
Controlling High Bandwidth Aggregates in the Network

Ratul Mahajan, Steven M. Bellovin, Sally Floyd,
John Ioannidis, Vern Paxson, and Scott Shenker

�

ICSI Center for Internet Research (ICIR) AT&T Labs Research

Abstract
The current Internet infrastructure has very few built-in
protection mechanisms, and is therefore vulnerable to
attacks and failures. In particular, recent events have
illustrated the Internet’s vulnerability to both denial of
service (DoS) attacks and flash crowds in which one or
more links in the network (or servers at the edge of the
network) become severely congested. In both DoS at-
tacks and flash crowds the congestion is due neither to
a single flow, nor to a general increase in traffic, but to
a well-defined subset of the traffic – an aggregate. This
paper proposes mechanisms for detecting and control-
ling such high bandwidth aggregates. Our design in-
volves both a local mechanism for detecting and con-
trolling an aggregate at a single router, and a cooperative
pushback mechanism in which a router can ask upstream
routers to control an aggregate. The presentation in this
paper is a first step towards a more rigorous evaluation of
these mechanisms. While certainly not a panacea, these
mechanisms could provide some needed relief from flash
crowds and flooding-style DoS attacks.

1 Introduction
In the current Internet, when a link is persistently over-
loaded all flows traversing that link experience signifi-
cantly degraded service over an extended period of time.
Persistent overloads can arise for several reasons. First,
persistent overloads can result from a single flow not
using end-to-end congestion control and continuing to
transmit despite encountering a high packet drop rate.
There is a substantial literature [6, 18, 27, 20] on mech-
anisms to cope with such ill-behaved flows (where, by
flow, we mean a stream of packets sharing IP source
and destination addresses, protocol field, and source and
destination port numbers). Second, as was seen on the

�

Ratul Mahajan is from University of Washington (work done
while at ICIR); Steven M. Bellovin and John Ioannidis are from
AT&T Labs Research; Sally Floyd, Vern Paxson and Scott Shenker
are from ICIR.

transatlantic links a few years ago, persistent overloads
can also be due to a general excess of traffic [14].

However, even when all links are adequately provi-
sioned, and all flows are using conformant end-to-end
congestion control, persistent congestion can still occur.
Two examples of this are denial of service attacks (DoS)
and flash crowds.

DoS attacks occur when a large amount of traffic from
one or more hosts is directed at some resource of the
network such as a link or a web server. This artificially
high load denies or severely degrades service to legit-
imate users of that resource. The current Internet in-
frastructure has few protection mechanisms to deal with
such DoS attacks, and is particularly vulnerable to dis-
tributed denial of service attacks (DDoS), in which the
attacking traffic comes from a large number of disparate
sites. A series of DDoS attacks occurred in February
2000 to considerable media attention, resulting in higher
packet loss rates in the Internet for several hours [12].
DDoS attacks have also been directed against network
infrastructure rather than against individual web servers
[21].

Flash crowds occur when a large number of users try to
access the same server simultaneously. Apart from over-
loading the server itself, the traffic due to flash crowds
can also overload the network links and thereby interfere
with other, unrelated traffic on the Internet. For example,
degraded Internet performance was experienced during
a Victoria’s Secret webcast [2] and during the NASA
Pathfinder mission. The “Slashdot effect” often leads to
flash crowds.

While the intent and the triggering mechanisms for
DDoS attacks and flash crowds are quite different, from
the network’s perspective these two events are quite sim-
ilar. The persistent congestion is neither due to a single
well-defined flow, nor due to an undifferentiated overall
increase in traffic. Instead, there is a particular aggre-
gate of packets causing the overload, and these offend-

1

ing packets may be spread across many flows.

Congestion caused by aggregates cannot be controlled
by conventional flow-based protection mechanisms [6,
18, 20, 27] because the aggregate can be composed of
numerous flows, each of which might be low-bandwidth.
In this paper we propose aggregate-based congestion
control (ACC)1 that operates at the granularity of ag-
gregates. ACC mechanisms fall between the traditional
granularities of per-flow control (which looks at individ-
ual flows) and active queue management (which does not
differentiate between incoming packets).

More specifically, an aggregate is a collection of packets
from one or more flows that have some property in com-
mon. This property could be anything from destination
or source address prefixes to a certain application type
(streaming video, for instance). Other examples of ag-
gregates are TCP SYN packets and ICMP ECHO pack-
ets. An aggregate could be defined by a property which
is very broad, such as TCP traffic, or very narrow, such
as HTTP traffic to a specific host.

To reduce the impact of congestion caused by such
aggregates, we propose two related ACC mechanisms.
The first, local aggregate-based congestion control (Lo-
cal ACC), consists of an identification algorithm used
to identify the aggregate (or aggregates) causing the
congestion, and a control algorithm that reduces the
throughput of this aggregate to a reasonable level. There
are many situations in which local aggregate-based con-
gestion control would, by itself, be quite effective in pre-
venting aggregates from significantly degrading the ser-
vice delivered to other traffic.

The second ACC mechanism, pushback, allows a router
to request adjacent upstream routers to rate-limit traf-
fic corresponding to the specified aggregates. Pushback
can prevent upstream bandwidth from being wasted on
packets that are only going to be dropped downstream.
In addition, for a DDoS attack, if the attack traffic is con-
centrated at a few upstream links, pushback can protect
other traffic within the aggregate from the attack traffic.

ACC mechanisms are intended to protect the network
from persistent and severe congestion due to rapid in-
creases in traffic from one or more aggregates. We envi-
sion that these mechanisms would be invoked rarely, and

1We note that the term “ACC” has also been used in different con-
texts to denote “Active Congestion Control” and “ACK Congestion
Control”.

emphasize that they are not substitutes for adequately
provisioning links or for end-to-end congestion control.
We believe that introducing control mechanisms at the
granularity of aggregates would provide important pro-
tection against flash crowds, DDoS attacks, and other
forms of aggregate-based congestion.

The organization of this paper is as follows. Section 2
gives an overview of ACC. Section 3 describes the lo-
cal component of ACC in more detail. We discuss the
pushback mechanisms in detail in Section 4, and evalu-
ate ACC using simulation in Section 5. Section 6 dis-
cusses the advantages and disadvantages of pushback,
and several issues related to ACC. In Section 7 we de-
scribe other works that tackle the problems of DDoS at-
tacks and flash crowds.

2 Overview of ACC

We can think about the ACC mechanisms as consisting
of the following sequence of decisions:

1. Am I seriously congested?
2. If so, can I identify an aggregate responsible for an

appreciable portion of the congestion?
3. If so, to what degree do I limit the aggregate?
4. Do I also use pushback?
5. When do I stop? When do I ask upstream routers to

stop?

Each of these questions requires an algorithm for mak-
ing the decision. Each is also a natural point to inject
policy considerations. The space of possible policies is
very large. Examples include protecting some aggregate
even if it is high bandwidth, punishing some aggregate
as soon as congestion sets in, providing relative fairness
among aggregates, and restricting maximum throughput
of an aggregate. We do not attempt to explore such poli-
cies in this paper but assume simple policies in order to
focus on developing and understanding the mechanisms.

2.1 Detecting Congestion

The ACC mechanisms should be triggered only when
the output queue experiences sustained severe conges-
tion. One can detect this by monitoring the loss rate at
the queue, and looking for an extended high loss rate pe-
riod. The history of the loss rate pattern at the router can

2

be used to distinguish between typical and unusual con-
gestion levels, maybe even taking into account the time
of day.

