
The Y2K Problem:
Technological Risk and Professional Responsibility

Mark Manion
Drexel University
rnanionrn@drexel.edu

William M. Evan
The Wharton School

University of Pennsylvania

T
he Y2K problem evokes two contrasting responses:
technological optimism and technological pessimism.
The optimist sees the Y2K problem as only a poten-

tial technological failure, mostly because s/he has boundless
confidence that is can be solved by technology, through rig-
orous compliance procedures. The pessimist, on the other
hand, argues that the problem is actual, not potential. Efforts
to make computer networks Y2K compliant have already
entailed massive costs to the U.S and the world. Some re-
searchers even claim that the Y2K problem already consti-
tutes the single most expensive technological failure known
to mankind. Moreover, the Y2K problem might lead to the
most expensive wave of litigation in human history.

This problem has prompted President Clinton to approve
the I~ar 2000 InJ~rmation and Readiness Disclosure Act, signed
into effect October 19, 1997. In this Act, Congress made
public the following facts:

(A) At least thousands but possibly millions of informa-
tion technology computer systems, software programs, and
semiconductors are not capable of recognizing certain dates
in 1999 and after December 31, 1999, and will read dates in
the year 2000 and thereafter as if those dates represent the
year 1900 or thereafter or will fail to process those dates.

(B) The problem described in subparagraph (A) and re-
sulting failures could incapacitate systems that are essential
to the functioning of markets, commerce, consumer prod-
ucts, utilities, government, and safety and defense systems,
in the United States and throughout the world.

(C) Reprogramming or replacing affected systems before
the problem incapacitates essential systems is a matter of
national and global interest. 1

By removing the first two digits of the year, hundreds of
thousands of computer programs that keep our economy
stable are on the verge of a meltdown. This is truly ironic,
because without computers and their associated communi-
cations systems, much of industry, commerce, transport and
distribution, government, the military, health services, edu-
cation and research, etc. would grind to a halt. Now, be-
cause of a computer malfunction, they may all grind to a halt.
What will happen if we lose our electricity, telephones, ac-
cess to banks and money, food distribution, water supply,
automobile fuel for days, weeks, even months?

Given the widespread diffusion and complex interdepen-
dencies existing between companies and countries through-
out the industrialized and developing worlds, the potential
confusion resulting from this built-in technological failure
could be truly global in nature. The OECD reports that there
exist much dissimilarity between the various countries in
terms of their Y2K compliance and readiness. Since the Y2K
problem is a "systems" problem, viz., even if one country
gets its house in order, countries that have not done so may
still adversely affect it. In fact, severe economic consequences
such as a major global recession are predicted, says Dr. Ed
Yardeni, chief economist and managing director of Deutsche
Bank Securities. Yardeni predicts, "It could be as bad or
worse than the 1973-1974 global recession. ''2 Yardeni is not
alone in his prediction. 3

Anticipation of the Problem

Our dependence upon computer and communication sys-
tems is growing at a rapid rate, but as society becomes more
dependent on computers, we also become more vulnerable
to computer malfunctions. Computer systems by their very
nature are unreliable and unpredictable and society has yet
to come to terms with the consequences. The Y2K problem,
now looming menacingly, was, in fact, anticipated, and hence
completely avoidable. This particular example of technologi-
cal failure in not the result of so-called "unintended conse-
quences" of technologyZ-- this problem was foreseeable and
fully anticipatible.

As early as 1984, an article appeared in Computerworld
diagnosing the problem and calling for programmers and
managers to take heed of the date conversion difficulties
that would happen at the turn of the century. 5 Gillin, the
editor of Computerworld, reported the findings of William
Schoen, the programmer who first identified the year 2000
problem. He discovered the problem in 1983 while working
at one of the Big Three automakers. As Schoen attests, data
processing people had known about the risk as early as the
1970s, but, as Schoen puts it, "It's just that no one thought
their codes would last that long. ''6

Schoen even designed a programming solution to the pre-
dicament, calling it the Charmar Correction, a cure for "the
serious problem ignored by the entire data processing c o r n -

