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Abstract

Queue-based spin locks allow programs with busy-wait synchronization to scale to very
large multiprocessors, without fear of starvation or performance-destroyingcontention. Timeout-
capable spin locks allow a thread to abandon its attempt to acquire a lock; they are used widely
in real-time systems to avoid overshooting a deadline, and in database systems to recover from
transaction deadlock and to tolerate preemption of the thread that holds a lock.

In previous work we showed how to incorporate timeout in scalable queue-based locks.
Technological trends suggest that this combination will be of increasing commercial impor-
tance. Our previous solutions, however, require a thread that is timing out to handshake with
its neighbors in the queue, a requirement that may lead to indefinite delay in a preemptively
multiprogrammed system.

In the current paper we present new queue-based locks in which the timeout code is non-
blocking. These locks sacrifice the constant worst-case space per thread of our previous algo-
rithms, but allow us to bound the time that a thread may be delayed by preemption of its peers.
We present empirical results indicating that space needs are modest in practice, and that perfor-
mance scales well to large machines. We also argue that constant per-thread space cannot be
guaranteed together with non-blocking timeout in a queue-based lock.

1 Introduction

Spin locks are widely used for mutual exclusion on shared-memory multiprocessors. Traditional
test and set-based spin locks are vulnerable to memory and interconnect contention, and do not
scale well to large machines. Queue-based spin locks [2, 5, 7, 13, 15] avoid contention by arranging
for every waiting thread to spin on a separate, local flag in memory. Over the past ten years queue-
based locks have been incorporated into a variety of academic and commercial operating systems,
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including Compaq’s Tru64, IBM’s K42 and multiprocessor Linux systems, the Alewife [1] and
Hurricane [18] systems, and parallel real-time software from Mercury Computer Systems.

Outside the operating system, non-scalable test-and-set locks have come to be widely used in
commercially important applications, notably database systems such as Oracle’s Parallel Server and
IBM’s DB2. Many of these applications depend critically on the ability of a thread that waits “too
long” to time out and abandon its attempt to acquire a lock. Timeout-capable “try locks” allow a
real-time application to signal an error condition or pursue an alternative code path. In a database
system, they provide a simple means of recovering from transaction deadlock.

Unfortunately, until recently it was not clear how to combine scalability and timeout. The
problem is that while threads competing for a test-and-set lock are mutually anonymous, and can
abandon their spins without anyone being the wiser, threads in a queue-based lock are linked into
an explicit data structure. A timed-out thread must somehow introduce its neighbors in the queue to
one another, even in cases where the neighbors may also be timing out.

In a recent paper [17] we introduced timeout-capable queue-based try locks based on our MCS
lock [15] and on the related CLH lock, due to Craig [5] and to Landin and Hagersten [13]. These
locks perform well on large machines, and require only ��� � � � total space for � locks and �
threads. Unfortunately, they require that a departing thread “handshake” with its neighbors in the
queue in order to determine when all the references to a queue node have been updated, and the node
can be reclaimed. This handshaking is not a problem in a system with one thread per processor, but
it fails on multiprogrammed systems, in which a neighbor thread may be preempted, and thus unable
to cooperate.

The problem of preemption in critical sections has received considerable attention over the
years. Alternative strategies include avoidance [6, 10, 14], recovery [3, 4], and tolerance [9, 16]. The
latter approach is appealing for commercial applications because it does not require modification
of the kernel interface: if a thread waits “too long” for a lock, it assumes that the lock holder has
been preempted. It abandons its attempt, yields the processor to another thread (assuming there
are plenty) and tries again at a later time. In database systems timeout serves the dual purpose of
deadlock recovery and preemption tolerance.

In this paper we introduce a pair of queue-based spin locks—the CLH-NB try lock and the
MCS-NB try lock—in which timeout is non-blocking: a thread that decides to abandon its attempt
to acquire a lock can do so without waiting for activity by any other thread. In order to minimize
space overhead, we attempt to reclaim queue nodes as soon as possible, but—the price of preemption
safety—there are pathological schedules in which our algorithms may require unbounded space.

We introduce our algorithms in section 2. We also argue that it is impossible in any queue
based lock to combine non-blocking timeout with an ��� � � � space bound. In section 3 we
compare the performance of our new locks to existing test and set and queue-based locks
on large-scale and multiprogrammed multiprocessors. With threads on 64 processors attempting
to acquire a lock simultaneously, we identify cases in which a traditional test-and-set lock (with
backoff) is more than six times slower than our CLH-NB try lock, while failing (timing out) more
than 22 times as often. In experiments with more threads than processors, we also demonstrate
clearly the performance advantage of non-blocking timeout. We return in section 4 to a summary of
conclusions and directions for future work.
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2 Algorithms

In the subsections below we describe a pair of queue-based spin locks in which a waiting thread,
once it decides to leave the queue, can do so within a bounded number of its own time steps. Code
for both of these locks can be found in the appendix. The CLH-NB try lock is the simpler of the
two, but relies on cache coherence. The MCS-NB try lock can be expected to scale better on non-
cache-coherent machines. We have developed informal correctness arguments for each of the locks.
We are currently working on a model-checking tool that should help to formalize these arguments.

In the original CLH [13] and MCS [15] locks, and in the CLH try and MCS try locks [17], space
management for queue nodes is delegated to the callers of the acquire and release operations,
and the queue node passed to MCS release or returned from CLH release is guaranteed to
be available for immediate reuse once the release operation completes. For reasons discussed
in section 2.4, no such guarantee can be made for locks with non-blocking timeout. We therefore
choose in the CLH-NB try and MCS-NB try locks to perform dynamic space allocation within the
acquire and release operations. To allow the release operation to find the queue node
allocated by the acquire operation, we arrange for acquire to write a reference to that node
into an extra field (a head pointer) of the lock variable itself, once the lock is held. A serendipitous
side effect of this strategy is that the CLH-NB try and MCS-NB try locks can employ a standard
API, making them suitable for linking with binary-only commercial applications.

2.1 CLH-NB try lock

Our first new algorithm is based on the lock of Craig [5] and of Landin and Hagersten [13]. A lock
variable takes the form of a tail pointer for a singly linked list of queue nodes. A thread that wishes
to acquire the lock allocates a node, swaps it into the tail pointer, and then spins on a flag in the
node ahead of it in line, which was returned by the swap.

We have modified this lock to allow non-blocking timeout. In our version individual queue
nodes contain only a single pointer. When nil this pointer indicates that the thread spinning on
the node must wait. When set to AVAILABLE (a value we assume to be different from any valid
reference), the pointer indicates that the lock is available to the thread spinning on the node. When
neither nil nor AVAILABLE, the pointer contains a reference to the previous node in the list, and
(in a departure from the original version of the lock) indicates that the thread that allocated the
node containing the pointer has timed out. Up until its decision to time out, a thread maintains its
reference to the node on which it is spinning in a local variable, rather than its queue node (indicated
in the figure by starting the tail of an arrow in the empty space below a queue node).

In the event of timeout two principal cases arise, illustrated in figure 1. In the left-hand portion
of the figure, departing thread � is in the middle of the queue, spinning on the pointer in the node
allocated by thread �. When � times out it indicates its intent to leave by storing into its own queue
node a reference to �’s node. Thread � , which is spinning on �’s node, notices this change. It
updates its own local pointer to refer to �’s node instead of �’s, and then reclaims �’s node.

Unfortunately, � cannot be certain that � exists. The case where it does not is illustrated in the
right-hand side of figure 1. After writing the reference to �’s queue node into its own queue node,
� performs a compare and swap operation on the queue tail pointer, in an attempt to change it
from a reference to �’s node into a reference to �’s node. In the middle-of-the-queue case (left)
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Figure 1: Timeout in the CLH-NB try lock, with departing thread � in the middle (left) or at the
end (right) of the queue.

this operation will fail. In the end-of-the-queue case (right) it succeeds, and � knows that it can
reclaim its own queue node. In either case � can return as soon as it has attempted the compare
and swap; it does not have to wait for � . If the compare and swap failed, �’s queue node will
not be available for reuse until it is reclaimed by � , or by some other, later thread, if � has also
timed out.

In our realization of the CLH-NB try lock (see appendix) we have made one additional departure
from the original CLH lock. By analogy to the end-of-queue case for timeout, we can eliminate
the extra, “dummy” node in an uncontended lock by performing a compare and swap in the
release operation. This extra atomic operation increases the overhead of every critical section,
but reduces by one word the size of an unheld lock. Of course, we added a word to the lock in order
to hold the head pointer that allows us to use a standard API; in effect, we have chosen to expend a
bit of time in order to “buy back” this extra space.

2.1.1 Correctness sketch

We take as given that the plain CLH lock algorithm is correct: specifically, that its queueing disci-
pline ensures mutual exclusion and liveness, and grants requests in FIFO order; and that it manages
space correctly, never accessing a queue node after it has been returned from a release operation.
We must argue that the CLH-NB try lock also maintains the queue and manages space correctly.