2.2 Identifying Responsible Aggregates

When serious congestion is detected, the router attempts
to identify the aggregate(s) responsible for the conges-
tion. Identifying the offending aggregate(s) is a tricky
problem to solve in a general fashion for three reasons.
First, the overload may be chronic due to an under-
engineered network, or unavoidable, e.g. as a shift in
load caused by routing around a fiber cut. These lead to
undifferentiated congestion not dominated by any partic-
ular aggregate. Second, there are many possible dimen-
sions in which traffic might cluster to form aggregates:
by source or destination address (e.g., a flash crowd of
requests to access a particular server, or the replies), ad-
dress prefix (a flooding attack targeting a site or a partic-
ular network link), or a specific application type (a viru-
lent worm that propagates by email, inadvertently over-
whelming other traffic). Third, if the congestion is due
to a DDoS attack, the attacker may vary her traffic to
escape detection.

We note that there are links in the network that are dom-
inated by a particular aggregate(s) even in the normal
case, and that might remain dominated by that aggre-
gate even in the presence of diffuse congestion. The
ISP can use policy if it wants to protect such aggregates,
with the ACC mechanisms looking for other aggregates
or rate-limiting these high-bandwidth aggregates only
when they exceed their policy-defined limits.

Analogous to the term attack signature for describing
various forms of malicious activities, we use the term
congestion signature to denote the aggregate(s) identi-
fied as causing congestion. When constructing conges-
tion signatures, the router does not need to make any
assumptions about the malicious or benign nature of the
underlying aggregate (and this may not be possible in
the face of a determined attacker). If the congestion sig-
nature is too broad, such that it encompasses additional
traffic beyond that in the true high-bandwidth aggregate,
then we refer to the signature as incurring collateral
damage. Narrowing the congestion signature helps to
reduce collateral damage.

2.3 Determining the Rate Limit for Aggregates

We now turn to the question of to what degree the router
should limit an aggregate. We argue that there is no use-
ful, policy-free equivalent of max-min fairness when ap-
plied to aggregates; no one would recommend for best-
effort traffic that we give each destination prefix or ap-
plication type an equal share of the bandwidth in a time
of high congestion. Instead, the goal is to rate-limit the
identified aggregate sufficiently to protect the other traf-
fic on the link.

We make protecting the other traffic on the link be the
basis for deciding the rate-limit. The rate-limit for the
identified aggregate(s) is chosen so that a minimum level
of service can be guaranteed for the remaining traffic, for
example, by bounding the loss rate.

A more Draconian measure, like completely shutting off
or imposing a very low bandwidth limit for identified ag-
gregates, is not taken because of two reasons. First, the
aggregate can be a flash crowd. Second, even if the ag-
gregate is from a DDoS attack, the congestion signature
of the attack traffic will usually contain some innocent
traffic too.

2.4 Pushback

Pushback is a cooperative mechanism that can be used
to control an aggregate upstream. In pushback, the con-
gested router asks its adjacent upstream routers to rate-
limit the aggregate. Since the neighbors sending more
traffic within the aggregate are more likely to be carrying
attack traffic, this request is sent only to the contributing
neighbors, i.e., those that send a significant fraction of
the aggregate traffic. The receiving routers can recur-
sively propagate pushback further upstream.

Apart from saving upstream bandwidth through early
dropping of packets that would have been dropped
downstream at the congested router, pushback helps to
focus rate-limiting on the attack traffic within the aggre-
gate. Figure 1 illustrates this. Assume that L0 is highly
congested due to a high-bandwidth aggregate, and R0
identifies the responsible aggregate. Local ACC can pro-
tect the traffic not belonging to the aggregate, but not
the (likely) legitimate traffic within the aggregate com-
ing from L1. In this case pushback will propagate from

3

R1

R2

R3

R7

R6

R4 R5

R0

L0

L1
L2

L5

L3

L7

L4

L6

heavy traffic flow
pushback messages

Figure 1: Pushback takes rate-limiting closer to the
source(s).

R0 to R2 and R3, and subsequently to R4 and R7,2 thus
protecting traffic from L1, L5 and L6.

Pushback is an optional mechanism, whose invocation
is especially useful when the sending rate of the aggre-
gate remains much higher than the imposed limit. This
implies that the router has not been able to control the
aggregate locally by increasing its loss rate in an effort
to encourage end-to-end congestion control.

Pushback is also useful when there is an indication that
a DDoS attack is in progress. For instance, if most
packets within the aggregate are destined for a noto-
rious UDP port, the router can be fairly certain that
it is not witnessing a flash crowd but a DDoS attack.
Pushback can also be invoked by a router on the behest
of a directly connected server, which can use applica-
tion level information to distinguish between attacks and
flash crowds [16]. The decision as to when to use push-
back is likely to have a large policy component, which
we do not address in this work.

Before invoking pushback, the ACC mechanism divides
the rate-limit for the aggregate among the contribut-
ing neighbors. In the general case, all the contributing
neighbors do not contribute the same amount; a link car-
rying more traffic belonging to the aggregate is more
likely to be sending attack traffic; hence more traffic
should be dropped from it. After determining the limit
for each contributing neighbor, a pushback request mes-
sage is sent to them. The recipients begin rate-limiting
the aggregate with the specified limit. Pushback is prop-
agated further upstream in a similar manner.

An unmodified congestion signature sent to an upstream

2The path taken by pushback is the reverse of that taken by the
aggregate, incidentally providing a form of traceback.

router could cover some traffic that doesn’t traverse the
downstream congested router. For example, assume that
the congestion signature determined by the congested
router is traffic destined for 12.0.0.0/8; it is possible
that an upstream router does not send all traffic in the
/8 towards the congested router but only a subset of it.
Hence, when propagating pushback, the congestion sig-
nature should be restricted (using the routing table) only
to the traffic that traverses the congested router [19].

2.5 Reviewing Rate-limiting

Rate-limiting decisions are revisited periodically, to re-
vise the limit on the rate-limited aggregates based on the
current conditions, and to release some aggregates alto-
gether if they have started to behave. These decisions are
easy when rate-limiting is purely local (no pushback),
as the router can continuously monitor its congestion as
well the aggregates’ arrival rate. However, we do need to
worry about an attacker predicting this decision in order
to evade ACC.

For pushback, however, the decision is more difficult;
the router must distinguish between not seeing much
traffic from the aggregate due to upstream rate-limiting,
and the aggregate ceasing to be high-bandwidth. Dis-
ambiguating these two cases requires feedback from up-
stream routers, so that the congested router can estimate
the real sending rate of the aggregate. To prevent at-
tacks that send traffic intermittently to evade ACC mech-
anisms, the aggregate release time should be much larger
than the detection time.

3 Local ACC
In this section, we present the ACC mechanisms in more
detail. This section focuses on Local ACC, and the next
on pushback.

Figure 2 shows the architecture of an ACC-enabled
router. A filter at the entry to the regular FIFO output
queue classifies a packet, and sends it to the rate-limiter
if it belongs to an identified aggregate. Other packets
proceed directly to the output queue. Relevant infor-
mation (headers) about packets dropped3 at the output
queue is fed into the ACC Agent which uses it to iden-
tify high-bandwidth aggregates. The ACC Agent is not

3With an active queue management scheme (like RED) that dis-
tributes drops fairly, drops can be considered random sample of in-
coming traffic [10]. Alternatively, random samples can also be used.