24 Computers and Society, December 1999

http://crossmark.crossref.org/dialog/?doi=10.1145%2F572199.572205&domain=pdf&date_stamp=1999-12-01

munity." He then proceeded to create a consulting com-
pany, Charmar Enterprises, and went on a campaign to mar-
ket his "correction" to the problem. However, he elicited
only two sales for the Charmar Correction, and dissolved
Charmar Enterprises in 1984. The sale price for the Charmar
Correction was a mere $995.00. This is indeed ironic, given
the millions, even tens of millions that many corporations
and other organizations are now paying to "fix" theY2K prob-
lem. Schoen was not alone, however, in campaigning for
attention to the date-field encoding problem. As early as 1960
Greg Hallmuch of the U.S. Bureau of Standards was raising
the issue. 7 In 1967 Susan Jones, assistant director of the
Department of Transportation was urging Congress to ad-
dress the date conversion situation. 8

In addition, many claims have come from the program-
ming community that their urgings to top management of
their corporations to address the potential problem were all
ignored up until very recently. The question of responsibility
arises: how could management have been so shortsighted in
the first place? Even worse, one must be able to account for
how, once they became aware of the problem, most major
companies could respond so lethargically, as if in deep de-
nial. In short, how could we have let it happen? The answer
to this question is not as easy as it seems.

This essay constructs a complex, ramified argument
through which these questions can be answered. To this end,
this paper analyses 1) the hazards and costs of the Y2K prob-
lem, 2) the causes of the problem, and 3) the
professionalization of computer programmers and software
engineers.

The Hazards and Costs of Y2K.

There are at least three types of systems that are affected by
the date conversion problem. They are: personal computers,
mainframe computers and the software running on them,
and embedded microprocessors. The scope of the problem
is extensive, but the problems associated with embedded
microchips is especially crucial, given their pervasive utiliza-
tion in most, if not all, of our sociotechnical critical infra-
structure and safety-critical systems. The potential hazards
associated with Y2K non-compliance are serious and far-
reaching.

Commercial risks and potential losses associated with
mainframe dysfunction, as well as individual risks and losses
associated with PCs pose serious harm to businesses and
consumers. But the risks and dangers associated with em-
bedded chips are especially critical, since they involve seri-
ous threats to our entire critical infrastructure, including all
safety-critical, financial-critical, and health-critical systems.
They are threats to our social and political structures.

The estimates for overall expenditures to correct the Y2K
problem are increasing steadily. The current figures (Octo-
ber 1998) estimate US costs to be anywhere from $150

billion to 600 billion dollars. 9 Worldwide costs are estimated
to total about $1 - 2 trillion. *°

Litigation costs alone are estimated to be more than $1
trillion. Experts project that costs to most large corporations
will average around $30-$50 million. With some 300 bil-
lion+ lines of code to inspect, and at a cost of $10, $15,
sometimes $20 a line, once can see where the expense comes
from. Some experts claim that the problem is going to set
the IT industry back 30 years. 11 The statistics in Table 1
illustrate the general costs to fix the problem.

Table 1. General Costs to Fix The Y2K Problem ~2
Corporation Y2K Budget Lines of Code People on Project
Atlantic Energy $3.5M 25 M 7
Canadian Imperial $150 M 75-100 M 250-300
Bank of Commerce
C. R. Bard $11M 8M 10
Merrill-Lynch $200 M 170 M 300
Nabisco $22 M 17 M 50-60
Union Pacific $44 M 72 M 104

As one can see, the disruptive consequences of Y2K are
enormous and hence the severity of the problem demands
some sort of accountability for wrongdoing and responsibil-
ity for harm in such grievous circumstances. Congress, how-
ever, has recently short-circuited the need for accountability
by succumbing to corporate pressures to enact legislation
limiting liability for losses due to the Y2K problem. 13

Causes of the Y2K Problem

The most common misconception about Y2K is that it is a
single problem. Unfortunately, this perspective had created a
commonly held belief that the "problem" is trivial, although
widespread, and that a single solution is possible. In reality,
the causes and the solutions are multifarious and complex.
As one computer guru put it:

It [Y2K]...wasperpetrated by people who decided that what we
did yesterday was good enough for today and did not look out
for tomorrow and evaluate the inevitable consequence of cut-
ting corners. It was exacerbatedby people who scoffed at warn-
ings and were in denial and irresponsible. It was turned into a
crisis by people who left it to the last minute.*4

This section discusses the complex set of reasons and
causes at the root of the perpetuation, exacerbation and cri-
sis construction of the Millennium bug. Although the causes
are numerous, the interaction of three factors--technical,
programming, and managerial--can be identified as a flame-
work for analyzing the problem.