Consider first the issue of space management. Because queue nodes are allocated dynamically,
we must show that all nodes are reclaimed, and that they are never again accessed once reclaimed.
We do this by identifying a unique responsible reference (an “rref”) to every queue node at every
point in time. When a node � is first allocated, its rref, �, resides in a local variable of the allocating
thread, �. � moves � into the lock tail pointer (relinquishing responsibility for the node) when it
performs the swap operation at the beginning of acquire. At the same time, if the swap does
not return nil, � acquires a different rref, 	 for its predecessor’s queue node, 
 . Under normal
(no timeout) circumstances, ownership of 	 obligates � to eventually reclaim 
 . If � times out,
however, it must delegate this responsibility. It does so by writing 	 into its own queue node, � ,
where it (	) will become the property of whatever thread holds the rref for � (�). The exception
occurs when � is the last node in the queue, in which case � resides in the lock’s tail pointer. In
this case � can reacquire � by performing a compare and swap that simultaneously writes 	
into the lock’s tail pointer.
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Because a queue node has a unique rref at any given point in time, and because a node is
reclaimed only by a thread that owns an rref (which it immediately discards), no node is reclaimed
twice. Moreover since every rref is always either in the possession of a thread currently executing
an acquire operation or else in memory in a node currently in the queue, every node is eventually
reclaimed.

Because reclaimed queue nodes may be reused, we have to be careful to avoid the so-called ABA
problem, in which a reference to a newly allocated node is mistaken for a reference to a previously
reclaimed node. Specifically, once thread � writes rref 	 into node � , �’s successor may reclaim
� . If � ’s space is recycled quickly and used for some new queue node 
 , which is used in an
attempt to acquire the same lock for which � was used, �’s compare and swap operation may
succeed when it should not. We can eliminate this possibility, in this particular case, by using a
memory allocator in which a given block of storage is always allocated by the same thread. Then
� ’s space, which was allocated by �, will be reused only by �, and only after � has attempted the
compare and swap operation in which the ABA problem arises. Code for our space management
routines appears in the appendix.

Mutual exclusion and liveness can be verified by envisioning access to the critical section as
a mutex token that passes from thread to thread. The token takes three states: (1) In an unheld,
uncontended lock, the token is embodied in the fact that the lock tail pointer is nil. (2) In a contended
but momentarily available lock, the token takes the form of an AVAILABLE value in the prev
pointer of a queue node. (3) When a lock is held, the token is embodied in the program counter of
the thread that holds the lock.

When the swap operation in acquire returns nil, the mutex token changes from state 1 to
state 3. When a thread writes AVAILABLE into its queue node, the token changes from state 3
to state 2. When a thread discovers AVAILABLE in a queue node and then reclaims that node,
the token changes from state 2 to state 3. When the compare and swap operation in release
succeeds, the token changes from state 3 to state 1. The use of atomic operations on the queue tail
pointer ensures that only one thread can move the token from state 1 to state 3. The only remaining
issues concern a token in state 2: we must verify that it can never be lost, and that it can be moved
to state 3 by only one thread. For the former, we note that (a) every release operation moves the
token to state 1 or 2, (b) a token in state 2 is never overwritten, because the only other code that
writes to the pointer field of a queue node appears in the already-completed acquire operation,
and (c) a node containing a token in state 2 is never reclaimed without recovering the token because,
as noted with respect to space management above, a node is reclaimed only by the thread that holds
the responsible reference, and only when that thread has either (i) just acquired the lock (token in
state 3), or (ii) noticed that the lock contains an rref, placed there by the thread that allocated the
node (and that has therefore timed out, and won’t be obtaining the token at all).

2.2 MCS-NB try lock

Our second new algorithm is based on the lock of Mellor-Crummey and Scott [15]. As in the
previous section, a lock variable takes the form of a tail pointer for a list of queue nodes, but where
the CLH queue was linked from tail to head, the bulk of the MCS queue is linked from head to tail.
After swapping a reference to its own queue node into the tail pointer, a thread writes an additional
reference to its node into the node of its predecessor. It then proceeds to spin on its own node, rather
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Figure 2: Timeout in the MCS-NB try lock, with departing thread � in the middle (left) or at the
end (right) of the queue. For clarity, references to predecessor nodes that are held in local variables,
rather than in qnodes, are not shown.

than the predecessor’s node. This “backward” linking allows a thread to spin on a location that is
guaranteed to be local even on a non-cache-coherent machine. Unfortunately, it also makes timeout
significantly more complex.

In our timeout-capable MCS-NB try lock, illustrated in figure 2, queue nodes contain a status
flag and a pair of pointers, used to link the queue in both directions. As in the plain MCS lock,
the backward (next) pointer in node � allows the thread � that allocated � to find the node on
which a successor thread is spinning. When nil, � ’s next pointer indicates that no successor node
is known. Three additional values, assumed not to be the same as any valid reference, correspond
to special states. When set to AVAILABLE, � ’s next pointer indicates that the lock is currently
available. When set to LEAVING, it indicates that � has timed out and, further, that no next
pointer anywhere refers to � . When set to TRANSIENT, � ’s next pointer also indicates that �
has timed out, but that in doing so � was unable to break the reference to � from its predecessor
node.

The status word of a queue node has five possible values. Before linking its node into the queue,
a thread initializes its status word to waiting. Once the link-in operation is complete, the thread
will spin waiting for the value to change. Three possible values—available, leaving, and
transient—mirror the special values of node next pointers described in the previous para-
graph. The final value—recycled—accommodates race conditions in which two threads have
references to a node that needs to be reclaimed. Whichever thread uses its pointer last will find the
recycled flag, and know that it is responsible for reclamation.

When a thread � performs an initial swap operation on the tail pointer of a lock that is not
currently available, it receives back a reference to the queue node � allocated by �’s predecessor,
�. � swaps a reference to � into � ’s next pointer. By using a swap, rather than an ordinary write
(as in the original MCS lock), � can recognize the timing window in which � decides to release the
lock or to leave the queue when � has already swapped itself into the tail of the queue, but before �
has updated � ’s next pointer. Note that in the plain MCS lock a thread may spin in the release
operation, waiting for its successor to update its next pointer. We must eliminate spins such as this
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in order to ensure non-blocking timeout.

If the swap on � ’s next pointer returns AVAILABLE,� knows that it has the lock. Moreover
�’s compare and swap on the lock tail pointer is guaranteed to fail, because �’s original swap
on the tail pointer removed the reference to � . � therefore knows that � will neither update �
nor reclaim � , so � reclaims � , writes a reference to � into the head pointer field of the lock, and
returns successfully.

If the swap on � ’s next pointer returns LEAVING, � knows that � has timed out. It also
knows, for reasons similar to those in the preceding paragraph, that � will neither update � nor
reclaim � . � updates its local pred pointer to contain the reference found in � ’s prev pointer,
instead of a reference to � . � then reclaims � and tries again to link itself into line, using the
updated pred.

Finally, if the swap on � ’s next pointer returns TRANSIENT,� knows that � has timed out,
but that �’s predecessor, �, has a reference to � , and is planning to use it. Whichever thread, � or
� , accesses � last will need to reclaim it. � swaps a recycled flag into � ’s status word. If the
return value of the swap is waiting, � knows that it has accessed � before �, and that � will
take responsiblity for reclaiming it. If the return value of the swap is available, leaving, or
transient, however, � knows that � has already accessed � . � therefore reclaims � . In either
case, � updates its local pred pointer and tries to link itself into line again, as in the preceding
paragraph. Seen from �’s perspective, any time we update the status word of a successor queue
node we use a swap operation to do so, and reclaim the node if the return value is recycled.

Once successfully linked into the queue, thread � spins on the status word in its own queue
node, � . If that word changes to available,� writes a reference to � into the head pointer field
of the lock, and returns successfully. If �’s status word changes to leaving or transient, �
resets it to waiting and then behaves as it would have in the preceding paragraphs, had it found
LEAVING or TRANSIENT in the next pointer of its predecessor’s queue node, � .

If � times out in the the algorithm’s inner loop, spinning on �’s status word, it first stores its
local pred pointer into �’s prev pointer. It then attempts to erase the reference to � found in
� ’s next pointer, using a compare and swap operation. If that attempt succeeds, � swaps
LEAVING into �’s next pointer and, if necessary, swaps leaving into the status word of �’s
successor node. As described above, � reclaims the successor node if the status word was already
set to recycled. Finally, if � appears to have no successor, � attempts to link it out of the end of
the queue with a compare and swap and, if that operation succeeds, reclaims � .

If � fails to erase the reference to � found in � ’s next pointer, then it knows its predecessor
� will try to update �’s status word. It therefore swaps TRANSIENT into �’s next pointer and,
if necessary, swaps transient into the status word of �’s successor node, reclaiming that node
if its status word was already recycled. If � appears to have no successor, then � must simply
abandon it, to be reclaimed by some thread that calls the acquire operation at some point in the
future.

If � times out in the algorithm’s outer loop, while attempting to update a predecessor’s next
pointer, it mimics the case of timeout in the inner loop: it restores its predecessor’s next pointer,
sets �’s status to leaving or transient, as appropriate, and then takes the actions described
in one of the preceding two paragraphs.
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2.2.1 Correctness sketch

Again we take as given that the initial MCS lock algorithm is correct. As with the CLH-NB try
lock, we must argue that the MCS-NB try lock maintains its queue and manages space correctly.

We again associate a unique responsible reference with every queue node at every point in time.
This rref may reside in (a) the tail pointer of the queue, (b) the local pred pointer of some waiting
thread, or (c) the prev pointer of some queue node. By tracing through the code we can identify
points at which the rref for a given node moves from one of these places to another. The principal
complication, in comparison to the CLH-NB try lock, is that an additional reference often exists in
the next pointer of a predecessor node. Before reclaiming a node a thread must ensure that no
such additional reference exists.