4

In

RED

Yes

No
No

Yes

FIFODropping?

High−BW

Agent
ACC

Out

Packets surviving
the rate−limiter

Agg?

Information on
identified aggregates

Rate−Limiter
[independent drop decision

Output Queue

for each aggregates]

Figure 2: Architecture of an ACC-enabled router.
Packets of high-bandwidth aggregates pass through the
rate-limiter. All packets dropped by RED are passed to
the ACC Agent for identifying aggregates.

in the fast path used for packet forwarding, and might
not even be on the same machine.

The identification process in the ACC Agent is triggered
when the output queue experiences sustained high con-
gestion. We define sustained congestion as a drop rate
of more than ��������� over a period of � seconds. To get
a rolling window effect, the drop history of the last �
seconds can be kept as multiple lists of smaller periods,
with the new list overwriting the oldest one [20]. Us-
ing the packet drop history of the last � seconds, the
ACC Agent tries to identify a small number of aggre-
gates responsible for the high congestion. If some ag-
gregates are found, the ACC Agent computes the limit
to which these aggregates should be restricted. The limit
is computed such that the ambient drop rate, that is the
drop rate at the output queue (not taking into account
the drops in the Rate-Limiter), is brought down to below�
	���
 ��� 	 . At the same time the limit on the rate-limited ag-
gregate is not allowed to be less than the highest arrival
rate among aggregates which are not being rate-limited.
The ACC Agent is also responsible for modifying the
limit imposed on various rate-limited aggregates based
on changes in demand from background traffic.

The following subsections describe identification and
rate-limiting in detail.

3.1 Identification of High Bandwidth Aggre-
gates

In principle, an aggregate could be defined only in terms
of the protocol field or port number; all DNS packets,
for instance. However, almost all DDoS attacks and flash
crowds have either a common source or a common desti-
nation prefix. As a result, we expect that most aggregate

definitions will be based on either a source or destina-
tion address prefix. As is discussed later in the paper,
pushback is invoked only for aggregates whose defini-
tion includes a destination address prefix.

We present a technique to identify high-bandwidth ag-
gregates based on the destination address. The same
technique could be used to identify aggregates based on
the source address (though we acknowledge that source
addresses cannot necessarily be trusted). This is only
one of many possible algorithms for identifying high-
bandwidth aggregates; more accurate and flexible algo-
rithms are a subject of further research. More complex
definitions of aggregates would require an appropriate
language for expressing the aggregate definition and for
passing the aggregate definition to upstream routers dur-
ing pushback.

The identification technique presented below was de-
signed with the observation that most Web sites operate
in a small range of IP addresses4 . Multiple aggregates
may be identified for sites with a spread-out IP address
range.

From the drop history, extract a list of high-bandwidth
addresses (32-bit); for example, addresses with more
than twice the mean number of drops. Now cluster these
addresses into 24-bit prefixes. To minimize collateral
damage, for each of these clusters try obtaining a longer
prefix that still contains most of the drops. This can be
easily done by walking down the prefix subtree with this
24-bit prefix at the root. At each step a heavily biased
branch leads to a longer prefix with most of the weight.
Next, try to merge prefixes that are closely related to
each other. For example, two adjacent 24-bit prefixes
can be described by a single 23-bit prefix. We now have
a list of prefixes of different lengths, each describing a
high-bandwidth aggregate. The next section addresses
the question of which aggregates should be rate-limited.

Since access links have much less capacity than back-
bone links, they are more likely to be congested during
DDoS attacks and flash crowds. The identification of
high-bandwidth aggregates is easier in such cases. For
instance, the aggregates used by the congested router
could correspond to prefixes present in its routing table.

4The use of CDNs can result in flash crowds near many sepa-
rate caches; all routers that get congested will invoke Local ACC
independently. Unlike flash crowds, attacks are likely to use the IP
addresses of the primary installation.

5

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

F
ra

ct
io

n
of

 L
in

k
B

an
dw

id
th

Time

"Agg 1"
"Agg 2"
"Agg 3"
"Agg 4"
"Agg 5"

"all"

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

F
ra

ct
io

n
of

 L
in

k
B

an
dw

id
th

Time

"Agg 1"
"Agg 2"
"Agg 3"
"Agg 4"
"Agg 5"

"all"

0
0.2
0.4
0.6
0.8

1

0 5 10 15 20 25 30 35 40 45 50

D
ro

p
R

at
e

Time

0
0.2
0.4
0.6
0.8

1

0 5 10 15 20 25 30 35 40 45 50

D
ro

p
R

at
e

Time

Figure 3: A simulation without ACC.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

F
ra

ct
io

n
of

 L
in

k
B

an
dw

id
th

Time

"Agg 1"
"Agg 2"
"Agg 3"
"Agg 4"
"Agg 5"

"all"

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

F
ra

ct
io

n
of

 L
in

k
B

an
dw

id
th

Time

"Agg 1"
"Agg 2"
"Agg 3"
"Agg 4"
"Agg 5"

"all"

0
0.2
0.4
0.6
0.8

1

0 5 10 15 20 25 30 35 40 45 50

D
ro

p
R

at
e

Time

0
0.2
0.4
0.6
0.8

1

0 5 10 15 20 25 30 35 40 45 50

D
ro

p
R

at
e

Time

Figure 4: The same simulation with Local ACC.

3.2 Determining the Rate Limit for Aggregates

Using the list of high-bandwidth aggregates obtained
above, the ACC Agent determines if some aggregate(s)
should be rate-limited, and if so, what the limit should
be. We describe this algorithm at a high level; pseu-
docode can be found in [19].

The ACC Agent sorts the list of aggregates, starting with
the aggregate with the most drops. Next, it uses the total
arrival rate at the output queue and the drop history to es-
timate the arrival rate of each aggregate over the last �
seconds. This estimation assumes that drops are fairly
distributed across aggregates. If this assumption was not
true we would get aggregates that were false negatives
or positives in identification. False negatives would be
caught soon in a future round (aggregates cannot con-
tinue to be lucky given that RED is reasonably fair in
distributing drops). Aggregates falsely identified are not
harmed since their arrival rate is measured more care-
fully when they are rate-limited. Too many false posi-
tives are also avoided because, as discussed below, there
is a limit on the number of identified aggregates.

Next, the ACC Agent calculates
� ����� ����� , the excess ar-

rival rate at the output queue. This is the amount of
traffic that would have to be dropped before the output
queue (at the rate-limiter) to bring the ambient drop rate
down to �
	���
 ��� 	 . We now determine the minimum num-
ber of aggregates that need to be rate-limited to suffi-
ciently reduce the total arrival rate. This is done using
the constraint that the limit for rate-limited aggregates
must be greater than the arrival rate of the largest non-
rate-limited aggregate. The maximum number of rate-
limited aggregates is at most MaxSessions.

Assume that the ACC Agent decides to rate-limit � ag-

gregates. Now it computes the rate-limit � to be applied
to each aggregate such that:

	 �
 �
�������������������������� "!#�����%$ �'&)(� ����� �*�*�,+
where �-�����.�/���0�1�0���� "!#����� is the arrival rate estimate of
the �2$ th aggregate.

