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Abstract

Traffic measurement and monitoring are an important component of network management and traffic engi-
neering. With high-speed Internet backbone links, efficient and effective packet sampling techniques for traffic
measurement and monitoring are not only desirable, but alsoincreasingly becoming a necessity. Since the utility
of sampling depends on theaccuracyandeconomyof measurement, it is important tocontrolsampling error. In
this paper we propose and analyze anadaptive, stratifiedrandom packet sampling technique forflow-leveltraffic
measurement. In particular, we address thetheoretical and practical issuesinvolved. Through theoretical stud-
ies and experiments, we demonstrate that the proposed sampling technique provides unbiased estimation of flow
size withcontrollable error bound, in terms of both packet and byte counts forelephantflows, while avoiding
excessive oversampling.

I. INTRODUCTION

Traffic measurement and monitoring serve as the basis for a wide range of IP network operations, management
and engineering tasks. Particularly,flow-levelmeasurement are required for applications such as traffic profiling,
usage-based accounting, traffic engineering, traffic matrix, and QoS monitoring. Traditionally, every packet
traversing a measurement point is captured by a router (Figure 1) while forwarding it, or by a middlebox [36]
(e.g., a measurement probe) attached to a switch interface or a link. With today’s high-speed (e.g., Gbps or
Tbps) links, such an approach may no longer be feasible. Because flow statistics are typically maintained by
software, the processing speed cannot match theline speed. Furthermore, thelarge number of flowsobserved
on today’s high-speed links introduces scalability issuesin traffic measurement. Capturing every packet requires
too much CPU capacity, cache memory, I/O and network bandwidth, for updating, storing, and exporting flow
statistics records. Packet sampling has been suggested as ascalable alternative to address this problem. Both
the Internet IETF (Internet Engineering Task Force) working groups, IPFIX (IP Flow Information Export) and
PSAMP (Packet Sampling), have recommended the use of packetsampling. Static sampling method such as “1
out ofk” is being used by Cisco and Juniper for high-speed core routers ([33], [34]).

The foremost and fundamental question regarding sampling is itsaccuracy. This is especially pertinent in the
Internet, where traffic is known to fluctuate dynamically andfrequently. Inaccurate packet sampling not only
defeats the purpose of traffic measurement and monitoring, but worse, can lead to wrong decisions by network
operators. An important related concern is the efficiency ofpacket sampling. Excessive oversampling should
also be avoided for the measurement solution to be scalable,especially in the presence of high day/night traffic
fluctuations, which are well known (see Figure 8 for example). Therefore, it is important tocontrol the accuracy
of estimation in order tobalance the trade-off between the utility and overhead of measurement. Given the
dynamic nature of network traffic,static sampling, where fixed sampling rate is used, does not always ensure
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Fig. 1. Flow measurement. Fig. 2. Stratified random sampling.

the accuracy of estimation, and tends to oversample at peak periods when economy and timeliness are most
critical [37].

Packet sampling forflow-level measurementis a particularly challenging problem. One issue is the diversity of
flows: flows can vary drastically in their volumes. The dynamics of flows is another issue: flows arrive at random
time and stay active for a random duration; the rate of a flow (i.e., the number of packets generated by a flow per
unit of time) may also vary over time, further complicating the matter of packet sampling.

How can we ensure accuracy of measurement ofdynamicflows? How many packets does one need to sample
in order to produceflow measurementwith a pre-specified error bound? How to decide on a sampling rate to
avoid excessive oversampling while ensuring accuracy? Howto perform sampling procedure and estimate flow
volume? How easily can it be implemented at line speed? To answer these questions, we advance a theoretical
framework and develop anadaptivepacket sampling technique usingstratified random sampling.

The technique is targeted foraccurate(i.e., with boundedsampling errors) estimation oflarge or elephant
flows based on sampling. That we focus only on large flows is justified by many recent studies ([19], [16],
[18]) that demonstrate the prevalence of “elephant and micephenomenon” for flows defined at various levels of
granularity: a small percentage of flows typically accountsfor a large percentage of the total traffic. Therefore, for
many monitoring and measurement applications accurate estimation of flow statistics for elephant flows is often
sufficient. We employ stratified random sampling to circumvent the issues caused by flow dynamics. Through
theoretical analysis, we establish the properties of the proposed adaptive stratified random sampling technique
for flow-level measurement. Using real network traffic traces, we demonstrate that the proposed technique indeed
produces the desired accuracy of flow volume estimation, while at the same time achieving significant reduction
in the amount of packet samples and flow cache size.

The remainder of the paper is organized as follows. In Section II we provide an overview of the challenges
in packet sampling for flow-level measurement and our proposed approaches. In Section III we formally state
the flow volume estimation problem. We then analyze how sampling errors can be bounded within pre-specified
accuracy parameters under dynamic traffic condition. In Section IV we discuss practical implementation issues
involved. Experimental results using network traffic traces are presented in Section V. The paper is concluded in
Section VI.

II. OVERVIEW: CHALLENGES AND OUR APPROACH

A flow is a sequence of packets that share certain common properties (calledflow specification) and have some
temporal locality as observed at a given measurement point.Depending on the application and measurement
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TABLE I
SUMMARY OF TRACES USED.