In the usual (no timeout) case, a node � is reclaimed when thread � , spinning on successor
node � , realizes that the lock is available. At this point the predecessor of � , if any, has already
been reclaimed, and thus cannot hold a reference to � . If thread �, which allocated � , times
out, it attempts, using a compare and swap, to destroy the reference to � that resides in the
next pointer of � ’s predecessor, 
 , as outlined in the description of the algorithm above. If the
compare and swap succeeds, � knows that only the responsible reference remains, and that �
can safely be reclaimed by � , if it exists, or by � itself if � is at the tail of the queue. (As with the
CLH-NB try lock, the use of pre-thread space management protects us from the ABA problem.)

If �’s compare and swap on 
’s next pointer fails, � marks � as TRANSIENT, rather
than LEAVING, so that � will know that it is racing against � (the thread that allocated 
) in an
attempt to update � ’s status word. If � finds available, leaving, or transient in � ’s
status word, rather than waiting, then it knows that � has already performed its update and has
discarded its extra reference to � ; in this case � can reclaim � . If on the other hand � finds
waiting in � ’s status word, we interpret �’s swap of recycled into that word as a declaration
that �’s pointer is now the responsible reference. When � finds the recycled flag it will know
that it shoud reclaim � .

As in section 2.1.1, we verify mutual exclusion and liveness by modeling possession of the lock
as a mutex token that passes from thread to thread. In the current algorithm, however, our model
must encompass both AVAILABLE flags in next pointers and available flags in status words.

When thread � finishes its critical section and calls the release operation, it swaps AVAIL-
ABLE into the next pointer of its queue node, 
 . If the return value of the swap is nil, then we
say the token has moved to 
 . � then performs a compare and swap on the lock tail pointer
in an attempt to change it from a reference to 
 to nil; if this operation succeeds, we say the token
has moved to the lock tail pointer. If on the other hand �’s original swap on 
’s next pointer
returns a reference to a queue node, � , we say that the token has not been placed in 
 , because �’s
successor, �, has already swapped its reference to � into 
’s next pointer. It will not inspect that
pointer again unless it times out, and even then it will use a compare and swap that leaves the
pointer unmodified (and ignores its current value), if the pointer no longer refers to � (as of course
it won’t, once � has swapped AVAILABLE into it).

In response to swapping a reference to � out of 
’s next pointer, � swaps available into
� ’s status word. This swap moves the token into � , where it will be found by � or, if � has timed
out, by some successor � of �.
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Figure 3: Worst-case scenario for space in the CLH-NB try lock.

2.3 Space requirements

Unfortunately, in order to avoid any spins in time-out code, we must generally return from an
unsuccessful acquire operation without having reclaimed our queue node (that task having been
left to some successor thread). As a result, we lose the ��� � � � overall space bound of the CLH
try lock and the MCS try lock, with � locks and � threads.

Perhaps the simplest pathological scenario occurs in either lock when the last thread in line is
preempted. If the second-to-last thread then times out, its node may go unreclaimed for an arbitrarily
long time. If the third-to-last thread subsequently times out its node may go unreclaimed as well,
and so on.

Victor Luchangco of Sun Labs has observed [12] that worst-case space needs are in fact un-
bounded, with as few as three active threads in the CLH-NB try lock (see figure 3). Suppose initially
that threads �, �, and � are waiting for the lock. Suppose then that � and � decide to leave at
approximately the same time, and stop spinning on nodes 
 and � . � then writes a reference to 

into � , but � is preempted before it can write a reference to � into � . �’s compare and swap
on the lock tail pointer will fail, because � is in the way, and � will return from acquirewithout
having reclaimed � . If � requests the lock again it will get into line with a new queue node, call it
� �. Suppose that � then times out again, decides to leave the queue, and stops spinning on � . Only
now, let us suppose, does � wake up again and write a reference to � into � . �’s compare and
swap on the lock tail poitner will fail because � � is in the way, and � will return from acquire
without having reclaimed � . This scenario can, in principle, repeat indefinitely. A similar scenario
exists for the MCS-NB try lock.

2.4 Impossibility argument

Ideally, one might hope to design a queue-based spin lock with non-blocking timeout and an ����
� � space bound. We argue in this section that no such lock is possible.

Imagine a lock on which � threads are waiting (figure 4). Suppose now that � � � of these
threads—all but the first and the last—decide to leave at essentially the same time. Imagine further
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Figure 4: Impossible scenario for non-blocking timeout and constant space per thread.

that the last thread in line has been preempted, and that the first thread, which has the lock, is in a
very long critical section. The departing threads would all like to complete their timeout operations
in a bounded number of their own local time steps. In order to reclaim their space, however, we must
arrange to introduce the remaining threads (the first and the last) to each other, in order to maintain
the integrity of the queue. But because the queue embodies only local knowledge, we must perform
���� work in order to make this introduction. While a hypothetical highly clever algorithm might
be able to perform this work in ������� time using a parallel prefix-like strategy [8], there is no
way we can hope to do it in constant time.

It would be easy, of course, to obtain an ��� � � � overall space bound, by remembering the
last queue node used by thread � in its attempt to acquire lock �. The next time � tried to acquire
� it could check to see if the node were still in �’s queue, in which case � could resume waiting
where it was when it last timed out. This mechanism would have significant time cost, however, and
seems unwarranted in practice.

3 Performance results

We have implemented eight different lock algorithms using the swap and compare and swap
operations available in the Sparc V9 instruction set: TAS-B, TAS-B try, CLH, CLH try, CLH-NB
try, MCS, MCS try, and MCS-NB try. Our tests employ a microbenchmark consisting of a tight
loop containing a single acquire/release pair and optional timed “busywork” inside and outside the
critical section.

Acquire and release operations are implemented as in-line subroutines wherever feasible.
Specifically: for CLH and MCS we in-line both acquire and release. For TAS-B, TAS-B try,
and CLH try we in-line release and the “fast path” of acquire (with an embedded call to a
true subroutine if the lock is not immediately available). For MCS try we in-line the fast path of
both acquire and release. For CLH-NB try and MCS-NB try the need for dynamic memory
allocation forces us to implement both acquire and release as true subroutines.

Performance results were collected on an otherwise unloaded 64-processor Sun Enterprise 10000
multiprocessor, with 466MHz Ultrasparc 2 processors. Assignment of threads to processors was left
to the operating system. Code was compiled with the –O3 level of optimization in gcc version 2.8.1,
but was not otherwise hand-tuned.

3.1 Single-processor results

We can obtain an estimate of lock overhead in the absence of contention by running the microbench-
mark on a single processor, with no critical or non-critical “busywork”, and then subtracting out the
loop overhead. Results appear in table 1. The first column gives measured processor cycles on the
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cycles atomic ops reads writes
TAS-B 19 1 0 1
TAS-B try 19 1 0 1
CLH 35 1 3 4
CLH try 67 2 3 3
CLH-NB try 75 2 3 4
MCS 59 2 2 1
MCS try 59 2 2 1
MCS-NB try 91 3 3 4

Table 1: Single-processor (no-contention, in-cache) spin-lock overhead.

Enterprise 10000. In an attempt to avoid perturbation due to kernel activity, we have reported the
minima over a series of 8 runs. The remaining columns indicate the number of atomic operations
(swaps and compare and swaps), shared-memory reads, and shared-memory writes found in
the fast path of each algorithm. The times for the CLH-NB and MCS-NB try locks include dynamic
allocation and deallocation of queue nodes.

As one might expect, none of the queue-based locks is able to match the time of the TAS-B
lock. The closest competitor, the plain CLH lock, takes nearly twice as long. Atomic operations are
the single largest contributor to overhead. The CLH-NB try and MCS-NB try locks, which are not
in-lined, also pay a significant penalty for subroutine linkage.

3.2 Overhead on multiple processors

We can obtain an estimate of the time required to pass a lock from one processor to another by
running our microbenchmark on a large collection of processors. This passing time is not the same
as total lock overhead: as discussed by Magnussen, Landin, and Hagersten [13], queue-based locks
tend toward heavily pipelined execution, in which the initial cost of entering the queue and the final
cost of leaving it are overlapped with the critical sections of other processors. In recognition of this
difference, we subtract from microbenchmark iteration times only the critical section “busywork”,
not the loop overhead or other non-critical work.

Figure 5 shows the behaviors of all eight locks on the Enterprise 10000, with timeout threshold
(patience) of ����, non-critical busywork of 		
�� (50 iterations of an empty loop), and critical
section busywork of ����� (25 iterations of the loop). With a lock-passing time of about ��	� in
the MCS-NB try lock, there isn’t quite enough time to finish 63 critical sections before the 64th
thread times out (��	

 � ���� � � � ���� 


). As a result the success rate of the MCS-NB
try lock drops sharply at the right end of the graph, and the CLH-NB try lock is just reaching the
drop-off point. The TAS-B try lock, on the other hand, suffers a severe increase in passing time
around 36 processors, with a corresponding drop-off in success rate. Passing time for the TAS-B
lock without timeout has been omitted beyond 40 processors so as not to distort the scale of the
graph. At 64 processors it is 	��
�.