The above procedure requires that � is less than the ar-
rival rate estimate of the �4365 -th aggregate, and that �
is at most MaxSessions. Ideally, the Local ACC mecha-
nisms should not rate-limit any aggregate during times
of undifferentiated congestion caused by underprovi-
sioned links or hardware failures. In the absence of ef-
fective methods for distinguishing between aggregate-
based and undifferentiated congestion, we use the upper
bound MaxSessions on the number of aggregates that are
rate-limited simultaneously. With a better understand-
ing of the traffic composition and behavior during DDoS
attacks and flash crowds, we can tune the Local ACC
mechanism such that it does not identify any aggregate
in times of undifferentiated congestion.

The ACC Agent revisits its rate-limiting decisions peri-
odically (every five seconds in our simulations), revising
the rate limit � , and determining if some aggregate no
longer needs to be rate-limited. The rate-limiter mea-
sures the arrival rate of rate-limited aggregates, so for
the refresh phase, the ACC Agent has more precise in-
formation about the arrival rates. Aggregates that have
had an arrival rate less than the limit for some number
of refresh intervals are no longer rate-limited. Similarly,
if congestion persists, more aggregates may be added to
the list of rate-limited aggregates. No harm is done if
rate-limiting continues for some time after the DDoS at-
tack or flash crowd has subsided, because the rate-limiter

6

only drops packets if the arrival rate is more than the
specified limit. To avoid sudden changes in a flow’s drop
rate, the limit on an aggregate is not changed abruptly
when another aggregate is added or removed from the
list of rate-limited aggregates.

For an aggregate composed of congestion-controlled
flows, the sending rate of the aggregate will be re-
duced in response to packet drops from rate-limiting at
the router. However, the sending rate of the aggregate
should remain above the imposed rate-limit in the long
run.

3.3 Rate-limiter

The rate-limiter controls the throughput of the identified
aggregates, and estimates their arrival rate using expo-
nential averaging [27]. The rate-limiter is a pre-filter
before the output queue that decides whether or not to
drop each arriving packet of the aggregate based on the
aggregate’s arrival rate and the rate-limit.

Since the rate-limiter is in the forwarding fast path,
it must be light-weight. Unlike strict lower priority
queues, it does not starve the identified aggregates. Once
past the rate-limiter, packets lose any identity as a mem-
ber of the aggregate, and as a result are treated as regular
arrivals to the output queue. Thus, rate-limiting cannot
result in preferential treatment for the packets in the ag-
gregate. In contrast, the rate-limited aggregates would
get preferential treatment if they were allocated a fixed
bandwidth share irrespective of the general congestion
levels at the output queue. Rate-limited aggregates are
protected from each other because the drop decision for
each aggregate is taken independently.

We implement the rate-limiter as a virtual queue [13],
which can be thought of as simulating a queue without
actually queuing any packets. The service rate of the
simulated queue is set to the specified bandwidth limit
for the aggregate, and the queue size is set to the toler-
ated burst size. When a packet arrives at the rate-limiter,
the rate-limiting mechanism simulates a packet arrival at
the virtual queue. Packets that would have been dropped
at the virtual queue are dropped by the rate-limiter, and
packets that would have been queued at the virtual queue
are forwarded to the real output queue.

3.3.1 Narrowing the Congestion Signature

In the discussion above, the aggregates identified by
the ACC Agent are based only on source or destina-

tion addresses. The rate-limiter can do more sophis-
ticated narrowing of the congestion signature that, in
times of specialized attacks, can result in dropping more
of the attack traffic within the aggregate. It can detect
the more dominant signature within the aggregate, based
on packet characteristics (such as port number or ICMP
type code), and drop more heavily from this subset. Nar-
rower rate-limiting can be achieved by placing another
virtual queue, with a smaller service rate, in front of the
aggregate’s virtual queue.

Hierarchical rate-limiting described above is safe in sce-
narios where the attacker frequently changes her attack
signature (but not the destination), as the total bandwidth
available to the aggregate is still bound. Such special-
ized rate-limiting can be very useful for attacks such as
the SYN attack [3] and the smurf attack [4].

One might perhaps argue that during flash crowds the
routers should do some form of flow-aware rate-limiting,
for example, dropping more heavily from SYN pack-
ets to provide better service to connections that manage
to get established. However, such rate-limiting can be
dangerous if used for a DDoS attack rather than a flash
crowd. The attacker could simply send packets in the
category being favored by the flow-aware rate-limiting
(TCP data packets in the above example). Flow-aware
rate-limiting is different from narrow rate-limiting men-
tioned above. While the latter punishes the dominant
(relative to usual levels) packet type in the aggregate, the
former favors a particular packet type, a strategy that can
be gamed.

3.4 Simulations

We use a simple simulation with five aggregates to illus-
trate the effect of Local ACC. Figure 3 shows the simple
simulation without ACC.5 Aggregates 1-4 are composed
of multiple CBR flows. The fifth aggregate is a variable
rate source whose sending rate starts increasing at t=13,
and then starts decreasing at t=25.

Figure 3 shows that, without ACC, the high-bandwidth
aggregate is able to capture most of the link bandwidth.
The bottom graph shows the packet drop rate in the out-
put queue. Thus, when the sending rate of the fifth ag-
gregate increases, the ambient drop rate increases and

5These simulations can be run with the commands “./test-all-
pushback slowgrow” and “./test-all-pushback slowgrow-acc” in the
tcl/test directory in the NS simulator. Similar simulations using TCP
traffic can be run with the command “./test-all-pushback”.

7

the bandwidth received by the other four aggregates de-
creases.

Figure 4 shows the same simulation with Local ACC.
When the ambient drop rate exceeds the configured
value of 10%, the ACC Agent identifies the fifth aggre-
gate, and rate-limits that aggregate sufficiently to control
the drop rate in the output queue. The bottom graph
shows the ambient drop rate in the output queue, but
does not show the drop rate in the rate-limiter for the
fifth aggregate.

Similar results were obtained with TCP traffic in the
background (Aggregates 1-4), and with TCP traffic as
both background and high-bandwidth (the sending rate
was increased by increasing the number of TCP flows).

4 The Pushback Mechanism
After detecting aggregate-based congestion, the ACC
Agent must decide whether to invoke pushback, and if
so, what limit should be specified to upstream routers.
In this section, we address these and other pushback re-
lated issues.

4.1 Deciding when to Invoke Pushback

Pushback is invoked if the drop rate for an aggregate
in the rate-limiter remains high for several seconds (be-
cause the arrival rate for the aggregate remains much
higher than the limit imposed on it).6 Pushback can also
be invoked if there is other information that a DDoS at-
tack is in progress. In some cases the packet drop history
can help the router differentiate between DDoS attacks
and flash crowds. For instance, if most of the packets
within the aggregate are destined for a notorious UDP
port, the router can be fairly certain that it is witnessing
a DDoS attack and not a flash crowd. Another source of
information can be the downstream server itself.7 Push-
back can be invoked by a router at the behest of a server
directly connected to it.

4.2 Sending the Pushback Requests Upstream

Before invoking pushback, the ACC agents needs to di-
vide the rate-limit for the aggregate among the upstream
links. The division requires an estimate of the amount of

6The high drop rate implies that the router has not been able to
control the aggregate locally by preferential dropping, in an attempt
to encourage increased end-to-end congestion control.