Name Trace Date Avg Load Duration�1 OC3 Auck-II Oct. 2001 152Kbps 4hr�2 OC3 Tier-1 Backbone Aug. 2002 49.1Mbps 30min�3 OC12 Tier-1 Backbone Aug. 2002 43.4Mbps 30min�4 OC48 Tier-1 Backbone Aug. 2002 510.9Mbps 30min�5 OC12 Tier-1 Backbone Aug. 2002 5.2Mbps 24hr�6 OC12 AIX Oct. 2001 21.6Mbps 90sec

objectives, flows may be defined in various manners such as source/destination IP addresses, port numbers, pro-
tocol or combinations thereof. They can be further grouped and aggregated into various granularity levels such as
network prefixes or autonomous systems. Our analysis, providing bounded accuracy in flow volume estimation,
applies toanykind of flow definition. For illustrational consistency, in this paper we present flow statistics and
experiemental results using flows of5-tuple(source/destination IP addresses, port numbers and protocol number)
with a 60se
 timeout value as our basic flow definition. The 5-tuple definition is at the finest granularity using
packet header traces. The traces used in this study are obtained from both public and commercial OC3, OC12,
and OC48 links. The public traces are from NLANR [7] and commercial link traces are from tier-1 ISP backbone
network. The trace statistics are listed in Table I.

As illustrated in Figure 1, flow measurement in routers worksas follows. When a packet arrives, it is classified
into a flow. If the flow state is already present in the flow cache, the corresponding flow information is updated.
Otherwise, a new entry is created in the cache. When no new packet arrives within a given timeout period since
the arrival of the last packet, this flow is terminated and theflow statistics are exported to a collector entity [6].

There are several challenging issues in packet sampling forflow-level measurement. In this section we provide
an overview of these challenges and our proposed approach.

A. Flow Characteristics and the Impact on Packet Sampling

Clearly, flows are quite diverse in their sizes. Note that extremely small flows (e.g., with 10 or fewer packets)
may not be detected at all using packet sampling, thus it would be infeasible to achieve any reasonable degree
of accuracy. Figure 3 shows the cumulative probability distribution of flow sizes in terms of packet count (i.e.,
number of packets) for flows in the traces. The majority (80%) of the flows are small (e.g., with 10 or fewer
packets), while a small percentage of them are large (e.g., with more than105 or 106 packets).

Fortunately, for many traffic monitoring and measurement applications, it is sufficient to provide an accurate
estimate of flow sizes for onlylarge flows. This is due to the fact that the small percentage of large flows
typically accounts for a large percentage of total traffic. This is evident in Figure 4 where we order the flows
based on their packet counts, and plot the cumulative probability, they account for total traffic (in terms of packet
count). We see that less than20% of the top-ranked flows are responsible for more than80% of the total traffic
different links. The aforementioned phenomenon has been referred to as the “elephants and mice phenomenon”
in the literature, and has been observed at various granularities such as point-to-multipoint router level [19],
network prefix level [16] and inter-AS level [18]. The observation suggests that meaningful traffic monitoring
and measurement objectives (e.g., for traffic engineering or profiling) can often be achieved by concentrating
only on a relatively small percentage of large (i.e., elephant) flows.
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Fig. 3. Many small flows.
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Fig. 4. Elephants-mice behavior.

This motivates us to develop a packet sampling technique toaccuratelyestimateelephantflows. Such a
technique reduces the per-packet processing overhead suchas classification and flow statistics update. In addition,
many small flows may not be detected by sampling, leading to a reduction in flow cache size.

An elephant flow can be defined in various ways, e.g., in terms of a packet count, a byte count (i.e., number
of bytes), or even some measure of burstiness. In this paper,we define it in terms of a packet count. Packet
count is an important measure of a flow, since many tasks in a router are done on per-packet basis such as packet
classification, flow statistic update, and routing decision. A set of flows with large packet count contains flows
with large byte count, as is evident in Figure 5, where we observe that flows with large byte count also have large

packet count. This is because a flow consists of packets whosesizes cannot be arbitrarily large1. However, as can

be seen in the figure, the opposite is not always true.2 Figure 6 shows packet count, byte count and average packet
size of top-ranked flows over time. The flows are ranked in packet count over the trace. It shows that the average
packet size varies among flows. Thus flow ranks in packet countmay not be equivalent to ranks in byte count.
Therefore, it is important to measure also byte count of large packet count flows. Traffic variabilitywithin a flow
is another important factor that we must consider. From Figure 6, we see that the rate of a flow (i.e., the number
of packets/bytes generated by a flow per unit of time) varies during the flow duration. This gives a difficulty of
defining an elephant flow. A flow’s classification may change over time as its rate changes, if classified as an
elephant or a mice over a fixed interval for all simultaneous flows.

Based on the above observations, we classify flows based onproportion of packet count over a time interval
that encompasses the flow duration. The proportion tells us how bursty a flow is compared to othersimultaneous
flows. Since the proportion is defined over the time interval enclosing a flow, it eliminates the rate fluctuation
impact. A flow is referred to as anelephantflow in our study if itspacket countproportion is larger than a
pre-specified threshold. (We will provide a more rigorous definition of an elephant flow in Section III.) This

definition of elephant flows captures flow characteristics ofpacket count, byte count as well as burstiness3.

Note that by relying only on packet count in the definition of elephant flows, the resulting sampling technique1The maximum packet size is limited by MTU (Maximum Transmission Unit) on a link. Also note that the linear lines in Figure 5are
due to the dominant packet sizes (40; 570; 1500bytes)2As an extreme example, while the network game traffic flows tend to have large packet counts, their average byte counts are small.
Empirical measurement of ’Quake’ client traffic in [24] shows that the mean packet size is around only24 bytes (standard deviation of
around1 byte). Thus the resulting byte count of such flows is not very large, while their packet count ranges from14000 to 39000.3While packet count and byte count of a flow are closely related, we observe that flow durations are less correlated to them. Due to
space limitation, we do not present these results here.
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Fig. 6. Flow dynamics (ranked in packet count) (trace�1).

is size-independent. To identify flows with large byte count (or large burstiness), we only need to identify them
from sampled flows with large packet counts. In contrast,size-dependent samplingrequires computation of
sampling probability for each object (either a packet or a flow) [31], [30], thus incurring additional per-object
processing overhead.

