuracy is not increased with langéf p is close tol, then
the variability of elements within the sample set is too s$m@inpared to variability among possible sample sets,
and systematic sampling will yield a larger variance thangisimple random sampling. } is negative, then
systematic sampling may be better than simple random sagaplihe correlation may be negative if variability
of elementswithin a systematic sample set tends to be larger #maongsystematic sample sets . Foclose to
0, systematic sampling is roughly equivalent to simple randampling. When the population igndomly or-
dered systematic sampling will give us a precision approximaggjuivalent to that obtainable by simple random
sampling.®

Figure 10 illustrates extreme performance of systematigoiag from the same population. Suppose one try
to estimate a population mean with a systematic samplingtheégperiodic population shown in Figure 10, when
k(= m/n) is the same as the period, the value of the sample is the saré §amples in any possible set of
samples, thus, an increase of sample size would not incteasecuracy at all. Meanwhile, with= 4(> 3), it
always gives the exact population mean with smaller numbsamples which is better than random sampling.
Therefore, randomness in samples is importarisiesshe accuracy, and to avoid extreme performance.

Scalability of measurement using adaptive random samptiag be further enhanced by infrequent random
number generation. Supposepackets out ofn are collected (refer to illustration in Figure 11). Ratheaurt
generating a random number for each packet (first row), wataiai a counter initialized té(= m/n). The
counter is decremented upon each packet arrival, and whegrcihes 0 it is reset backko Whenever the counter
is set tok, a random number(from 0 tok) is generated anith packet, counting from the time of counter reset,
is sampled as illustrated in the second row of the figure. Agthdér enhancement, a hybrid approach could be
used as shown in the third row of Figure 11. By changing stantioint randomly several times(K n)), this
process has the effect of shuffling the elements of the ptipnla

SFrom our experiments, the performance of systematic samplith adaptive sampling rate was close to the one of adapgindom
sampling. However, in this paper, we limit our discussiomamdom sampling for the assessment of estimation error.
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V. EXPERIMENTAL RESULTS

In this section, we first validate our theoretical resulthwsynthetic data. We then empirically evaluate the
performance of our adaptive packet sampling technique dar fheasurement using the real network traces.

In order to verify our theoretical results, first we condugperiments with synthesized data where all flows
are elephants whose proportions are the same as the thittednosynthesized data, all flows have the same
packet count and their durations fall within a block. Theyeédifferent byte counts caused by various means
and standard deviations of their packet sizes. The SCVdIfioas however, are the sam&(CV = 1.3). Two
types of traffic data are generated according to the flow'kgtaate variability. Packets of flows in the first traffic
data are uniformly distributed, while flows in the secondficare bursty. We first use the sampling rate ignoring
the packet size variabilityS’ = 0), and repeat the measurements with a higher sampling riatg the actual
value of packet size SCV.

In both cases we calculate the cumulative probability cdtied errors for packet and byte count estimates.
Figure 12(a) shows that packet count estimation indeedocos to the pre-specified accuracy parameter, i.e.,
the probability of relative errors larger than= 0.1 is aroundn = 0.1 with S = 0. Meanwhile, as shown
in Figure 12(b), the probability of relative errors largbabe = 0.1 is a lot higher tham = 0.1, when the
packet size variability is not considered for the sampliatgr When taking packet size variability into account
(S? = 1.3), byte count estimation error conforms to the pre-speciéigdr bound. Due to increased sampling
rate, the accuracy of the packet count estimates is inaease the proportion of all estimates whose relative
error is smaller than is even higher than the predicted probability n. The above observations are true for both
types of flows and therefore, independent of the flow’s boest. Considering fluctuation of traffic, in particular
a high day/night traffic ratio, adapting sampling rate apgedely is critical to achieve estimation accuracy as
well as to avoid too much unnecessary oversampling.

We also validate the achieved accuracy of the proposed sagripkchnigue, using real traces. In Figure 13,
all the estimated flow volumes using sampled packets are amdpo the actual flow volumes, to show the
performance qualitatively. It can be observed that smdlime flow estimations (indirectly, low proportion
flows) are more off from the actual volumes, while high volufiuev estimations (elephants) tend to be more
close to the actual volumes. Figure 14 shows the cumulativegbility of the relative error estimating elephant
flows. There are a few flows shortened due to timeout. Theitivel error are close tb, becausd or 2 packet
flows from the broken flows are compared the original flow (dt). However, after removing statistics of those
flows (right plot), the cumulative probability of relativerer being less than is higher thanl — 7. Recall that
the sampling rate was aimed for an accuracy of minimum elgplvhose proportion is equal to the threshold.
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Fig. 15. Sampling fraction (tradd,).