Below about 20 processors the TAS-B locks appear to outperform all competitors, but this ap-
pearance is somewhat misleading. The queued locks are all fair: requests are granted in the order
they were made. The TATAS lock, by contrast, is not fair: since the most recent owner of a lock
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has the advantage of cache locality, it tends to outrace its peers and acquire the lock repeatedly. At
20 processors, in fact, the TAS-B locks are “handed off” from one processor to another only about
30% of the time, despite the fact that each thread performs 		
�� of busywork between its critical
sections. Not until more than 36 processors are active does the handoff rate rise above 50%. Sys-
tem designers considering the use of a TAS-B lock may need to consider whether this unfairness is
acceptable in the event of severe contention.

3.3 The impact of preemption

In an attempt to assess the benefits and cost of non-blocking timeout, we have also collected results
on a preemptively scheduled system with more threads than processors. Specifically, we ran our
microbenchmark with 8–16 threads on an 8-processor Sun Enterprise 4500, with 336MHz proces-
sors. With increasing numbers of threads comes an increasing chance of preemption, not only in
the critical section, but while waiting in the queue. Under these circumstances we would expect the
CLH-NB and MCS-NB try locks to outperform the handshake-based CLH and MCS try locks. Our
results confirm this expectation.

Figure 6 plots iteration time and acquire success rate against number of threads for our pre-
emption sensitivity experiment. Results were averaged over 16 runs, each of which performed
100,000 acquire/release pairs per thread. The timeout threshold (patience) was chosen to
produce a modestly overloaded system when running with one thread on each of the machine’s 8
processors. As discussed below, the meaning of “iteration time” is rather complicated in this exper-
iment. The numbers plotted in the left side of the figure are �����, where �� is total wall clock time,
� is the number of threads, and � is the number of iterations performed by each thread.

As the number of threads exceeds the number of processors, the success rate plummets, due
primarily to preemption of threads in their critical sections. The difference between blocking and
non-blocking timeout then becomes sharply visible in the left-hand graph. The CLH-NB and MCS-
NB try locks are able to bound the amount of time that a thread spends waiting for an unavailable
lock; the CLH and MCS try locks cannot.

We can model iteration time in this experiment in two related ways. First, successful acquire
operations introduce critical sections, which exclude one another in time. Total wall clock time
should therefore equal the number of successful acquire operations times the average cost (pass-
ing time, critical section busywork, and time spent preempted) of a single critical section. Let �� be
lock passing time, �� be critical section busywork, � again be the number of threads, and � again be
the number of iterations executed by each thread. Now measure �, the acquire operation success
rate, and ��, the total wall clock time. We can estimate ��, the average time per critical section
spent preempted, via the following equations:

�� � ������ � �� � ���

�� �
��
���
� ��� � ���

Note that �� can be estimated based on experiments with ample patience and a dedicated thread per
processor.

Second, failed acquire operations and the busy-waiting prior to successful acquire opera-
tions occur more-or-less in parallel. Total wall clock time should therefore equal the total number
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of unsuccessful acquire operations times the average cost (loop overhead, patience, and timeout
[handshake] time) of a single failed acquire, plus the total number of successful acquire oper-
ations times the average wait time, all divided by the number of processors not busy on the critical
path (i.e. one fewer than the total number of processors).

Let � be the number of processors in the machine, �� be patience, and �� be loop overhead.
If we let �� represent the average lock wait time, then we can estimate ��, the time required for
timeout (including handshaking if necessary) via the following equations:

�� �
��

�� �
��� � ��� ����� � ��� � ����

�
��

�� �
��� � �� � ��� �����

�� �
��� ����
��� ����

�
�� � ��
�� �

Here we have exploited the fact that �� � ��. �� can be estimated based on single-processor
experiments.

Figure 7 plots our estimates of �� and �� for the experiments depicted in figure 6, with � � �
threads. Values for �� vary greatly from run to run, reflecting the fact that preemption in a critical
section is relatively rare, but very expensive. Variations among algorithms in preempted time per
critical section can be attributed to the rate of success of acquire operations and, to a lesser extent,
lock overhead. Higher rates of success and lower overhead increase the percentage of time that a
thread is in its critical section, and thus the likelihood that it will be preempted there.

The right-hand side of figure 7 is in some sense the “punch line” of this paper: with the CLH-NB
and MCS-NB try locks, a thread can leave the queue within a modest constant amount of time. In
the CLH and MCS try locks it can be arbitrarily delayed by the preemption of a neighboring thread.

The careful reader will note that the times given in the right-hand side of figure 7 are significantly
larger than the “times” given in the left-hand size of figure 6. By dividing wall clock time (��) by
the total number of acquire attempts (��), figure 6 effectively pretends that all those operations
happen sequentially. The calculations behind figure 7 recognize that much of the work occurs in
parallel.

3.4 Space overhead

As part of the experiments reported in the previous section, we instrumented our space management
routines (see appendix) to remember the maximum number of queue nodes ever extant at any time.
Across the sixteen measured runs, encompassing six million acquire/release pairs, the maxi-
mum number of allocated queue nodes was 84, or roughly 5 per thread. The CLH-NB and MCS-NB
try locks appear to be roughly comparable in the number of nodes they require.

Given that our experiment was deliberately designed to induce an unreasonably high level of
lock contention, and to maximize the chance of inopportune preemption, we find this relatively
modest maximum number of queue nodes reassuring. We would not expect space overhead to be an
obstacle to the use of non-blocking timeout in any realistic setting.
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4 Conclusions

We have shown that it is possible, given standard atomic operations, to construct queue-based locks
in which a thread can time out and abandon its attempt to acquire the lock. Our previous algorithms
guaranteed immediate reclamation of abandoned queue nodes, but required that a departing thread
obtain the cooperation of its neighbors. Our new algorithms incorporate non-blocking timeout code,
and can safely be used in the presence of preemption (assuming, of course, that the processor can
be put to other use while waiting for the preempted lock holder to be rescheduled).

The price of non-blocking timeout is an unbounded worst-case requirement for space. We have
argued, however, that large amounts of space are unlikely to be required in practice, and our exper-
imental results support this argument.

Results obtained on a 64-processor Sun Enterprise 10000 indicate that traditional test-and-set
locks, which support timeout trivially, do not scale to large machines, even when designed to back
off in the presence of contention. Technological trends would appear to be making queue-based
locks increasingly important, and a timeout mechanism significantly increases the scope of their
applicability. On a single processor, without contention, the CLH-NB try lock takes about twice as
long as the plain (no timeout) CLH lock, which in turn takes about twice as long as a conventional
test-and-set lock (with or without timeout). With 64 processors attempting to acquire the lock
simultaneously, however, we identified cases in which the test-and-set lock (with backoff) was more
than six times slower than the CLH-NB try lock, while failing (timing out) more than 22 times as
often (82% of the time, v. 3.7% for the CLH-NB try lock). While one of course attempts in any
parallel program to avoid high lock contention, conversations with colleagues in industry indicate
that pathological cases do indeed arise in practice, particularly in transaction processing systems,
and graceful performance degregation in these cases is of significant concern to customers.

For small-scale multiprocessors we continue to recommend a simple test-and-set lock with back-
off. Queue-based locks, however, are attractive for larger machines, or for cases in which fairness
and regularity of timing are particularly important. The CLH lock, both with and without timeout,
has better overall performance than the MCS lock on cache-coherent machines. The CLH-NB try
lock is also substantially simpler than the MCS-NB try lock. We would expect the relative perfor-
mance of the queue-based locks to be reversed on a non-cache-coherent machine, even if the CLH-
NB try lock were modified to ensure local-only spinning, using an extra level of indirection [5].

The provision for timeout in scalable queue-based locks makes spin locks a viable mechanism
for user-level synchronization on large multiprogrammed systems. In future work we hope to eval-
uate our algorithms in the context of commercial OLTP codes. We also plan to develop variants that
block in the scheduler on timeout [9, 16], cooperate with the scheduler to avoid preemption while in
a critical section [6, 10], or adapt dynamically between test and set and queue-based locking
in response to observed contention [11]. In a related vein, we are developing a tool to help verify the
correctness of locking algorithms by transforming source code automatically into input for a model
checker.
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o
d
e
 
*
l
o
c
k
_
h
o
l
d
e
r
;
 
 
 
/
/
 
n
o
d
e
 
a
l
l
o
c
a
t
e
d
 
b
y
 
l
o
c
k
 
h
o
l
d
e
r

}
 
c
l
h
_
n
b
_
l
o
c
k
;

#
d
e
f
i
n
e
 
A
V
A
I
L
A
B
L
E
 
(
(
c
l
h
_
n
b
_
q
n
o
d
e
 
*
)
 
1
)

#
d
e
f
i
n
e
 
c
q
n
_
s
w
a
p
(
p
,
v
)
 
(
c
l
h
_
n
b
_
q
n
o
d
e
 
*
)
 
\

s
w
a
p
(
(
v
o
l
a
t
i
l
e
 
u
n
s
i
g
n
e
d
 
l
o
n
g
*
)
 
(
p
)
,
 
(
u
n
s
i
g
n
e
d
 
l
o
n
g
)
 
(
v
)
)

#
d
e
f
i
n
e
 
c
o
m
p
a
r
e
_
a
n
d
_
s
t
o
r
e
(
p
,
o
,
n
)
 
\

(
c
a
s
(
(
v
o
l
a
t
i
l
e
 
u
n
s
i
g
n
e
d
 
l
o
n
g
 
*
)
 
(
p
)
,
 
\

(
u
n
s
i
g
n
e
d
 
l
o
n
g
)
 