B. Adaptive Stratified Random Sampling

As pointed out in [37], in order to achieve both the sampling accuracy and efficiency at the same time, it
is important toadapt sampling rate according to changes in the traffic. Under dynamically changing traffic
conditions,staticsampling rate may lead toinaccurate undersamplingor excessive oversampling. Such problems
become more acute considering long term daily scale, where day time traffic rate differs significantly from night
time as shown Figure 8.

Because flows aredynamicin their arrival time and active duration (as seen in Figure 6), it is very hard to
define a sampling frame (i.e., a sampling interval) that is valid for all elephant flows, while allowing us to adjust
the sampling rate in accordance with the changing traffic condition to ensure estimation accuracy. We tackle this
problem by usingstratifiedrandom sampling. As illustrated in Figure 2, it usespredetermined, non-overlapping
time blocks calledstrata. For each block, it samples packets with the same probability (i.e., via simple random
sampling). At the end of each block, flow statistics are estimated. Then, naturally, a flow’s volume is summarized
into a single estimation record at the end of the last time block enclosing the flow. Notice that from each flow’s
point of view, its duration is divided orstratified in a fixed time. The predetermined time blocks enable us to
estimate flow volume without knowing dynamic flow arrival times and their durations while adjusting sampling
rate according to dynamical traffic changes.

A time block is the minimum time scale over which an elephant flow (packet count proportion) is identified
It is also the minimum time scale over which the sampling ratecan be adjusted. As will be shown in Section
III, in order to achieve a desired accuracy, at least a certain number of packets must be sampled during the
sampling frame that encompasses an elephant flow duration. The sampling rate is set to collect the required
number of samples in a block in order to bound the estimation error of the smallest (threshold) elephant flow.
Given the arbitrary length of elephant flow duration, the sampling frame for a flow could be one block or a series
of consecutive blocks in the stratified sampling. We prove the accuracy of flow estimation is bounded for the
defined elephant flows with the proposed technique, regardless of flow’s rate variability over multiple blocks.
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C. Related Works

Statistical sampling of network traffic was first used in [15]for measuring traffic on the NSFNET backbone
in the early 1990’s. Claffyet al. evaluated classical event and time drivenstaticsampling methods to estimate
statistics of distributions of packet size and inter-arrival time. In [28], the authors applied a random packet
sampling to evaluate the ATM end-to-end QoS such as cell transfer delay. Hash based sampling proposed in [29]
employs the same hashing function at all links in a network tosample same set of packets at different links and
in order to infer statistics on the spatial relations of the network traffic.

The study in [22] presents an algorithm to bound flow packet count estimation error of the topk largest flows
under a static traffic model. A size-dependent flow sampling method proposed in [30] addresses the issue of
reducing the bandwidth needed for the transmission of traffic measurement to a management center for later
analysis. For the purpose of usage-based charging, flows areprobabilistically sampled depending on their sizes,
assuming flow statistics are known a priori. In [31], a probabilistic packet sampling method is used to identify
large byte count flows. Once a packet from a flow is sampled or identified, all the subsequent packets belonging
to the flows are sampled. However, by truncating preceding packets, it underestimates byte counts of flows. Fur-
thermore, the approximation used in computing sampling probability may lead to different sampling probabilities
for the same byte count flows.

Our work differs from the above, in that we use packet sampling to estimate flow volume in terms of both
packet and byte counts within apre-specified error bound under dynamic traffic conditions.

III. T HEORETICAL FRAMEWORK FOR ADAPTIVE RANDOM SAMPLING

In this section, first we formally define an elephant flow and formulate flow estimation problem. For the defined
elephant flows, we analyze the minimum number of samples required using simple random sampling within a
time unit in order to bound sampling errors. We then describehow to determine sampling probability and how
the accuracy is achieved for flows of arbitrary lengths usingstratified random sampling. Finally, we establish the
statistical properties of the proposed technique.

A. Elephant Flow Definition and Problem Formulation

In this paper, a flow is referred as an elephant flow if its packet count proportion is larger than a pre-specified
threshold over a flow encompassing time interval (for example, 0:1%). For those elephant flows, the proposed
sampling technique estimatesflow packet count as well as byte count with controlled accuracy.

First, we formally give a definition of an elephant flow used inthis paper.

Definition 1—Elephant Flow:Consider a discretized time interval that contains an entire duration of flowf .
Suppose the interval consists ofL consecutive (time) blocks wheremi packets are seen in blocki (i = 1 : : : L).

Letmf packets belong to flowf out of totalm packets. If the proportion of flow packet countpf is greater than

a thresholdp�, then we call the flow anelephant.mfm = PLh=1mfhPLh=1mh = pf � p� (1)

Determining flow rate over a certain time scale of interest isreasonable for practical issues. A straightforward
computation of flow rate, i.e., flow size divided by its duration may not be meaningful, particularly for very short
flows. For example, the rate for single packet flows is not well-defined since its duration is considered to be zero.
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TABLE II
NOTATION.

Explanationmh total number of arriving packets in blockhnh total number of sampled packets in blockhpf proportion of flowf in packet countsp̂f estimated proportion of flowf in packet counts (r:v:)nf number of sampled packets of flowf (r:v:)mf total number of packets of flowfm̂f estimated packet count of flowf (r:v:)vf byte count of flowfv̂f estimated byte count of flowfSf squared coefficient of variation (SCV) of packet sizes of a flow fp� elephant flow threshold (in packet count proportion)S� threshold in SCV of elephant flow packet sizes

On the other hand, flows with two packets sent back-to-back would give the highest flow rate which is equivalent
to a link rate. For long lived flows, classifying flows over a duration which might be slightly larger than its actual
duration has only minimal impact on the class characteristic.

The time scale over which flows are classified can be determined by a certain engineering purpose. total traffic
during a flow’s of a flow as an elephant or a mouse can be done by just keeping one counter of total packet for
blocks of a flow duration. When the flow expires, the packet count proportion of the flow over the total packet
counts during the blocks indicates whether the flow is an elephant or not. If it is indicated as an elephant, the
flow volume estimation should be accurate with pre-specifiederror bound.