7The server can have some higher level or application-specific
attack detection mechanism.

aggregate traffic coming from each upstream link. Es-
timating each upstream link’s contribution is easy with
point-to-point links if the packets are marked in the
router with the incoming interface. Section 6.2.2 ex-
plains how the upstream link’s contribution can be es-
timated if routers connect using multi-access links, or
no interface-specific marking is done in the router.

Based on its contribution, each upstream link is classi-
fied as either non-contributing (those that send a small
fraction of the aggregate traffic) or contributing.8 Be-
cause one of the motivations of pushback is to concen-
trate rate-limiting on the links sending the bulk of the
traffic within the aggregate, the ACC Agent does not
send a pushback request to non-contributing links. The
assumption is that if a DDoS attack is in progress, the
traffic on the non-contributing links is less likely to in-
clude attack traffic.

In the general case, contributing links do not all con-
tribute the same amount of traffic. A link carrying more
traffic belonging to the aggregate is more likely to be
pumping in attack traffic. One of many possible algo-
rithms, and the one used in our simulations, is to divide
the total rate-limit among contributing links in a max-
min fashion. For example, assume that we have three
contributing links with arrival rates of 2, 5, and 12 Mbps,
and that the desired arrival rate from the contributing
links is 10 Mbps. The limits sent to each of the three
contributing links would then be 2, 4, and 4 Mbps re-
spectively.

After determining the limit for each upstream router, the
ACC Agent sends a pushback request message9 to them.
The rate-limit specified in the request is only an upper
bound on the bandwidth obtained upstream by that ag-
gregate. If the upstream router itself becomes heavily
congested, then it may give less bandwidth to the aggre-
gate than the specified limit (Section 3.3).

We also note that the congested router could receive
more than the desired amount of traffic in the aggregate
if the non-contributing upstream neighbors (which were
not sent pushback requests) start sending more traffic in
the aggregate. However, since rate-limiting is also being
done at the congested router, the congested link never
carries more than the desired amount of aggregate traf-

8The time constants for rate estimation are conservative to ac-
count for bursts.

9The pushback protocol, including timing and format of mes-
sages, is described in [8].

8

fic.

4.3 Propagating Pushback

On receiving a pushback request, the upstream router
starts to rate-limit the specified aggregate just as it does
for Local ACC, using the rate limit in the request mes-
sage. The router’s decision whether to further propagate
the pushback request upstream uses similar algorithms
to those described above. When propagating pushback
upstream, the destination prefixes in the congestion sig-
nature have to be narrowed, to restrict the rate-limiting
to traffic headed for the congested router only [19].

4.4 Feedback to Downstream Routers

The upstream routers that rate-limit an aggregate send
pushback status messages to the downstream router, re-
porting the total arrival rate for that aggregate. Pushback
status messages enable the congested router to decide
whether to continue rate-limiting (and pushback).

The total arrival rate estimate of the aggregate is a lower
bound on the rate the downstream router would receive
if upstream rate-limiting were terminated. Because the
rate-limiting (dropping) may have been contributing to
end-to-end congestion control, terminating rate-limiting
may result in a larger arrival rate for that aggregate.

7

R0

R1

R2

R3

R4

R5

R6

R71
5

10

7

0.5

16

Figure 5: Pushback status messages reporting the ag-
gregate’s arrival rate from upstream.

The arrival rate reported in the pushback status message
is the sum of the arrival rates reported in the status mes-
sages received from upstream, plus the arrival rates from
the upstream non-contributing links. For example, in
Figure 5, the labels for each solid line show the arrival
rate estimate contained in the pushback status message.
The dashed lines connect the non-contributing nodes that
did not receive pushback request messages, and the la-
bels on them show the arrival rate as estimated by the

downstream router. Using the pushback status messages
and its own estimate of the contribution from

� �
,
���

can estimate the total arrival rate for the aggregate as
23.5 Mbps. If

���
were to terminate the rate-limiting

upstream, and invoke an equivalent rate-limiting locally,
this would be roughly the arrival rate that

���
could ex-

pect from that aggregate.

4.5 Pushback Refresh Messages

The ACC Agent at the router uses soft state, so that rate
limiting will be stopped at upstream routers unless re-
fresh messages are received from downstream. For de-
termining the updated rate limit in the refresh messages,
the downstream router uses the status messages to esti-
mate the arrival rate from the aggregate, and then uses
the algorithms in Section 3 to determine the bandwidth
limit. The arrival rates reported in the pushback status
messages are also used by the downstream router in de-
termining how to divide the new bandwidth limit among
the upstream routers.

5 Simulations
This section shows a number of simulation results, ob-
tained using the ns [22] simulator, that test the effect of
Local ACC and pushback in a variety of aggregate-based
congestion scenarios. These simulations do not pretend
to use realistic topologies or traffic mixes, or to stress
Local ACC and pushback in difficult or highly dynamic
environments; the simple simulations in this scenario are
instead intended to illustrate some of the basic underly-
ing functionality of the ACC mechanisms as a first step
towards a more rigorous evaluation.

We first introduce an informal terminology that would
help us in describing the simulations. The bad sources
send attack traffic to the victim destination � , and the
poor sources are innocent sources that happen to send
traffic to the destination � when it is under attack. In
other words, packets from the poor sources represent
the unmalicious traffic in the congestion signature. The
good sources send traffic to destinations other than � .

5.1 ACC Mechanisms

Figure 6 shows the topology for simulations showing
the difference in the dynamics of the ACC mechanisms.
The good and the poor aggregates are each composed
of seven infinite demand TCP connections. The bad
sources each use a UDP flow with an on-off sending pat-

9

Good

R0

R1

Good Poor

R3R2
100 Mbps

Bad

100 Mbps

10 Mbps

Figure 6: Simple topology. Link
� 5 - ��� is congested.

10 20 30 40
Number of bad flows

0

20

40

60

80

100

%
 o

f
bw

default

bad
good
poor

10 20 30 40
Number of bad flows

0

20

40

60

80

100

%
 o

f
bw

local ACC
bad
good
poor

10 20 30 40
Number of bad flows

0

20

40

60

80

100

%
 o

f
bw

pushback
bad
good
poor

Figure 7: The throughput of different aggregates, in de-
fault (top), local ACC (middle), and pushback (bottom)
scenarios.

tern with equal on and off times, chosen randomly be-
tween 0 and 40 seconds. Each bad flow sends at 1 Mbps
during the on periods. A collection of these flows gives
variable-rate non-congestion-controlled traffic, harder to
tackle because of its unpredictable sending rate. The
number of bad flows is varied to model different levels
of aggressiveness of the bad aggregate.

Figure 7 shows the results of simulations without ACC
(default), with only local ACC, and with pushback. In
the default case, the bad aggregate consumes most of the
bandwidth, and the good and the poor traffic suffer as
a result. Local ACC controls the throughput of the bad
aggregate to protect the good traffic, but fails to protect
the poor traffic. Because local ACC cannot differenti-
ate between the two, it penalizes the poor traffic along

2 Mpbs

R0.0

. .

R1.0

R2.0 R2.2 R2.3

R3.0 R3.3 R3.4 R3.7 R3.8 R3.11 R3.12 R3.15

R2.1

.....