(
o
)
,
 
(
u
n
s
i
g
n
e
d
 
l
o
n
g
)
 
(
n
)
)
 
\

=
=
 
(
u
n
s
i
g
n
e
d
 
l
o
n
g
)
 
(
o
)
)

#
d
e
f
i
n
e
 
a
l
l
o
c
_
q
n
o
d
e
(
)
 
(
c
l
h
_
n
b
_
q
n
o
d
e
 
*
)
 
a
l
l
o
c
_
l
o
c
a
l
_
q
n
o
d
e
(
m
y
_
h
e
a
d
_
n
o
d
e
_
p
t
r
(
)
)

#
d
e
f
i
n
e
 
f
r
e
e
_
q
n
o
d
e
(
p
)
 
f
r
e
e
_
l
o
c
a
l
_
q
n
o
d
e
(
(
l
o
c
a
l
_
q
n
o
d
e
 
*
)
 
p
)

b
o
o
l
 
c
l
h
_
n
b
_
t
r
y
_
a
c
q
u
i
r
e
(
c
l
h
_
n
b
_
l
o
c
k
 
*
L
,
 
h
r
t
i
m
e
_
t
 
T
)

{
c
l
h
_
n
b
_
q
n
o
d
e
 
*
I
 
=
 
a
l
l
o
c
_
q
n
o
d
e
(
)
;

I
-
>
p
r
e
v
 
=
 
0
;

c
l
h
_
n
b
_
q
n
o
d
e
 
p
r
e
d
 
=
 
c
q
n
_
s
w
a
p
(
&
L
-
>
t
a
i
l
,
 
I
)
;

i
f
 
(
!
p
r
e
d
)
 
{

/
/
 
l
o
c
k
 
w
a
s
 
f
r
e
e
 
a
n
d
 
u
n
c
o
n
t
e
s
t
e
d
;
 
j
u
s
t
 
r
e
t
u
r
n

L
-
>
l
o
c
k
_
h
o
l
d
e
r
 
=
 
I
;

r
e
t
u
r
n
 
t
r
u
e
;

} i
f
 
(
p
r
e
d
-
>
p
r
e
v
 
=
=
 
A
V
A
I
L
A
B
L
E
)
 
{

/
/
 
l
o
c
k
 
w
a
s
 
f
r
e
e
;
 
j
u
s
t
 
r
e
t
u
r
n

L
-
>
l
o
c
k
_
h
o
l
d
e
r
 
=
 
I
;

f
r
e
e
_
q
n
o
d
e
(
p
r
e
d
)
;

r
e
t
u
r
n
 
t
r
u
e
;

} h
r
t
i
m
e
_
t
 
s
t
a
r
t
 
=
 
S
T
A
R
T
_
T
I
M
E
;

w
h
i
l
e
 
(
C
U
R
_
T
I
M
E
 
-
 
s
t
a
r
t
 
<
 
T
)
 
{

c
l
h
_
n
b
_
q
n
o
d
e
 
*
p
r
e
d
_
p
r
e
d
 
=
 
p
r
e
d
-
>
p
r
e
v
;

i
f
 
(
p
r
e
d
_
p
r
e
d
 
=
=
 
A
V
A
I
L
A
B
L
E
)
 
{

L
-
>
l
o
c
k
_
h
o
l
d
e
r
 
=
 
I
;

f
r
e
e
_
q
n
o
d
e
(
p
r
e
d
)
;

r
e
t
u
r
n
 
t
r
u
e
;

}
 
e
l
s
e
 
i
f
 
(
p
r
e
d
_
p
r
e
d
)
 
{

f
r
e
e
_
q
n
o
d
e
(
p
r
e
d
)
;

p
r
e
d
 
=
 
p
r
e
d
_
p
r
e
d
;

}
} /
/
 
t
i
m
e
d
 
o
u
t
;
 
r
e
c
l
a
i
m
 
o
r
 
a
b
a
n
d
o
n
 
o
w
n
 
n
o
d
e

i
f
 
(
c
o
m
p
a
r
e
_
a
n
d
_
s
t
o
r
e
(
&
L
-
>
t
a
i
l
,
 
I
,
 
p
r
e
d
)
)
 
{

/
/
 
l
a
s
t
 
p
r
o
c
e
s
s
 
i
n
 
l
i
n
e

f
r
e
e
_
q
n
o
d
e
(
I
)
;

}
 
e
l
s
e
 
{

I
-
>
p
r
e
v
 
=
 
p
r
e
d
;

} r
e
t
u
r
n
 
f
a
l
s
e
;

} v
o
i
d
 
c
l
h
_
n
b
_
t
r
y
_
r
e
l
e
a
s
e
(
c
l
h
_
n
b
_
l
o
c
k
 
*
L
)

{
c
l
h
_
n
b
_
q
n
o
d
e
 
*
I
 
=
 
L
-
>
l
o
c
k
_
h
o
l
d
e
r
;

i
f
 
(
c
o
m
p
a
r
e
_
a
n
d
_
s
t
o
r
e
(
&
L
-
>
t
a
i
l
,
 
I
,
 
0
)
)
 
{

/
/
 
n
o
 
c
o
m
p
e
t
i
t
i
o
n
 
f
o
r
 
l
o
c
k
;
 
r
e
c
l
a
i
m
 
q
n
o
d
e

f
r
e
e
_
q
n
o
d
e
(
I
)
;

}
 
e
l
s
e
 
{

I
-
>
p
r
e
v
 
=
 
A
V
A
I
L
A
B
L
E
;

}
}

20



t
y
p
e
d
e
f
 
e
n
u
m
 
{
a
v
a
i
l
a
b
l
e
,
 
l
e
a
v
i
n
g
,
 
t
r
a
n
s
i
e
n
t
,
 
w
a
i
t
i
n
g
,
 
r
e
c
y
c
l
e
d
}
 
q
n
o
d
e
_
s
t
a
t
u
s
;

t
y
p
e
d
e
f
 
s
t
r
u
c
t
 
m
c
s
_
n
b
_
q
n
o
d
e
 
{

s
t
r
u
c
t
 
m
c
s
_
n
b
_
q
n
o
d
e
 
*
v
o
l
a
t
i
l
e
 
p
r
e
v
;

s
t
r
u
c
t
 
m
c
s
_
n
b
_
q
n
o
d
e
 
*
v
o
l
a
t
i
l
e
 
n
e
x
t
;

v
o
l
a
t
i
l
e
 
q
n
o
d
e
_
s
t
a
t
u
s
 
s
t
a
t
u
s
;

}
 
m
c
s
_
n
b
_
q
n
o
d
e
;

t
y
p
e
d
e
f
 
s
t
r
u
c
t
 
{

m
c
s
_
n
b
_
q
n
o
d
e
 
*
v
o
l
a
t
i
l
e
 
t
a
i
l
;

m
c
s
_
n
b
_
q
n
o
d
e
 
*
l
o
c
k
_
h
o
l
d
e
r
;
 
 
 
 
 
/
/
 
n
o
d
e
 
a
l
l
o
c
a
t
e
d
 
b
y
 
l
o
c
k
 
h
o
l
d
e
r

}
 
m
c
s
_
n
b
_
l
o
c
k
;

#
d
e
f
i
n
e
 
A
V
A
I
L
A
B
L
E
 
(
(
m
c
s
_
n
b
_
q
n
o
d
e
 
*
)
 
1
)

#
d
e
f
i
n
e
 
L
E
A
V
I
N
G
 
 
 
(
(
m
c
s
_
n
b
_
q
n
o
d
e
 
*
)
 
2
)

#
d
e
f
i
n
e
 
T
R
A
N
S
I
E
N
T
 
(
(
m
c
s
_
n
b
_
q
n
o
d
e
 
*
)
 
3
)

/
/
 
T
h
r
e
a
d
 
p
u
t
s
 
T
R
A
N
S
I
E
N
T
 
i
n
 
i
t
s
 
n
e
x
t
 
p
o
i
n
t
e
r
 
a
n
d
,
 
i
f
 
p
o
s
s
i
b
l
e
,
 
t
r
a
n
s
i
e
n
t

/
/
 
i
n
 
i
t
s
 
s
u
c
c
e
s
s
o
r
’
s
 
s
t
a
t
u
s
 
w
o
r
d
,
 
w
h
e
n
 
i
t
 
w
a
n
t
s
 
t
o
 
l
e
a
v
e
 
b
u
t
 
w
a
s
 
u
n
a
b
l
e

/
/
 
t
o
 
b
r
e
a
k
 
t
h
e
 
l
i
n
k
 
t
o
 
i
t
 
f
r
o
m
 
i
t
s
 
p
r
e
c
e
d
e
s
s
o
r
.