Our objective is to bound the relative error of packet count estimation,m̂f and byte count estimation,v̂f for the
elephant flows. i.e., givenprescribederror tolerance level,f�; "g, (where(1� �) and" are referred asreliability
andprecisionrespectively, and0 � � � 1), flow packet count and byte count estimation error have to bebounded
respectively as: Pr(�����m̂f �mfmf ����� > ") � �, Pr(����� v̂f � vfvf ����� > ") � � (2)

wherepf � p� for flow f . In other words, we want the relative error in flow volume estimation using random
sampling to be bounded by" with a high probability1 � �. Given this formulation of the bounded error sam-
pling problem, the question iswhat is the minimum number of packets that must be sampled randomly so as
to guarantee the prescribed accuracy for diverse and dynamic flows. We address this question in the following
subsection.

We have chosen to bound relative error, since it gives generic accuracy regardless of load, link or characteristic.
However, we will also discuss about bounding absolute errorat the end of this section. The notations used here
are summarized in Table II.

B. Required number of samples

Our approach and analysis framework are based on random sampling. The assumptions we make in the
analysis are: sample sizen is reasonably large (> 30 packets) and the population sizem is large enough compared
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to the sample size (m� n) so that sampling fraction is small. Then, the sampling distribution of sample mean for
random sampleshas a normal distribution with mean� and standard deviation�pn , regardless of the distribution

of population, from the Central Limit Theorem.� and� are population mean and standard deviation, respectively.
Recall that the requirement of samples being i.i.d (independent and identically distributed) for the condition of

the theorem is simply achieved byrandomsampling from thecommonpopulation.4

In this subsection, we derive the required number of samplesto provide the pre-specified accuracy using simple
random sampling. We extend it to

We explain how the accuracy is achieved for flows active over multiple blocks in the next subsection.

1) Flow Packet Count Estimation:Using a simple random sampling, a flow packet count is estimated as
following: Consider a unit time interval that contains anentire durationof flow f , in whichm packets are seen.

From these,n packets arerandomly sampled(n < m), andnf packets belong to flowf . Then the packet count

of flow f ,mf is estimated bŷmf using the sample proportion̂pf :m̂f = m � nfn = m � p̂f (3)

A proportion may be considered to be a special case of the meanwhere a variableY takes on only the values0 and1. For example, suppose we wish to find the proportion of a particular flowf . Let there bem packets, and
let Yi = 1 if ith packet belongs to the flowf , andYi = 0 otherwise. Then the number of packets belonging to
the flowf is mf = mXi=1 Yi (4)

The flow proportion of packets is computed by to the total packet count during the intervalpf = mfm = Pmi=1 Yim (5)

Let Y1; Y2; : : : ; Yn ben random samples, andnf packets of them belong to flowf . The sample proportion of
flow f is therefore defined as p̂f = nfn = Pnj=1 Yjn (6)

Within a time block, a simple random sampling in which a sampling probability is fixed is used. Then, from the

Central Limit Theorem ofrandom samples[5], as the sample sizen ! 1, the sample mean̂pf approaches the

population meanpf and variance�2̂pf = pf (1 � pf )=n regardless of the distribution of population. Thus, the

sample proportion can be written with its mean and variance,p̂f � pf + qpf (1� pf )pn Yp (7)

whereYp is a random number of a standard normal distribution (� N(0; 1)) and the subscriptp stands for packet
count.4It is important to understand that arandomizing eliminates correlation. For example in [35], randomizing technique is used to destroy
correlation for the purpose of investigating the impact of long range dependence on the queueing performance.
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Now Eq. (2) can be rewritten as follows:Pr(�����mp̂f �mpfmpf ����� > ") = Pr8<:����� p̂f � pf�p̂f ����� > pfpn"qpf (1� pf )9=; � 20�1� �0� ppfpn"q(1� pf )1A1A � � (8)

where�(�) is the cumulative distribution function (c.d.f) of the standard normal distribution.

By solving the inequality in Eq. (8) with respect ton, we can derive the minimum required number of samplesn�;p to estimate flow packet count within the given error tolerance leveln � n�;p = &zp �  1� pfpf !'
(9)

wherezp =
���1(1��=2)" �2

.

Notice that with elephant threshold of packet count proportion p�, �1�p�p� � can be set as a constantC� =�1�p�p� �. Then, n � n�;p = dzp � C�e (10)

With at leastn�;p number of random samples, simple random sampling can providepre-specified accuracyf�; "g
for anyflows whose proportion is larger than a pre-defined elephant thresholdp�.

Eq. (10) conciselyrelatestheminimum number of packet samplesto the estimationaccuracyand theelephant
flow threshold. Moreover, given accuracy and elephant flow threshold, it shows that the amount of measurement
needed remainsconstantregardless of the traffic fluctuation.

2) Flow Byte Count Estimation:For the defined elephant flows, we also aim to measure flow byte count
accurately, in addition to flow packet counts. The actual byte count of a flowf is expressed as follows:vf = mf�f = mpf�f (11)

where�f is the actual average packet size of flowf . Similarly the estimated flow byte countv̂f isv̂f = m̂f �̂f = mp̂f �̂f (12)

where�̂f is the estimated average packet size of flowf .

Notice that two levels of uncertainties are involved for flowbyte count estimation, namely the estimations of
flow proportion and flow average packet size.

The flow byte count estimation can be quantified with the help of the following two lemmas, which are the
consistency of sample proportion and an extension of the Central Limit Theorem for a sum of a random number
of random variables, respectively:

Lemma 1: nfn�pf ! 1 almost surely asn!1 by the strong law of large numbers.