S0 S63S32S31

.
various destinations

20 Mbps

2 Mbps

20 Mbps

Figure 8: The topology for sparse and diffuse attacks.
Link

� 5 ! � $ ��� ! � is congested.

default local pushback
0

20

40

60

80

100
%

 o
f

bw

sparse

default local pushback
0

20

40

60

80

100

%
 o

f
bw

diffuse

bad
poor
good

Figure 9: Bandwidth allocation at the congested link
during sparse (left) and diffuse (right) DDoS attacks.

with the bad traffic. In contrast, by pushing rate-limiting
upstream where the bad and the poor sources can be dif-
ferentiated, pushback protects the poor traffic as well as
the good traffic.

5.2 DDoS Attacks

The simulations in this section illustrate Local ACC and
pushback with both sparsely-spread and highly diffuse
DDoS attacks. These simulations use the topology in
Figure 8, with four levels of routers. Except for the
router at the lowest level, each router has a fan-in of four.
The top-most routers are each attached to four sources.
The link bandwidths have been allocated such that con-
gestion is limited to the access links from the source
hosts and to the destination router.

Ten good sources and four poor sources are picked at
random in the topology, each of which spawn Web-like
traffic (using the Web-traffic generator in ns). The num-
ber of bad sources depends on the simulation scenario.
The sparse-attack scenario contains four randomly cho-
sen bad sources, each sending on-off UDP traffic (as
above) but with an on-period sending rate of 2 Mbps.
The diffuse attack scenario contains 32 UDP sources

10

hbox
0 20 40 60

On-off period (seconds)

0

20

40

60

80

100

%
 o

f
ba

nd
w

id
th

local ACC

peak
on-off
avg

0 20 40 60
On-off period (seconds)

0

20

40

60

80

100

%
 o

f
ba

nd
w

id
th

pushback

peak
on-off
avg

Figure 10: Throughput of the attack traffic in an on-off attack scenario.

each with an on-period sending rate of 0.25 Mbps.

Figure 9 shows the results for both the simulation sce-
narios. The horizontal lines represent the throughput of
the good and the poor traffic in the absence of any bad
traffic. Without ACC, the bad aggregate gets most of the
bandwidth in both scenarios. Local ACC protects the
good traffic but not the poor traffic. Pushback protects
the poor traffic also, but that ability is reduced in the face
of diffuse attacks; the poor traffic manages about 50%
less throughput in the diffuse-attack scenario than in the
sparse one. This is mainly because when the attacks are
diffuse, even pushback cannot differentiate between the
poor and the bad sources. In fact, it is possible to launch
a highly diffuse attack in which each bad source gener-
ates less traffic than an average poor source, making it
hard to distinguish between the two.

5.2.1 On-Off Attacks

ACC mechanisms can handle on-off attacks, in which
the malicious sources don’t send continuously. Plausible
problems with on-off attacks are that they might gener-
ate additional control load (from the start and stop of
rate-limiting) and the attacker might get away with more
throughput if rate-limiting stops completely before the
next on cycle starts. The aggregate release time after the
aggregate stops being high-bandwidth is of the order of
a small number of refresh intervals (Section 3.2; about
20 seconds in our simulations), so starting and stopping
of rate-limiting cannot happen at a rate faster than this.
Since continuing rate-limiting does not do any damage
to an aggregate if it ceases being high-bandwidth, the re-
lease time could be increased to further reduce the con-
trol load in the face of such attacks. Moreover, the high-
bandwidth aggregate detection time is very low, of the
order of � seconds (� (5 in our simulations). Thus,
in an on-off attack there is a very small window of time

during which the aggregate gets any significant through-
put, after which the aggregate has to stop for a long time
(till released) to get another such opportunity.

We simulated multiple on-off attack scenarios with dif-
ferent on and off periods. These included both low
frequency cases, in which rate-limiting stopped and
restarted between on periods, and high-frequency cases,
in which rate-limiting never ceased. In these simula-
tions all the bad sources have the same frequency and
their on and off periods are synchronized. The results
of the simulation are shown in Figure 10 with and with-
out pushback. The two reference lines correspond to the
cases when the attack sources were sending consistently
at the peak rate and the average rate (half of peak rate).
We can see that in all the cases, the on-off aggregate got
much less throughput than when it was sending consis-
tently at the peak or the average rate. The throughput
for the on-off aggregate is less than the average rate sce-
nario mainly because the on-off aggregate is controlled
effectively during its on period, while it sends nothing
during its off period, thus getting lower throughput on
the whole.

5.3 Flash Crowds

This section shows simulations with flash crowds instead
of DDoS attacks, with the “flash” traffic from 32 sources
sending Web traffic to the same destination. The good
traffic comes from ten other sources sending Web traffic
to various other destinations, accounting for about 50%
link utilization in absence of any other traffic.

Figure 11 shows the distribution of the times to complete
the transfers for the good and the flash traffic respec-
tively in the Default and Pushback mode. The distribu-
tion for Local ACC mode (not shown) was similar to the
pushback. With Pushback, 80% of the good transfers

11

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

F
ra

ct
io

n
of

 r
eq

ue
st

s

Time to complete the request (in seconds)

Default-Flash
Default-Good

Pushback-Flash
Pushback-Good

Figure 11: Time to complete a request during a flash
crowd.

complete within a few seconds, compared to less than
40% completed in less than six seconds in the Default
case. While pushback gives a significant performance
gain for the good traffic, it also results in a fairly moder-
ate degradation for the flash traffic. The time to complete
a Web request can be directly correlated to the drop rate
experienced. With pushback, the drop rate for the good
traffic is reduced from 30% to just 6% (� 	��
 ��� 	 =5%),
while the drop rate for the flash traffic is increased only
by 3%, up to 33%. Because this simulation has much
more flash traffic than good traffic, even a slight increase
in the drop rate for the flash traffic frees up a lot of link
capacity.

The hump around the 6-second mark represents short
web transfers whose first SYN or SYN/ACK packet was
lost, resulting in the transfer completing slightly more
than six seconds later, after the retransmit timer expires.
The magnitude and the location of the hump along the
y-axis are good indications of the packet drop rates in
the network for that aggregate. Recall that Local ACC
and pushback are only invoked in scenarios of extreme
congestion where the packet drop rate exceeds the con-
figured threshold, set to 10% in our simulations, and at
these levels of congestion a large fraction of transfers
will have the first SYN or SYN/ACK packet dropped.

6 Discussion
6.1 Advantages and Limitations of Pushback

Pushback is not a panacea for flooding attacks. In fact, if
not used carefully, it can make matters worse. This sec-
tion discusses the advantages and limitations of adding
pushback to ACC.

One advantage of pushback is to prevent scarce upstream
bandwidth from being wasted on packets that will be
dropped downstream.

When attack traffic can be localized spatially, pushback
can effectively concentrate rate-limiting on the mali-
cious traffic within an aggregate. This is very useful
when source addresses cannot be trusted because then
the congested router cannot narrow the congestion signa-
ture by itself.10 In addition, if the offending traffic within
an aggregate is heavily represented on some upstream
link in the network, but the congested router cannot iden-
tify this subset of the aggregate based on the source IP
addresses alone (i.e. the attack can be localized spatially
but no concise description in terms of source prefixes
exists), then pushback is necessary to narrow the attack
signature even if source addresses are genuine.

For some DDoS attacks, pushback will not be effec-
tive in concentrating rate-limiting on the malicious traf-
fic within an aggregate. For example, this would be the
case for an attack uniformly distributed across the in-
bound links. Consider, for example, a reflector attack
[23] based on DNS [5]. If sufficiently many reflectors
are used from all portions of the network, the aggregate
bandwidth will swamp the victim’s link. During such an
attack pushback will not be able to differentiate between
the poor and the bad DNS traffic going to the destination,
and will drop from both equally.