#
d
e
f
i
n
e
 
m
q
n
_
s
w
a
p
(
p
,
v
)
 
(
m
c
s
_
n
b
_
q
n
o
d
e
 
*
)
 
\

s
w
a
p
(
(
v
o
l
a
t
i
l
e
 
u
n
s
i
g
n
e
d
 
l
o
n
g
 
*
)
 
(
p
)
,
 
(
u
n
s
i
g
n
e
d
 
l
o
n
g
)
 
(
v
)
)

#
d
e
f
i
n
e
 
s
_
s
w
a
p
(
p
,
v
)
 
(
q
n
o
d
e
_
s
t
a
t
u
s
)

s
w
a
p
(
(
v
o
l
a
t
i
l
e
 
u
n
s
i
g
n
e
d
 
l
o
n
g
 
*
)
 
(
p
)
,
 
(
u
n
s
i
g
n
e
d
 
l
o
n
g
)
 
(
v
)
)

#
d
e
f
i
n
e
 
a
l
l
o
c
_
q
n
o
d
e
(
)
 
(
m
c
s
_
n
b
_
q
n
o
d
e
 
*
)
 
a
l
l
o
c
_
l
o
c
a
l
_
q
n
o
d
e
(
m
y
_
h
e
a
d
_
n
o
d
e
_
p
t
r
(
)
)

b
o
o
l
 
m
c
s
_
n
b
_
t
r
y
_
a
c
q
u
i
r
e
(
m
c
s
_
n
b
_
l
o
c
k
 
*
L
,
 
h
r
t
i
m
e
_
t
 
T
)

{
m
c
s
_
n
b
_
q
n
o
d
e
 
*
I
 
=
 
a
l
l
o
c
_
q
n
o
d
e
(
)
;

m
c
s
_
n
b
_
q
n
o
d
e
 
*
p
r
e
d
_
n
e
x
t
;

I
-
>
n
e
x
t
 
=
 
0
;

m
c
s
_
n
b
_
q
n
o
d
e
 
*
p
r
e
d
 
=
 
m
q
n
_
s
w
a
p
(
&
L
-
>
t
a
i
l
,
 
I
)
;

i
f
 
(
!
p
r
e
d
)
 
{

L
-
>
l
o
c
k
_
h
o
l
d
e
r
 
=
 
I
;

r
e
t
u
r
n
 
t
r
u
e
;

} h
r
t
i
m
e
_
t
 
s
t
a
r
t
 
=
 
S
T
A
R
T
_
T
I
M
E
;

I
-
>
s
t
a
t
u
s
 
=
 
w
a
i
t
i
n
g
;

w
h
i
l
e
 
(
1
)
 
{

p
r
e
d
_
n
e
x
t
 
=
 
m
q
n
_
s
w
a
p
(
&
p
r
e
d
-
>
n
e
x
t
,
 
I
)
;

/
*
 
I
f
 
p
r
e
d
_
n
e
x
t
 
i
s
 
n
o
t
 
n
i
l
 
t
h
e
n
 
m
y
 
p
r
e
d
e
c
e
s
s
o
r
 
t
r
i
e
d
 
t
o
 
l
e
a
v
e
 
o
r

g
r
a
n
t
 
t
h
e
 
l
o
c
k
 
b
e
f
o
r
e
 
I
 
w
a
s
 
a
b
l
e
 
t
o
 
t
e
l
l
 
i
t
 
w
h
o
 
I
 
a
m
.
 
 
S
i
n
c
e
 
i
t

d
o
e
s
n
’
t
 
k
n
o
w
 
w
h
o
 
I
 
a
m
,
 
i
t
 
w
o
n
’
t
 
b
e
 
t
r
y
i
n
g
 
t
o
 
c
h
a
n
g
e
 
m
y
 
s
t
a
t
u
s

w
o
r
d
,
 
a
n
d
 
s
i
n
c
e
 
i
t
s
 
C
A
S
 
o
n
 
t
h
e
 
t
a
i
l
 
p
o
i
n
t
e
r
,
 
i
f
 
a
n
y
,
 
w
i
l
l
 
h
a
v
e

f
a
i
l
e
d
,
 
i
t
 
w
o
n
’
t
 
h
a
v
e
 
r
e
c
l
a
i
m
e
d
 
i
t
s
 
o
w
n
 
q
n
o
d
e
,
 
s
o
 
I
’
l
l
 
h
a
v
e
 
t
o
.
 
*
/

i
f
 
(
p
r
e
d
_
n
e
x
t
 
=
=
 
A
V
A
I
L
A
B
L
E
)
 
{

L
-
>
l
o
c
k
_
h
o
l
d
e
r
 
=
 
I
;

f
r
e
e
_
q
n
o
d
e
(
p
r
e
d
)
;

r
e
t
u
r
n
 
t
r
u
e
;

}
 
e
l
s
e
 
i
f
 
(
!
p
r
e
d
_
n
e
x
t
)
 
{

w
h
i
l
e
 
(
1
)
 
{

i
f
 
(
C
U
R
_
T
I
M
E
 
-
 
s
t
a
r
t
 
>
 
T
)
 
{

g
o
t
o
 
t
i
m
e
o
u
t
1
;

} q
n
o
d
e
_
s
t
a
t
u
s
 
s
t
a
t
 
=
 
I
-
>
s
t
a
t
u
s
;

i
f
 
(
s
t
a
t
 
=
=
 
a
v
a
i
l
a
b
l
e
)
 
{

L
-
>
l
o
c
k
_
h
o
l
d
e
r
 
=
 
I
;

f
r
e
e
_
q
n
o
d
e
(
p
r
e
d
)
;

r
e
t
u
r
n
 
t
r
u
e
;

}
 
e
l
s
e
 
i
f
 
(
s
t
a
t
 
=
=
 
l
e
a
v
i
n
g
)
 
{

m
c
s
_
n
b
_
q
n
o
d
e
 
*
n
e
w
_
p
r
e
d
 
=
 
p
r
e
d
-
>
p
r
e
v
;

f
r
e
e
_
q
n
o
d
e
(
p
r
e
d
)
;

p
r
e
d
 
=
 
n
e
w
_
p
r
e
d
;

I
-
>
s
t
a
t
u
s
 
=
 
w
a
i
t
i
n
g
;

b
r
e
a
k
;
 
 
/
/
 
e
x
i
t
 
i
n
n
e
r
 
l
o
o
p
;
 
c
o
n
t
i
n
u
e
 
o
u
t
e
r
 
l
o
o
p

}
 
e
l
s
e
 
i
f
 
(
s
t
a
t
 
=
=
 
t
r
a
n
s
i
e
n
t
)
 
{

m
c
s
_
n
b
_
q
n
o
d
e
 
*
n
e
w
_
p
r
e
d
 
=
 
p
r
e
d
-
>
p
r
e
v
;

i
f
 
(
s
_
s
w
a
p
(
&
p
r
e
d
-
>
s
t
a
t
u
s
,
 
r
e
c
y
c
l
e
d
)
 
!
=
 
w
a
i
t
i
n
g
)
 
{

f
r
e
e
_
q
n
o
d
e
(
p
r
e
d
)
;

}
 
/
*
 
e
l
s
e
 
w
h
e
n
 
n
e
w
 
p
r
e
d
e
c
e
s
s
o
r
 
c
h
a
n
g
e
s
 
t
h
i
s
 
t
o
 
a
v
a
i
l
a
b
l
e
,

l
e
a
v
i
n
g
,
 
o
r
 
t
r
a
n
s
i
e
n
t
 
i
t
 
w
i
l
l
 
f
i
n
d
 
r
e
c
y
c
l
e
d
,
 
a
n
d
 
w
i
l
l

r
e
c
l
a
i
m
 
o
l
d
 
p
r
e
d
e
c
e
s
s
o
r
’
s
 
n
o
d
e
.
 
*
/

p
r
e
d
 
=
 
n
e
w
_
p
r
e
d
;

I
-
>
s
t
a
t
u
s
 
=
 
w
a
i
t
i
n
g
;

b
r
e
a
k
;
 
 
/
/
 
e
x
i
t
 
i
n
n
e
r
 
l
o
o
p
;
 
c
o
n
t
i
n
u
e
 
o
u
t
e
r
 
l
o
o
p

}
 
/
/
 
e
l
s
e
 
s
t
a
t
 
=
=
 
w
a
i
t
i
n
g
;
 
c
o
n
t
i
n
u
e
 
i
n
n
e
r
 
l
o
o
p

}
}
 
e
l
s
e
 
i
f
 
(
C
U
R
_
T
I
M
E
 
-
 
s
t
a
r
t
 
>
 
T
)
 
{

g
o
t
o
 
t
i
m
e
o
u
t
2
;

}
 
e
l
s
e
 
i
f
 
(
p
r
e
d
_
n
e
x
t
 
=
=
 
L
E
A
V
I
N
G
)
 
{

m
c
s
_
n
b
_
q
n
o
d
e
 
*
n
e
w
_
p
r
e
d
 
=
 
p
r
e
d
-
>
p
r
e
v
;

f
r
e
e
_
q
n
o
d
e
(
p
r
e
d
)
;

p
r
e
d
 
=
 
n
e
w
_
p
r
e
d
;

}
 
e
l
s
e
 
i
f
 
(
p
r
e
d
_
n
e
x
t
 
=
=
 
T
R
A
N
S
I
E
N
T
)
 
{

m
c
s
_
n
b
_
q
n
o
d
e
 
*
n
e
w
_
p
r
e
d
 
=
 
p
r
e
d
-
>
p
r
e
v
;

i
f
 
(
s
_
s
w
a
p
(
&
p
r
e
d
-
>
s
t
a
t
u
s
,
 
r
e
c
y
c
l
e
d
)
 
!
=
 
w
a
i
t
i
n
g
)
 
{

f
r
e
e
_
q
n
o
d
e
(
p
r
e
d
)
;

}
 
/
*
 
e
l
s
e
 
w
h
e
n
 
n
e
w
 
p
r
e
d
e
c
e
s
s
o
r
 
c
h
a
n
g
e
s
 
t
h
i
s
 
t
o
 
a
v
a
i
l
a
b
l
e
,

l
e
a
v
i
n
g
,
 
o
r
 
t
r
a
n
s
i
e
n
t
 
i
t
 
w
i
l
l
 
f
i
n
d
 
r
e
c
y
c
l
e
d
,
 
a
n
d
 
w
i
l
l

r
e
c
l
a
i
m
 
o
l
d
 
p
r
e
d
e
c
e
s
s
o
r
’
s
 
n
o
d
e
.
 