Lemma 2—p369, problem 27.14 in [4]:Let X1;X2; : : : be independent, identically distributed random vari-
ables with mean� and variance�2, and for each positiven, let Fn be a random variable assuming positive

integers as values; it needs not be independent of theXm’s. Let Wn = PFni=1Xi. Suppose asn ! 1, Fnn
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Fig. 7. Flow packet count and byte count vs. SCV.
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converges to1 almost surely. Then asn!1, Wn � Fn��pn (13)

converges in distribution to aN(0; 1) random variable.

Applying these lemmas, the byte count of a flow can be approximated with the sum of two normal random
variables as v̂f = mpf�f +m "ppfpn ��fq1� pfYp + �fYb�# (14)

whereYb; Yp � N(0; 1). (The proof can be found in the Appendix.)

From the above Eq. (14), the relative error of flow byte count is summarized asv̂f � vfvf = ppfpn ��fp1� pfYp + �fYb�pf�f = 1pnpf  q1� pfYp + �f�f Yb! � N  0; 1� pf + Sfnpf !
(15)

Then, the required number of samples for flow byte count estimation can be obtained similarly to the flow packet
count estimation, n � n�;b;f = &zp �  1� pf + Sfpf !'

(16)

whereSf = (�f=�f )2 is thesquared coefficient of variation(SCV) of packet sizes of flowf .

Eq. (16) reveals that the required number of samples for a flowbyte count estimation is related to thevariability
of packet sizes of a flowas well as packet count proportion and accuracy. It also tells that larger number of samples
are needed for flow byte count estimation compared with the one for flow packet count estimation from Eq. (10)

as long as the packet sizes of a flow are not uniform (Sf > 0).

Our observation shown in Figure 7 sheds light on the problem of flow byte count estimation. Even though the
variability of packet sizes (SCV) of a flow ranges widely in general (from0:00007 to 8(!)), it is very limited for
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large flows. This means large flows tend to have packets of similar sizes. One can effectively give a reasonable
bound on SCV of elephant flows, around0:2(< 1) for example. Therefore, the number of required samples to
bound estimation error for flow byte count can be obtained byn � n�;b = dzp �B�e (17)

whereB� = �1�p�+S�p� �
.

With the required number of samples computed, we will describe how to decide sampling probability to ensure
the number of samples under dynamic traffic conditions and how the accuracy is achieved for flows over multiple
blocks in the following subsections.

C. Optimal Sampling Probability and Prediction of Total Packet Count

The optimal sampling probability of a block to producen� samples would bepsp = n�mh (18)

wheremh is the total number of packets in a blockh. n� can ben�;p only for flow packet count orn�;b for flow
byte count as well.

In any case, we cannot accurately choose sampling rate when the population size (total packet count of the
observation time block) is unknown. We can compute the sampling probability at the beginning of a block by
predicting the total packet count. We employ an AR (Auto-Regressive) model for predicting the total traffic
packet countm, as compared to other time series models, since it is easier to understand and computationally
more efficient. In particular, using the AR model, the model parameters can be obtained by solving a set of
simple linear equations [3], making it suitable foronline implementation.

The network traffic predictability has been studied in [26] and [37]. The total packet count prediction with AR
model is justified by empirical studies using real network traffic traces in [37]. The predictability may depend
on the time scale (block size) of observation. We observed strong positive correlations for a wide range of time
scale from1min to 30min for long traces and1se
 to 10se
 for short (90se
) traces.

We now briefly describe how the total packet countmh of thehth block can be estimated based on the past
packet counts using the AR(u) model. Using the AR(u) model [3],mh can be expressed asmh = uXi=1 aimh�i + eh (19)

whereai, i = 1; : : : ; u, are the model parameters, andeh is theuncorrelatederror (which we refer to as the
prediction error).

The model parametersai, i = 1; : : : ; u, can be determined by solving a set of linear equations in terms ofv
past values ofmi’s, wherev � 1 is a configurable parameter independent ofu, and is typically referred to as the
memory size.

Let m̂h denote thepredictedpacket count of thehth block. Using the the AR(u) prediction model, we havem̂h = uXi=1 aimh�i: (20)
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In predicting thetotal packet countm, we assume theactual packet count of a block is known at the end of
the block. Note that having the actual total packet count is reasonable to assume in current routers and does not
change the nature of the adaptive random sampling techniquewe propose.

Using the AR prediction model, at the end of each block, the model parameters (ai) are computed [3]. The
complexity of the AR prediction model parameter computation is onlyO(v) wherev is the memory size. Through
empirical studies, we have found that AR(1) with a small memory size (around 5) is sufficient to yield a good
prediction.

For the currently active flows, their statistics are updatedusing the sampling rate at the end of a blockh as
follows: m̂fh = m̂fh�1 + mhnh n̂fh (21)v̂fh = v̂fh�1 + mhnh n̂fh�̂fh (22)

Figure 9 shows the flow chart of the adaptive random sampling procedure.

D. Accuracy of Stratified Random Sampling: Statistical Properties

In our proposed sampling method, we collectequal number of random samples (n�) for eachstratum on
average. Consider a flow whose enclosing interval consists of L number of blocks. Then,from the flow’s point of
view, n� �L packets are sampled for theL blocks and for each block a simple random sampling is used, which is
equivalent to astratified random sampling with equal number of samples per stratum. In the previous subsection,
we have shown that simple random sampling withn� samples provides the prescribed accuracy for the estimation
of flows whose duration fall within a block. Here, we first explore statistical properties of the stratified random
sampling. Then we show how a stratified random sampling with equal number ofn� samples per stratum also
gives at least the prescribed accuracy for flows who live forL blocks.

Stratified random sampling is known to provideunbiased estimatorsfor the population mean, total, and pro-

portion, in that their expectations are equal to the values of population (E(p̂f ) = pf ; E(v̂f ) = vf ). The technique
is alsoconsistent, since the estimation of stratified random sampling approaches the population parameter as the

number of samples increases. i.e.,p̂f ! pf asn!1 (orm).