Pushback may overcompensate, particularly when it is
invoked for non-malicious events such as flash crowds.
If the overall demand from other traffic is reduced be-
fore the pushback refresh period expires (Section 4.5),
then the upstream routers could unnecessarily drop pack-
ets from the high-bandwidth aggregate even when the
downstream link becomes underutilized. With Local
ACC, link underutilization is more easily avoided, as
rate-limiting does not drop packets when the output
queue is itself low. We reduce the possibility of over-
compensation (and lower link utilization) with pushback
by calculating the rate-limit of an aggregate so that the
total traffic coming to the congested router is still greater
than the capacity of the congested link (see the discus-
sion of � 	���
 ��� 	 in

�
3.2). Performing some of the rate-

limiting just at the congested router can also help to pre-
vent overcompensation.

In some cases, the use of pushback can increase the dam-
age done to legitimate traffic from a source close to the

10If source addresses could be trusted, then in some cases the con-
gested router could narrow the attack signature itself, by identifying
both the source and the destination address prefixes responsible for
the bulk of the traffic in the identified aggregate.

12

attacking host. As pushback propagates upstream to-
wards the attack sources, the drop rate for the aggregate
is increased. If pushback fails to reach a point where
it can differentiate between the attack sources and the
nearby legitimate traffic within the same aggregate, for
instance, when the two sources are in the same edge net-
work which is not pushback-enabled, the legitimate traf-
fic at that point will share the same high drop rate as
the attack traffic. This property of pushback could lead
to potential DDoS attacks in which the attacker’s aim
is to hinder a source from being able to send to a par-
ticular destination. To be successful, an attacker would
need to launch the attack from a host close to the victim
source. However, the ability to compromise a machine
that shares a downstream bottleneck link with the victim
enables many other forms of attack anyway.

6.2 Implementation and Operational Issues

6.2.1 Implementation Complexity

The identification of aggregates can be done as a back-
ground task, or in a separate machine entirely, so the pro-
cessing power required to identify aggregates should not
be an issue. However, the presence of a large number of
rate-limited aggregates could pose a design challenge.
When a packet arrives at the output queue, the router has
to determine if that packet belongs to one of the rate-
limited aggregates, and if so, place it in the correct vir-
tual queue. The time required for this lookup may in-
crease with an increasing number of aggregates. We do
not expect the limitation on the number of rate-limited
aggregates to be a problem, as we envision Local ACC
and pushback as mechanisms to be instantiated spar-
ingly, in times of high congestion, for a handful of aggre-
gates. But a deployed system needs to be robust against
new attacks that could generate many rate-limited ag-
gregates. One possible approach would be to use the
routing table of the router for detecting membership in
a rate-limited aggregate; however, this would restrict the
definition of aggregates to destination prefixes.

6.2.2 Estimating the Upstream Link’s Contribution

The distribution of the rate-limit among upstream links
depends on the downstream router’s ability to estimate
what fraction of the aggregate comes from each up-
stream router. This is simple for point-to-point links;
only one router is attached to each interface. However,
for routers joined by LANs, VLANs, or frame relay cir-
cuits, there are multiple routers attached to an interface.

The downstream router in this situation might not be able
to distinguish between multiple upstream routers.

One way of dealing with this problem is to send a dummy
pushback request to all upstream neighbors. The dummy
request is similar to the real request, but the recipient
does not actually rate-limit the aggregate. The only im-
pact of this request is that the recipient will estimate the
arrival rate of the specified aggregate and report it to the
downstream router in status messages. These messages
help the downstream router to send pushback requests
with the appropriate rate-limits to contributing routers.

6.2.3 Incremental Deployment

Pushback can be deployed incrementally by deploying
it only on the edges of an island of routers, where an
island is a set of connected routers. An autonomous sys-
tem (AS) is a natural island. Assume that the island has

�
edge routers. When one of these routers gets con-

gested and decides to invoke pushback, it could con-
sider the remaining

� $ 5 edge routers as its upstream
links. Using dummy pushback messages it could ascer-
tain the aggregate’s arrival rate at each of these routers,
and send authenticated pushback request messages ac-
cordingly. Thus, even without universal deployment the
island can selectively throttle traffic coming in from cer-
tain directions.

7 Related Work
Two common mechanisms to counter DDoS attacks are
ingress filtering [7] and traceback [1, 24, 26]. ACC is or-
thogonal to both of them; the focus of ACC is neither to
stop the attacks (ingress filtering tries to stop attacks that
use source address spoofing) nor to find the sources of
these attacks (traceback), but to minimize the immediate
damage done by high-bandwidth aggregates. In the pres-
ence of ACC mechanisms, we expect the damage control
(by preferential dropping of the high-bandwidth aggre-
gate) to trigger in much sooner than the time it takes to
identify and stop the malicious sources.11

The network can use traceback mechanisms along with
ACC mechanisms if identification of malicious sources

11The fact that ACC, in both its local and pushback incarnations,
gently restrains aggregates to the point where they are no longer
causing congestion allows ACC to respond rather quickly because
the downside of an inaccurate assessment of the offending aggregate
is slight. DDoS countermeasures that completely shut down the at-
tacking traffic must be much more confident in their identification
before they take action.

13

is desired. For instance, packets from the high-
bandwidth aggregate that are not dropped can be proba-
bilistically marked as in [24], or every incoming packet
can be included in the message digest before rate-
limiting as in [26].

Schnackenberg et al.[25] suggest active control of infras-
tructure elements. Thus, a firewall or Intrusion Detection
System (IDS) that detected a DDoS attack could request
that upstream network elements block the traffic. The
paper defines a protocol to express the interactions be-
tween routers. It does not deal with mechanisms to iden-
tify or rate-limit malicious traffic, a subject of our work.

Web-caching infrastructures, content distribution net-
works (CDNs), and multicast are powerful mechanisms
for preventing flash crowds from congesting the net-
work. However, even a combination of these techniques
may not be sufficient to completely prevent network con-
gestion from flash crowds. For example, flash crowds
could occur for traffic not carried by CDNs, or for traffic
marked as uncacheable by the origin server, or for traf-
fic that is not suitable for multicast distribution. Internet
slowdowns could still be caused by an event or site that
witnesses an unprecedented “success” for which neither
it nor the related infrastructure is prepared.

Flow-based congestion control is related to ACC but
operates at a different granularity. This includes per-
flow scheduling mechanisms like Fair Queuing [6], and
mechanisms that use preferential dropping to approx-
imate per-flow scheduling [27] or to protect confor-
mant flows from misbehaving flows [9, 18, 20]. How-
ever, flow-based congestion control is not a solution for
aggregate-based congestion, since an aggregate could be
composed of many flows that are low-bandwidth indi-
vidually.

CBQ [11] is a class-based scheduling mechanism in
which aggregates can be limited to a certain fraction of
the link bandwidth during congestion. However, CBQ
is discussed largely for fixed definitions of aggregates,
and does not include mechanisms for detecting particu-
lar high-bandwidth aggregates during congestion.

The flow-based congestion control scheme that comes
closest to pushback is credit-based flow control [17].
Both mechanisms send messages upstream specifying
how much traffic of a certain category it should send.
However, other aspects like which categories to limit and
how those limits are computed are completely different.