*
/

p
r
e
d
 
=
 
n
e
w
_
p
r
e
d
;

}
} t
i
m
e
o
u
t
1
:
 
{

I
-
>
p
r
e
v
 
=
 
p
r
e
d
;

i
f
 
(
c
o
m
p
a
r
e
_
a
n
d
_
s
t
o
r
e
(
&
p
r
e
d
-
>
n
e
x
t
,
 
I
,
 
0
)
)
 
{

/
/
 
p
r
e
d
e
c
e
s
s
o
r
 
d
o
e
s
n
’
t
 
e
v
e
n
 
k
n
o
w
 
I
’
v
e
 
b
e
e
n
 
h
e
r
e

m
c
s
_
n
b
_
q
n
o
d
e
 
*
s
u
c
c
 
=
 
m
q
n
_
s
w
a
p
(
&
I
-
>
n
e
x
t
,
 
L
E
A
V
I
N
G
)
;

i
f
 
(
s
u
c
c
)
 
{

i
f
 
(
s
_
s
w
a
p
(
&
s
u
c
c
-
>
s
t
a
t
u
s
,
 
l
e
a
v
i
n
g
)
 
=
=
 
r
e
c
y
c
l
e
d
)
 
{

/
*
 
T
i
m
i
n
g
 
w
i
n
d
o
w
:
 
s
u
c
c
e
s
s
o
r
 
a
l
r
e
a
d
y
 
s
a
w
 
m
y
 
m
o
d
i
f
i
e
d

n
e
x
t
 
p
o
i
n
t
e
r
 
a
n
d
 
d
e
c
l
i
n
e
d
 
t
o
 
m
o
d
i
f
y
 
i
t
.
 
 
N
o
b
o
d
y
 
i
s

g
o
i
n
g
 
t
o
 
l
o
o
k
 
a
t
 
m
y
 
s
u
c
c
e
s
s
o
r
 
n
o
d
e
,
 
b
u
t
 
t
h
e
y
 
w
i
l
l

s
e
e
 
m
y
 
n
e
x
t
 
p
o
i
n
t
e
r
 
a
n
d
 
k
n
o
w
 
w
h
a
t
 
h
a
p
p
e
n
e
d
.
 
*
/

f
r
e
e
_
q
n
o
d
e
(
s
u
c
c
)
;

}
 
/
*
 
e
l
s
e
 
s
u
c
c
e
s
s
o
r
 
w
i
l
l
 
r
e
c
l
a
i
m
 
m
e
 
w
h
e
n
 
i
t
 
s
e
e
s
 
m
y

c
h
a
n
g
e
 
t
o
 
i
t
s
 
s
t
a
t
u
s
 
w
o
r
d
.
 
*
/

}
 
e
l
s
e
 
{

/
/
 
I
 
d
o
n
’
t
 
s
e
e
m
 
t
o
 
h
a
v
e
 
a
 
s
u
c
c
e
s
s
o
r
.

i
f
 
(
c
o
m
p
a
r
e
_
a
n
d
_
s
t
o
r
e
(
&
L
-
>
t
a
i
l
,
 
I
,
 
p
r
e
d
)
)
 
{

f
r
e
e
_
q
n
o
d
e
(
I
)
;

}
 
/
*
 
e
l
s
e
 
a
 
n
e
w
c
o
m
e
r
 
h
i
t
 
t
h
e
 
t
i
m
i
n
g
 
w
i
n
d
o
w
 
o
r
 
m
y
 
s
u
c
c
e
s
s
o
r

i
s
 
i
n
 
t
h
e
 
p
r
o
c
e
s
s
 
o
f
 
l
e
a
v
i
n
g
.
 
 
S
o
m
e
b
o
d
y
 
w
i
l
l
 
d
i
s
c
o
v
e
r

I
’
m
 
t
r
y
i
n
g
 
t
o
 
l
e
a
v
e
,
 
a
n
d
 
w
i
l
l
 
f
r
e
e
 
m
y
 
q
n
o
d
e
 
f
o
r
 
m
e
.
 
*
/

}
}
 
e
l
s
e
 
{

/
*
 
P
r
e
d
e
c
e
s
s
o
r
 
i
s
 
t
r
y
i
n
g
 
t
o
 
l
e
a
v
e
 
o
r
 
t
o
 
g
i
v
e
 
m
e
 
(
o
r
 
s
o
m
e
b
o
d
y
)

t
h
e
 
l
o
c
k
.
 
 
I
t
 
h
a
s
 
a
 
p
o
i
n
t
e
r
 
t
o
 
m
y
 
q
n
o
d
e
,
 
a
n
d
 
i
s
 
p
l
a
n
n
i
n
g

t
o
 
u
s
e
 
i
t
.
 
 
I
 
c
a
n
’
t
 
w
a
i
t
 
f
o
r
 
i
t
 
t
o
 
d
o
 
s
o
,
 
s
o
 
I
 
c
a
n
’
t
 
f
r
e
e

m
y
 
o
w
n
 
q
n
o
d
e
.
 
*
/

m
c
s
_
n
b
_
q
n
o
d
e
 
*
s
u
c
c
 
=
 
m
q
n
_
s
w
a
p
(
&
I
-
>
n
e
x
t
,
 
T
R
A
N
S
I
E
N
T
)
;

i
f
 
(
s
u
c
c
)
 
{

i
f
 
(
s
_
s
w
a
p
(
&
s
u
c
c
-
>
s
t
a
t
u
s
,
 
t
r
a
n
s
i
e
n
t
)
 
=
=
 
r
e
c
y
c
l
e
d
)
 
{

/
*
 
T
i
m
i
n
g
 
w
i
n
d
o
w
:
 
s
u
c
c
e
s
s
o
r
 
a
l
r
e
a
d
y
 
s
a
w
 
m
y
 
m
o
d
i
f
i
e
d

n
e
x
t
 
p
o
i
n
t
e
r
 
a
n
d
 
d
e
c
l
i
n
e
d
 
t
o
 
m
o
d
i
f
y
 
i
t
.
 
 
N
o
b
o
d
y
 
i
s

g
o
i
n
g
 
t
o
 
l
o
o
k
 
a
t
 
m
y
 
s
u
c
c
e
s
s
o
r
 
n
o
d
e
,
 
b
u
t
 
t
h
e
y
 
w
i
l
l
 
s
e
e
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m
y
 
n
e
x
t
 
p
o
i
n
t
e
r
 
a
n
d
 
k
n
o
w
 
w
h
a
t
 
h
a
p
p
e
n
e
d
.
 
*
/

f
r
e
e
_
q
n
o
d
e
(
s
u
c
c
)
;

}
 
/
*
 
e
l
s
e
 
s
u
c
c
e
s
s
o
r
 
w
i
l
l
 
r
e
c
l
a
i
m
 
m
e
 
w
h
e
n
 
i
t
 
s
e
e
s
 
m
y

c
h
a
n
g
e
 
t
o
 
i
t
s
 
s
t
a
t
u
s
 
w
o
r
d
.
 
*
/

}
 
/
*
 
e
l
s
e
 
I
 
d
o
n
’
t
 
s
e
e
m
 
t
o
 
h
a
v
e
 
a
 
s
u
c
c
e
s
s
o
r
,
 
a
n
d
 
n
o
b
o
d
y
 
c
a
n

w
a
i
t
 
f
o
r
 
m
y
 
s
t
a
t
u
s
 
w
o
r
d
 
t
o
 
c
h
a
n
g
e
.
 
 
T
h
i
s
 
i
s
 
t
h
e

p
a
t
h
o
l
o
g
i
c
a
l
 
c
a
s
e
 
w
h
e
r
e
 
w
e
 
c
a
n
 
t
e
m
p
o
r
a
r
i
l
y
 
r
e
q
u
i
r
e

n
o
n
-
l
i
n
e
a
r
 
s
t
o
r
a
g
e
.
 
*
/

} r
e
t
u
r
n
 
f
a
l
s
e
;

} t
i
m
e
o
u
t
2
:
 
{

/
*
 
p
r
e
d
_
n
e
x
t
 
i
s
 
L
E
A
V
I
N
G
 
o
r
 
T
R
A
N
S
I
E
N
T
;
 
p
r
e
d
-
>
n
e
x
t
 
i
s
 
I
.

P
u
t
 
m
y
s
e
l
f
 
i
n
 
t
r
a
n
s
i
e
n
t
 
s
t
a
t
e
,
 
s
o
 
s
o
m
e
 
s
u
c
c
e
s
s
o
r
 
c
a
n

e
v
e
n
t
u
a
l
l
y
 
c
l
e
a
n
 
u
p
.
 