Efficiencyof a sampling describes how closely a sampling distributionis concentrated around the value of the
population (population parameter). For consistent estimators, efficiency can be measured by thevariance, where
a smaller variance is preferred. An estimator of a smaller variance would give moreaccurateestimation, given
the same number of samples. Mean square error (MSE) is a frequently used metric to compare estimators. LetX be a random variable of the population (in general) andX̂ be the estimated mean of the population. (In case
of proportion,X takes on 1 if a packet belongs to flowf and 0 otherwise.) As in the following equation, the
variance itself becomes MSE for an unbiased estimator.MSE(X̂) = E(X̂ � �)2 = V ar(X̂) + bias2 (23)

Thus it is important to study variance carefully. Notice that the analysis and the required number of samples in the
previous subsections is based on simple random sampling. Wefirst compare the variance of proposed stratified

random sampling with simple random sampling. The variance of total estimation (̂mf or v̂f ) is easily found by

using the results of a variance ofmeanestimation (̂pf or �̂f ). For example,V ar(m̂f ) = V ar(mp̂f ) = m2V ar(p̂f ) (24)
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Hence, we simplify the discussion of the variance to amean estimation.

The variance of simple random sampling withn samples isV ar(X̂sim;n) = �2n (25)

where�2 is the population variance [1]. Thus, the accuracy (or variance) of a simple random sampling depends on
the variance of the actual population (�2) and a sample size (n). The following theorem states that our proposed
sampling bounds the variance of relative error by the pre-specified accuracy parameters.

Theorem 3:Usingn� random packets, the variance of the relative error in estimating flow packet count and
byte count is bounded above by the pre-specified accuracy:V ar m̂f �mfmf ! � 1zp (26)V ar v̂f � vfvf ! � 1zp (27)

wherezp =
���1(1��=2)" �2

.

Now, we consider flows with arbitrary duration which stay active L(� 1) blocks. We establish the following
theorem to show the proposed stratified random sampling provides the pre-specified error tolerance. The proof
can be found in the Appendix.

Theorem 4:The variance ofstratifiedrandom sampling withequalnumber ofn� samples for eachL strata is
smaller than the variance ofsimplerandom sampling withn samples.V ar(X̂str(eq);n�L) � V ar(X̂sim;n�) (28)

This means that the accuracy in estimation of a flow with arbitrary duration satisfies the given bound with the
proposed stratified random sampling, wheren� samples are collected at each time block.

Another important property to consider for flow is about aggregation. Flow statistics may furtheraggregated
into a bigger flowlater for different engineering purpose. It can be easily shown that theaccuracyof the estima-
tion is conservedfor aggregated flows.

Stratified random sampling gives smaller variance of estimation (better accuracy) than simple random sampling
when the variances within blocks are small compared to the variance for all the interval. Given a number of
samplesn, stratified random sampling increases the accuracy, when samples are selectedproportionally to the
population size in the stratum [1]. i.e.,V ar(X̂str(prop);n) � V ar(X̂sim;n) (29)

If we additionally update flow statistics within a blockwithoutchanging sampling probability, it turns out to be
a stratified random sampling. Then the sample sizes in strata(or subblock) become proportional to the popula-
tion size. Therefore, one may update flow statistics more often than once per block to increase an accuracy of
estimation.
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E. Bounding Absolute Error

So far we described boundingrelative error in estimating flow packet and byte count. We have derived the
required sample size by linearly separating accuracy parameter from traffic parameter asn / accuracy� traffic parameter (30)

For the objective ofabsoluteerror boundPr n���m̂f �mf ��� > "o � � or Pr n���v̂f � vf ��� > "o � � (31)

the required sample size can be obtained by a similar analysis used in bounding relative error. Then, the required
number of samples can be derived asn � n�;p = zp � pf (1� pf ) �m2 or n � n�;b = zp � hpf (1� pf )�f + �f i �m2 (32)

for flow packet and byte count estimation respectively (see [?] for detail). It can be summarized in the following
form: n / accuracy� traffic parameter�m2 (33)

Assumingpf < 0:5, the required sample size depends on themaximumflow proportion whose estimation error

should be bounded. Supposen�;p is computed usingp�. Since the accuracy is not guaranteed for flows whose

proportion are larger thanp�, the largest flow proportion should be known ahead. Still sampling probability is
much higher than the one for relative error bound in general since it is quadratically proportional to total packet

count (m2). For flow byte count estimation, two parameters of a flow - average packet size of a flow�f and its

variance�f - should be known as opposed to one parameter of flow SCV for relative error. Furthermore, unlike

SCV, mean packet size of a flow�f varies widely among all the flows as observed in Figure 6. Using maximum
packet size (1500bytes for example) would give avery large number in the required number of samples (often as
many as total packet count) resulting in oversampling for many elephant flows with smaller average packet size.

Therefore, bounding relative error is more practical, and it is suitable for the type of applications such as traffic
profiling and engineering, where flows responsible for most of the traffic are of interest.

IV. PRACTICAL CONSIDERATIONS

In this section, we discuss the issues involved in the implementation of the proposed sampling technique. We
first discuss how to determine the flow timeout value and its impact on the performance of our method. Then we
discuss how to reduce the overhead of random number generation.

A. Flow Timeout Value

The choice of timeout values may change the flow statistics for a given traffic even with full measurement (i.e.,
no sampling). While a large timeout value leads to maintaining unnecessarily large number of flow states, a small
timeout may break otherwise large, long-lived flows into smaller flows. The impact of timeout values on flow
statistics and a performance trade-off were studied in [13], [14].

With introduction of sampling, timeout value should be adjusted appropriately due to increased inter-packet
arrival time of a flow. SupposeTOfull is used for a flow definition when no sampling is used. With random
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Fig. 9. Adaptive random sampling for flow
volume measurement.

Fig. 10. Systematic sampling on periodic
population.