TABLE IlI
FLOW CACHE SIZE REDUCTION

Parameters Tracells (24hr) | Tracell; (4hr) | Tracellg (90sec)
{n,e,p’, 5% Adapt. | Static | Adapt. | Static | Adapt. [ Static
{.1,.1,.001, .2} .459 711 721 | 772 | 742 .746
{.15,.15,.005, .0} 433 .697 710 | .735 | .727 .730

For elephants whose threshold is higher than the thresti@dychieved accuracy is supposed to be better. Thus
the statistical accuracy amoadj elephants becomes better than the specified, as in Figure 14.

Next we examine the efficiency of the adaptive sampling imgeof reduction in packet measurement and
flow cache size. Note that the amount of measurement in thgieelacheme depends on accuracy parameters
and elephant flow thresholds, and does not depend on theraftad. In static sampling, however, the amount
of samples is proportional to the total traffic. Samplingfi@n which is the ratio of the number of samples over
the total number of packets determines the resource ushgerafy. We compare the sampling fraction from a
trace using adaptive sampling and static sampling. Avesagepling rate of adaptive sampling method is used
for the sampling rate of static sampling method. In adaampling, a higher accuracy requires larger number
of samples while larger block size decreases samplingAatehown in Figure 15 the sampling fraction is higher
for static sampling scheme for various block sizes and aoyuparameters. Since the processing overhead is a
function of the number of packets sampled, the advantageeaddaptive sampling is clear.

Reduction in flow cache size is another benefit from sampbegause some flows can be omitted in keeping
flow statistics. Table 1l shows flow cache size reduction foth adaptive and static sampling with various
traces and various sampling rate. Flow cache size reduidioomputed in terms of average flow cache size
in case of using sampling compared to the one without sagfdinthe trace. Packet sampling indeed reduces
flow cache size for all cases of sampling rate and traces. dhptime sampling performs better than static
sampling, particularly when day/night traffic fluctuatismdonsidered. However, its reduction is less relevant
to the sampling parameters. This is because as samplingeaateases, the timeout value in case of sampling
increases accordingly. Then, flow statistics should be kegbnger time when sampling is used.

VI. CONCLUSIONS

In this paper, we have addressed the problem of flow volumesunement using packet sampling approach.
Since a small percentage of flows are observed to accountdayeapercentage of the total traffic, we focused on
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the accurate measuremenetéphantlows. We proposed an adaptive sampling method that adhessaimpling

rate so as to bound the error in flow volume estimation witlexaessive oversampling. The proposed method
based on stratified random sampling divides time into saathwithin each stratum samples packets randomly
at a rate determined according to the minimum number of sesmpeded to achieve the desired accuracy. The
technique can be applied to any granularity of flow definitidirough analysis and experimentation we have
shown that the proposed method provides accurate and edi@atmation of byte and packet counts of elephant
flows without excessive oversampling. We have also discupszctical issues and argued that our method can
be implemented efficiently to match the line speeds. We colecthat the ability to control the accuracy of
estimation and thus tradeoff the utility and the overheashefsurement makes our adaptive sampling method a
scalable and attractive solution for flow volume measurémen
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APPENDIX
[Proof of Theorem 3]

Var (mf—mf> Var (ﬁf—pf> _Var(#) _pla—ph) 1) (38)

m/ pl? npl? n

wheren > n*P = [zp : (lg—ff)] Thus,Var (mfn;}”f) <
Similarly,

vi-v! 1—pl +87
v = 39
ar ( - ) 2 (@9)
wheren > n*t = [zp . (lfppfifrsf)-l Thus,Var (L‘;fv—f) < %
[Proof of Theorem 4]
A L Z‘Lzl m?o? 1 L 9 My
Var(Xsirn.1) = m# = izzlmiai oS < % ZZlmm <Var(X szm,n) (40)
whereo? is a population variance in bloak
[Proof of Eq. (14)]
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whereY, ~ N(0,1).
[Proof of Aggregation Property]
From the objective, with a probability daf— 7, for eachi in elephant flows of fine granularity,

<e (42)

Therefore, their aggregation accuracy is
2 m{ — 2 m{
> mzf

The aggregation property is similarly derived for aggreddtow byte count as well.
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