8 Conclusions

Congestion caused by aggregates differs in some fun-
damental aspects from that caused by individual flows,
and hence requires different control mechanisms in the
network. We have proposed both local and coopera-
tive mechanisms for aggregate-based congestion control.
Initial simulations have shown that these mechanisms
are promising directions to control both DDoS attacks
and flash crowds.

Much needs to be investigated about the ACC mecha-
nisms. Apart from evaluating the trade-offs involved in
various design choices to implement them, we need to
understand the pitfalls and limitations of ACC itself. For
example, pushback can potentially hurt innocent sources
close to an attack source if it is not propagated upstream
enough to differentiate between the two.

Other open issues include implementation complexity
and deployability of ACC. A complex mechanism with
high resource requirements can become a DDoS mech-
anism itself. A technique to incrementally deploy push-
back is presented in [19]; a prototype implementation
can be found in [15].

For effective evaluation we need measurement-based an-
swers to questions like “how frequently is sustained con-
gestion caused by aggregates, and not by failures”, and
“what do attack traffic and topologies look like”. For ex-
ample, pushback is most effective when the attack tree
(the union of links used by the attack traffic) has a low
branching factor, as this enables better localization of
malicious sources. A study of DDoS attack trees ob-
served in practice would be very useful in this context.

Finally, we expect the ACC mechanisms to be heavily
influenced by policy. We plan to investigate the kinds
of policies that these mechanisms need to support. Pos-
sible policies include protecting some aggregate even if
it is high bandwidth, punishing some aggregate as soon
as congestion sets in, providing relative fairness among
aggregates, and restricting the maximum throughput of
an aggregate. These policies could be based on known
traffic patterns at the router, on contractual relationships
of the ISP, or on local policies regarding the response
to DDoS attacks. For example, an ISP might have a
contractual relationship with a content provider not to
unduly restrict the bandwidth to or from that content
provider during a flash crowd or DDoS attack.

14

Acknowledgments
The original idea for pushback came from an informal
DDoS research group consisting of Steven M. Bellovin,
Matt Blaze, Bill Cheswick, Cory Cohen, Jon David, Jim
Duncan, Jim Ellis, Paul Ferguson, John Ioannidis, Mar-
cus Leech, Perry Metzger, Vern Paxson, Robert Stone,
Ed Vielmetti, and Wietse Venema. We also thank Randy
Bush, Eddie Kohler, Neil Spring, Ed Vielmetti, and
anonymous reviewers for feedback on an earlier draft of
this paper.

References

[1] S. M. Bellovin, M. Leech, and T. Taylor. ICMP Trace-
back Messages. Internet-draft: draft-ietf-itrace-01.txt,
work in progress, October 2001.

[2] J. Borland. Net Video Not Yet Ready for
Prime Time. CNET news, February 1999.
http://news.cnet.com/news/0-1004-200-338361.html.

[3] CERT Web Pages: CERT Advisory CA-1996-
21 TCP SYN Flooding and IP Spoofing Attacks.
http://www.cert.org/advisories/CA-1996-21.html,
September 1996.

[4] CERT Web Pages: CERT Advisory CA-
98.01 ”smurf” IP Denial-of-Service Attacks.
http://www.cert.org/advisories/CA-98.01.smurf.html,
January 1998.

[5] CERT. CERT Incident Note IN-2000-04, 2000.
http://www.cert.org/incident notes/IN-2000-04.html.

[6] A. Demers, S. Keshav, and S. Shenker. Analysis and
Simulation of a Fair Queueing Algorithm. In ACM SIG-
COMM, 1989.

[7] P. Ferguson and D. Senie. Network Ingress Filtering:
Defeating Denial of Service Attacks which employ IP
Source Address Spoofing. RFC 2827, May 2000.

[8] S. Floyd, S. Bellovin, J. Ioannidis, K. Kompella, R. Ma-
hajan, and V. Paxson. Pushback Messages for Con-
trolling Aggregates in the Network. Work in progress.
Internet-draft: draft-floyd-pushback-messages-00.txt,
July 2001.

[9] S. Floyd and K. Fall. Promoting the Use of End-to-End
Congestion Control in the Internet. IEEE/ACM Trans-
actions on Networking, August 1999.

[10] S. Floyd, K. Fall, and K. Tieu. Estimating Arrival
Rates from the RED Packet Drop History, April 1998.
http://www.icir.org/floyd/end2end-paper.html.

[11] S. Floyd and V. Jacobson. Link-sharing and Resource
Management Models for Packet Networks. IEEE/ACM
Transactions on Networking, Vol. 3(4):pp. 365–386,
August 1995.

[12] L. Garber. Denial-of-Service Attacks Rip the Internet.
IEEE Computer, vol. 33(4):pp. 12–17, April 2000.

[13] R. J. Gibbens and F. P. Kelly. Resource Pricing and the
Evolution of Congestion Control. Automatica, invited
paper for special issue on control in communication net-
works, 1999.

[14] A. S. Induruwa, P. F. Linington, and J. B. Slater. Qual-
ity of Service Measurements on SuperJANET - The UK
Academic Information Highway. In Proc INET’99, June
1999.

[15] J. Ioannidis and S. Bellovin. Implementing Pushback:
Router-Based Defense Against DDoS Attacks. In Pro-
ceedings of NDSS ’02, Feb. 2002.

[16] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash
Crowds and Denial of Service Attacks: Characterization
and Implications for CDNs and Web Sites. In WWW,
May 2002.

[17] H. T. Kung, T. Blackwell, and A. Chapman. Credit-
Based Flow Control for ATM Networks: Credit Up-
date Protocol, Adaptive Credit Allocation and Statisti-
cal Multiplexing. In ACM SIGCOMM, August 1994.

[18] D. Lin and R. Morris. Dynamics of Random Early De-
tection. In ACM SIGCOMM, 1997.

[19] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioanni-
dis, V. Paxson, and S. Shenker. Controlling High-
Bandwidth Aggregates in the Network (Extended Ver-
sion). http://www.icir.org/pushback/, July 2001.

[20] R. Mahajan, S. Floyd, and D. Wetherall. Controlling
High-Bandwidth Flows at the Congested Router. In
ICNP, November 2001.

[21] D. Moore, G. Voelker, and S. Savage. Inferring Internet
Denial of Service Activity. USENIX Security Sympo-
sium, August 2001.

[22] NS Web Page: http://www.isi.edu/nsnam.
[23] V. Paxson. An Analysis of Using Reflectors for Dis-

tributed Denial-of-Service Attacks. CCR, vol. 31(3),
July 2001.

[24] S. Savage, D. Wetherall, A. Karlin, and T. Anderson.
Practical Network Support for IP Traceback. In ACM
SIGCOMM, August 2000.

[25] D. Schnackenberg, K. Djahandari, and D. Sterne. In-
frastructure for Intrustion Detection and Response. In
Proceedings of the DARPA Information Survivability
Conference and Exposition 2000, March 2000.

[26] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones,
F. Tchakountio, S. T. Kent, and W. T. Strayer. Hash-
Based IP Traceback. In ACM SIGCOMM, August 2001.

[27] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless
Fair Queueing: Achieving Approximately Fair Band-
width Allocations in High Speed Networks. In ACM
SIGCOMM, 1998.

15