Fig. 11. Trade-off in random number genera-
tion.

sampling, intra-flow inter-packet arrival time of samples is increased by the inverse of the sampling rate on
average (pavg). Thus, one can use the timeout value under sampling asTOsamp = TOfullpavg (34)

However, in the proposed adaptive random sampling, the sampling rate changes adaptively over time. So we
exponentially average the sampling rate as follows.pavg;i = �pi + (1� �)pavg;i�1 (35)

wherepi is the sampling probability of a blocki andpavg;i is the averaged sampling probability in blocki to be
used for a timeout value. Given a timeout value for full measurement (60se
), we rarely observe truncation of
elephant flows throughout the experiments. It is because from our definition, an elephant flow is expected to have
a high packet rate on average over the flow’s duration, thus making it less sensitiveto a timeout value.

B. Utility of Systematic Sampling and Random Number Generation

Systematic sampling is a popular sampling design employed in Cisco and Juniper routers ([33], [34]). In
general, 1-out-of-k systematic sampling involves random selection of one element from the firstk elements, and
selection of everykth element thereafter requiring only one random number generation and a counter. Random
sampling involves a random number generation per-packet. Even though modern routers already have the feature
implemented for a mechanism such as RED (Random Early Detection), with a choice of sampling rate from our
analysis one may want to consider using systematic samplingfor a simplicity. However, understanding accuracy
of systematic sampling has to precede its utility.

The performance of systematic sampling can be explained with the concept of correlation between samples of
an experiment (sample set). The variance of sample mean using systematic sampling is given by [1], [2]V ar(X̂sys;n) = �2n [1 + (n� 1)�℄ (36)

where� is a measure of the correlation between pairs of samples within the same systematic sample.� = E(Xij � �)(Xij0 � �)E(Xij � �) (37)
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Fig. 12. Synthetic data: Extremely bursty and uniformly distributed flows with variable packet sizes (f�; "g = f0:1; 0:1g, fp�; Sfg =f0:01; 1:3g, pf = p�).
where,� 1(n�1) � � � 1, i = 1; : : : ; k andj; j0 = 1; : : : ; n, j 6= j0.

Thus, a theoretical accuracy of systematic sampling is not practically assessable, as knowledge of allk sys-
tematic samples is necessary to calculate the variance of systematic samples. Eq. (36) also shows that when� is
positive, the estimator isnot consistent, since the accuracy is not increased with largen. If � is close to1, then
the variability of elements within the sample set is too small compared to variability among possible sample sets,
and systematic sampling will yield a larger variance than using simple random sampling. If� is negative, then
systematic sampling may be better than simple random sampling. The correlation may be negative if variability
of elementswithin a systematic sample set tends to be larger thanamongsystematic sample sets . For� close to0, systematic sampling is roughly equivalent to simple random sampling. When the population israndomly or-
dered, systematic sampling will give us a precision approximately equivalent to that obtainable by simple random

sampling.5

Figure 10 illustrates extreme performance of systematic sampling from the same population. Suppose one try
to estimate a population mean with a systematic sampling. For the periodic population shown in Figure 10, whenk(= m=n) is the same as the period, the value of the sample is the same for all samples in any possible set of
samples, thus, an increase of sample size would not increasethe accuracy at all. Meanwhile, withk = 4(> 3), it
always gives the exact population mean with smaller number of samples which is better than random sampling.
Therefore, randomness in samples is important toassessthe accuracy, and to avoid extreme performance.

Scalability of measurement using adaptive random samplingmay be further enhanced by infrequent random
number generation. Supposen packets out ofm are collected (refer to illustration in Figure 11). Rather than
generating a random number for each packet (first row), we maintain a counter initialized tok(= m=n). The
counter is decremented upon each packet arrival, and when itreaches 0 it is reset back tok. Whenever the counter
is set tok, a random numberi (from 0 tok) is generated andith packet, counting from the time of counter reset,
is sampled as illustrated in the second row of the figure. As a further enhancement, a hybrid approach could be
used as shown in the third row of Figure 11. By changing starting point randomly several times (
(< n)), this
process has the effect of shuffling the elements of the population.5From our experiments, the performance of systematic sampling with adaptive sampling rate was close to the one of adaptive random
sampling. However, in this paper, we limit our discussion onrandom sampling for the assessment of estimation error.
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V. EXPERIMENTAL RESULTS

In this section, we first validate our theoretical result with synthetic data. We then empirically evaluate the
performance of our adaptive packet sampling technique for flow measurement using the real network traces.

In order to verify our theoretical results, first we conduct experiments with synthesized data where all flows
are elephants whose proportions are the same as the threshold. In synthesized data, all flows have the same
packet count and their durations fall within a block. They have different byte counts caused by various means
and standard deviations of their packet sizes. The SCVs for all flows however, are the same (SCV = 1:3). Two
types of traffic data are generated according to the flow’s packet rate variability. Packets of flows in the first traffic
data are uniformly distributed, while flows in the second traffic are bursty. We first use the sampling rate ignoring

the packet size variability (S� = 0), and repeat the measurements with a higher sampling rate using the actual
value of packet size SCV.

In both cases we calculate the cumulative probability of relative errors for packet and byte count estimates.
Figure 12(a) shows that packet count estimation indeed conforms to the pre-specified accuracy parameter, i.e.,

the probability of relative errors larger than" = 0:1 is around� = 0:1 with S� = 0. Meanwhile, as shown
in Figure 12(b), the probability of relative errors larger than" = 0:1 is a lot higher than� = 0:1, when the
packet size variability is not considered for the sampling rate. When taking packet size variability into account

(S� = 1:3), byte count estimation error conforms to the pre-specifiederror bound. Due to increased sampling
rate, the accuracy of the packet count estimates is increased, i.e., the proportion of all estimates whose relative
error is smaller than" is even higher than the predicted probability1��. The above observations are true for both
types of flows and therefore, independent of the flow’s burstiness. Considering fluctuation of traffic, in particular
a high day/night traffic ratio, adapting sampling rate appropriately is critical to achieve estimation accuracy as
well as to avoid too much unnecessary oversampling.