*
/

m
c
s
_
n
b
_
q
n
o
d
e
 
*
s
u
c
c
;

/
*
 
p
u
t
 
p
r
e
d
e
c
e
s
s
o
r
’
s
 
n
e
x
t
 
f
i
e
l
d
 
b
a
c
k
,
 
a
s
 
i
t
 
w
o
u
l
d
 
b
e
 
i
f
 
I

h
a
d
 
t
i
m
e
d
 
o
u
t
 
i
n
 
t
h
e
 
i
n
n
e
r
 
w
h
i
l
e
 
l
o
o
p
 
a
n
d
 
b
e
e
n
 
u
n
a
b
l
e
 
t
o

u
p
d
a
t
e
 
p
r
e
d
e
c
e
s
s
o
r
’
s
 
n
e
x
t
 
p
o
i
n
t
e
r
:
 
*
/

p
r
e
d
-
>
n
e
x
t
 
=
 
p
r
e
d
_
n
e
x
t
;

I
-
>
s
t
a
t
u
s
 
=
 
(
p
r
e
d
_
n
e
x
t
 
=
=
 
L
E
A
V
I
N
G
 
?
 
l
e
a
v
i
n
g
 
:
 
t
r
a
n
s
i
e
n
t
)
;

I
-
>
p
r
e
v
 
=
 
p
r
e
d
;

s
u
c
c
 
=
 
m
q
n
_
s
w
a
p
(
&
I
-
>
n
e
x
t
,
 
T
R
A
N
S
I
E
N
T
)
;

i
f
 
(
s
u
c
c
)
 
{

i
f
 
(
s
_
s
w
a
p
(
&
s
u
c
c
-
>
s
t
a
t
u
s
,
 
t
r
a
n
s
i
e
n
t
)
 
=
=
 
r
e
c
y
c
l
e
d
)
 
{

/
*
 
T
i
m
i
n
g
 
w
i
n
d
o
w
:
 
s
u
c
c
e
s
s
o
r
 
a
l
r
e
a
d
y
 
s
a
w
 
m
y
 
m
o
d
i
f
i
e
d
 
n
e
x
t

p
o
i
n
t
e
r
 
a
n
d
 
d
e
c
l
i
n
e
d
 
t
o
 
m
o
d
i
f
y
 
i
t
.
 
 
N
o
b
o
d
y
 
i
s
 
g
o
i
n
g

t
o
 
l
o
o
k
 
a
t
 
m
y
 
s
u
c
c
e
s
s
o
r
 
n
o
d
e
,
 
b
u
t
 
t
h
e
y
 
w
i
l
l
 
s
e
e
 
m
y

n
e
x
t
 
p
o
i
n
t
e
r
 
a
n
d
 
k
n
o
w
 
w
h
a
t
 
h
a
p
p
e
n
e
d
.
 
*
/

f
r
e
e
_
q
n
o
d
e
(
s
u
c
c
)
;

}
 
/
*
 
e
l
s
e
 
s
u
c
c
e
s
s
o
r
 
w
i
l
l
 
r
e
c
l
a
i
m
 
m
e
 
w
h
e
n
 
i
t
 
s
e
e
s
 
m
y
 
c
h
a
n
g
e

t
o
 
i
t
s
 
s
t
a
t
u
s
 
w
o
r
d
.
 
*
/

}
 
/
*
 
e
l
s
e
 
I
 
d
o
n
’
t
 
s
e
e
m
 
t
o
 
h
a
v
e
 
a
 
s
u
c
c
e
s
s
o
r
,
 
a
n
d
 
n
o
b
o
d
y
 
c
a
n
 
w
a
i
t

f
o
r
 
m
y
 
s
t
a
t
u
s
 
w
o
r
d
 
t
o
 
c
h
a
n
g
e
.
 
 
T
h
i
s
 
i
s
 
t
h
e
 
p
a
t
h
o
l
o
g
i
c
a
l
 
c
a
s
e

w
h
e
r
e
 
w
e
 
c
a
n
 
t
e
m
p
o
r
a
r
i
l
y
 
r
e
q
u
i
r
e
 
n
o
n
-
l
i
n
e
a
r
 
s
t
o
r
a
g
e
.
 
*
/

r
e
t
u
r
n
 
f
a
l
s
e
;

}
}

v
o
i
d
 
m
c
s
_
n
b
_
t
r
y
_
r
e
l
e
a
s
e
(
m
c
s
_
n
b
_
l
o
c
k
 
*
L
)

{
m
c
s
_
n
b
_
q
n
o
d
e
 
*
I
 
=
 
L
-
>
l
o
c
k
_
h
o
l
d
e
r
;

m
c
s
_
n
b
_
q
n
o
d
e
 
*
s
u
c
c
 
=
 
m
q
n
_
s
w
a
p
(
&
I
-
>
n
e
x
t
,
 
A
V
A
I
L
A
B
L
E
)
;

/
*
 
A
s
 
a
 
g
e
n
e
r
a
l
 
r
u
l
e
,
 
I
 
c
a
n
’
t
 
r
e
c
l
a
i
m
 
m
y
 
o
w
n
 
q
n
o
d
e
 
o
n
 
r
e
l
e
a
s
e
 
b
e
c
a
u
s
e

m
y
 
s
u
c
c
e
s
s
o
r
 
m
a
y
 
b
e
 
l
e
a
v
i
n
g
,
 
i
n
 
w
h
i
c
h
 
c
a
s
e
 
s
o
m
e
b
o
d
y
 
i
s
 
g
o
i
n
g
 
t
o

h
a
v
e
 
t
o
 
l
o
o
k
 
a
t
 
m
y
 
n
e
x
t
 
p
o
i
n
t
e
r
 
t
o
 
r
e
a
l
i
z
e
 
t
h
a
t
 
t
h
e
 
l
o
c
k
 
i
s

a
v
a
i
l
a
b
l
e
.
 
 
T
h
e
 
o
n
e
 
e
x
c
e
p
t
i
o
n
 
(
w
h
e
n
 
I
 
*
c
a
n
*
 
r
e
c
l
a
i
m
 
m
y
 
o
w
n
 
n
o
d
e
)

i
s
 
w
h
e
n
 
I
’
m
 
a
b
l
e
 
t
o
 
c
h
a
n
g
e
 
t
h
e
 
l
o
c
k
 
t
a
i
l
 
p
o
i
n
t
e
r
 
b
a
c
k
 
t
o
 
n
i
l
.
 
*
/

i
f
 
(
s
u
c
c
)
 
{

i
f
 
(
s
_
s
w
a
p
(
&
s
u
c
c
-
>
s
t
a
t
u
s
,
 
a
v
a
i
l
a
b
l
e
)
 
=
=
 
r
e
c
y
c
l
e
d
)
 
{

/
*
 
T
i
m
i
n
g
 
w
i
n
d
o
w
:
 
s
u
c
c
e
s
s
o
r
 
a
l
r
e
a
d
y
 
s
a
w
 
m
y
 
m
o
d
i
f
i
e
d
 
n
e
x
t

p
o
i
n
t
e
r
 
a
n
d
 
d
e
c
l
i
n
e
d
 
t
o
 
m
o
d
i
f
y
 
i
t
.
 
 
N
o
b
o
d
y
 
i
s
 
g
o
i
n
g
 
t
o

l
o
o
k
 
a
t
 
m
y
 
s
u
c
c
e
s
s
o
r
 
n
o
d
e
,
 
b
u
t
 
t
h
e
y
 
w
i
l
l
 
s
e
e
 
m
y
 
n
e
x
t

p
o
i
n
t
e
r
 
a
n
d
 
k
n
o
w
 
w
h
a
t
 
h
a
p
p
e
n
e
d
.
 
*
/

f
r
e
e
_
q
n
o
d
e
(
s
u
c
c
)
;

}
 
/
*
 
e
l
s
e
 
s
u
c
c
e
s
s
o
r
 
(
o
l
d
 
o
r
 
n
e
w
)
 
w
i
l
l
 
r
e
c
l
a
i
m
 
m
e
 
w
h
e
n
 
i
t
 
s
e
e
s
 
m
y

c
h
a
n
g
e
 
t
o
 
t
h
e
 
o
l
d
 
s
u
c
c
e
s
s
o
r
’
s
 
s
t
a
t
u
s
 
w
o
r
d
.
 
*
/

}
 
e
l
s
e
 
{

/
/
 
I
 
d
o
n
’
t
 
s
e
e
m
 
t
o
 
h
a
v
e
 
a
 
s
u
c
c
e
s
s
o
r
.

i
f
 
(
c
o
m
p
a
r
e
_
a
n
d
_
s
t
o
r
e
(
&
L
-
>
t
a
i
l
,
 
I
,
 
0
)
)
 
{

f
r
e
e
_
q
n
o
d
e
(
I
)
;

}
 
/
*
 
e
l
s
e
 
a
 
n
e
w
c
o
m
e
r
 
h
i
t
 
t
h
e
 
t
i
m
i
n
g
 
w
i
n
d
o
w
 
o
r
 
m
y
 
s
u
c
c
e
s
s
o
r
 
i
s
 
i
n

t
h
e
 
p
r
o
c
e
s
s
 
o
f
 
l
e
a
v
i
n
g
.
 
 
S
o
m
e
b
o
d
y
 
w
i
l
l
 
d
i
s
c
o
v
e
r
 
I
’
m
 
g
i
v
i
n
g

t
h
e
 
l
o
c
k
 
a
w
a
y
,
 
a
n
d
 
w
i
l
l
 
f
r
e
e
 
m
y
 
q
n
o
d
e
 
f
o
r
 
m
e
.
 
*
/

}
}
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