We also validate the achieved accuracy of the proposed sampling technique, using real traces. In Figure 13,
all the estimated flow volumes using sampled packets are compared to the actual flow volumes, to show the
performance qualitatively. It can be observed that small volume flow estimations (indirectly, low proportion
flows) are more off from the actual volumes, while high volumeflow estimations (elephants) tend to be more
close to the actual volumes. Figure 14 shows the cumulative probability of the relative error estimating elephant
flows. There are a few flows shortened due to timeout. Their relative error are close to1, because1 or 2 packet
flows from the broken flows are compared the original flow (leftplot). However, after removing statistics of those
flows (right plot), the cumulative probability of relative error being less than" is higher than1 � �. Recall that
the sampling rate was aimed for an accuracy of minimum elephant whose proportion is equal to the threshold.
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TABLE III
FLOW CACHE SIZE REDUCTION.

Parameters Trace�5 (24hr) Trace�1 (4hr) Trace�6 (90se
)f�; "; p� ; S�g Adapt. Static Adapt. Static Adapt. Staticf:1; :1; :001; :2g .459 .711 .721 .772 .742 .746f:15; :15; :005; :0g .433 .697 .710 .735 .727 .730

For elephants whose threshold is higher than the threshold,the achieved accuracy is supposed to be better. Thus
the statistical accuracy amongall elephants becomes better than the specified, as in Figure 14.

Next we examine the efficiency of the adaptive sampling in terms of reduction in packet measurement and
flow cache size. Note that the amount of measurement in the adaptive scheme depends on accuracy parameters
and elephant flow thresholds, and does not depend on the totaltraffic. In static sampling, however, the amount
of samples is proportional to the total traffic. Sampling fraction which is the ratio of the number of samples over
the total number of packets determines the resource usage efficiency. We compare the sampling fraction from a
trace using adaptive sampling and static sampling. Averagesampling rate of adaptive sampling method is used
for the sampling rate of static sampling method. In adaptivesampling, a higher accuracy requires larger number
of samples while larger block size decreases sampling rate.As shown in Figure 15 the sampling fraction is higher
for static sampling scheme for various block sizes and accuracy parameters. Since the processing overhead is a
function of the number of packets sampled, the advantage of the adaptive sampling is clear.

Reduction in flow cache size is another benefit from sampling,because some flows can be omitted in keeping
flow statistics. Table III shows flow cache size reduction forboth adaptive and static sampling with various
traces and various sampling rate. Flow cache size reductionis computed in terms of average flow cache size
in case of using sampling compared to the one without sampling for the trace. Packet sampling indeed reduces
flow cache size for all cases of sampling rate and traces. The adaptive sampling performs better than static
sampling, particularly when day/night traffic fluctuation is considered. However, its reduction is less relevant
to the sampling parameters. This is because as sampling ratedecreases, the timeout value in case of sampling
increases accordingly. Then, flow statistics should be keptfor longer time when sampling is used.

VI. CONCLUSIONS

In this paper, we have addressed the problem of flow volume measurement using packet sampling approach.
Since a small percentage of flows are observed to account for alarge percentage of the total traffic, we focused on
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the accurate measurement ofelephantflows. We proposed an adaptive sampling method that adjusts the sampling
rate so as to bound the error in flow volume estimation withoutexcessive oversampling. The proposed method
based on stratified random sampling divides time into strataand within each stratum samples packets randomly
at a rate determined according to the minimum number of samples needed to achieve the desired accuracy. The
technique can be applied to any granularity of flow definition. Through analysis and experimentation we have
shown that the proposed method provides accurate and unbiased estimation of byte and packet counts of elephant
flows without excessive oversampling. We have also discussed practical issues and argued that our method can
be implemented efficiently to match the line speeds. We conclude that the ability to control the accuracy of
estimation and thus tradeoff the utility and the overhead ofmeasurement makes our adaptive sampling method a
scalable and attractive solution for flow volume measurement.
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APPENDIX

[Proof of Theorem 3]V ar m̂f �mfmf ! = V ar p̂f � pfpf ! = V ar �p̂f�pf2 = pf (1� pf )npf2 = (1� pf )n (38)

wheren � n�;p = lzp � �1�pfpf �m
. Thus,V ar �m̂f�mfmf � � 1zp .

Similarly, V ar V̂ f � V fV f ! = 1� pf + Sfnpf (39)

wheren � n�;b = lzp � �1�pf+Sfpf �m
Thus,V ar � V̂ f�V fV f � � 1zp

[Proof of Theorem 4]V ar(X̂str;n�L) = Lm2PLi=1m2i �2inL = 1mn LXi=1mi�2i � mim � 1mn LXi=1mi�2i � V ar(X̂sim;n) (40)

where�2i is a population variance in blocki.
[Proof of Eq. (14)]V̂ f = mn nf �̂f � mn �nf�f + �fqnpfYb� = m "nfn �f + �fpnpfn Yb#= m "p̂f�f + �fppfpn Yb# = m240�pf + qpf (1� pf )pn Yp1A�f + ppfpn �fYb35 (41)= m "pf�f + ppfpn ��fq1� pfYp + �fYb�# = mpf�f +m "ppfpn ��fq1� pfYp + �fYb�#

whereYb � N(0; 1).
[Proof of Aggregation Property]
From the objective, with a probability of1� �, for eachi in elephant flows of fine granularity,�����mfi � m̂fimfi ����� � " (42)

Therefore, their aggregation accuracy is �����Pimfi �Pi m̂fiPimfi ����� � " (43)

The aggregation property is similarly derived for aggregated flow byte count as well.