Technical factors

Lack of internationally accepted date standards. There exist no
universal standard for date representation. Following the
National Institute of Standards of Technology, the U.S. pro-

Computers and Society, December 1999 25

tocol is month-day-year, so January fourth, nineteen ninety-
eight would be 01-04-98. Canadians and Britons reverse day
and month so that same day it would be 04/01/98, or "April
Fool's day. The Scandinavians use yet another system, put-
ting the year first: 98.01.04. The International Organization
for Standardization has as its standard: 1998:01:04. Notice
that this standard includes the four-digit year. The lesson to
learn is that standardization is crucial in computerization.
The industry needs to universalize its standards of opera-
tion, as well as standardize and keep extensive records on
date-field labeling, programming documentation, and record
keeping.

High cost of computing. The second technical factor was
simply due to the primitive state of computing technology in
the beginning. In the days of Hollerith cards, computer space
was at a premium and computer memory was very expen-
sive. Given that programmers wanted to conserve computer
memory and storage space, which at the time was extremely
expensive, they ended up encoding calendar dates in a six-
digit format mmddyy, rather than an eight-digit format. This
equals a 40% saving for relatively no loss of information,
and hence capital. This may account for the original deci-
sion for a six-digit date format.

Programming factors
Unexpected tenacity of original programs. Most programmers
did not envision that the programs they wrote 30 years ago
would still be running at the end of the 20 ~h century. This
permitted the development of psychological processes such
as rationalization, dissociation, and other mechanisms of
psychic numbing to avoid the cognitive dissonance between
what they knew to be wrong, but their insistence on continu-
ing their defective practice nevertheless.

Code Re-Use. A fourth complication is that virtually all
new applications have algorithms from previous systems. The
re-use of algorithms that have a hidden date-processing fault
is one reason the Y2K problem is so extensive. 15 Inciden-
tally, this fact is what likens Y2K to a virus: faulty algorithms
get used and re-used, spreading their deadly payload to more
and more systems.

Since successive applications are often built on earlier
programs, or incorporate subroutines from other programs
into their own structure, this means that successive applica-
tions are constructed on the basis of what could be faulty
data.

Programs are still written using old algorithms. Even the
best and most modern code in the world could be hamstrung
by historical data that are faulty. 16 In fact, much software,
which vendors and manufacturers knew were "infected" with
the "millennium bug", have continued to be sold until very
recently.'7

Systems compatibi&y. Systems operating software, as well
as customized programs, have been designed to be compat-
ible with older versions. Out-of-date programs have supported

leading edge replacement systems. Designing new systems
to be compatible with older systems is generally a resource-
ful way to maximize efficiency. This feature may be con-
sumer and producer friendly, but if this is done neglecting
the values of quality, reliability, and science, the move to
universal compatibility will inevitably lead to the design of
faulty systems. Even when a generally good thing, systems
compatibility allowed the "bug" to spread like a virus or
bacteria. Moreover, the conversion problem was not ad-
dressed when designing systems for compatibility.

Managerial factors
Managerial accounting protocols. One major cause of the prob-
lem stems from the fact that accounting procedures have
treated software expenditure to be an expense in the period
incurred. This means that spending money on maintaining
software has been treated like a telephone bill. It gets paid
regularly, but at the end of the day it is perceived as not
increasing a corporation's net worth. This means that capital
expenditure for fixing the problem is seen as coming off the
bottom line. It was difficult to convince a CEO or CFO that
a $5 million corporate expense to solve the Y2K problem, in
the early 1990s, was a "good thing to do." This accounts for
the management inertia on this issue. '8 In other words, Y2K
compliance has been a "tough sell."

How do you convince management to take on a multi-
million-dollar project where the return investment is zero? It
shows stubbornness, tenacity, and ignorance of other factors
stemming from bureaucratic rationalism, efficiency, and capi-
tal accumulation. 19 These kinds of factors are the result of
rigid organizational hierarchies - the typical obedience chain
of positive and negative reinforcement. Left unchecked, this
led to amoral functionalism and a sense of amoral rational-
ity.

Decisional Inertia. Another cause of the problem is deci-
sional inertia on the part of CEOs and CIOs. One cause of
the indecisiveness is that many top managers have been de-
ferring attention to the problem in the hope that a "silver
bullet" may come along to solve the problem. But most ex-
perts acknowledge that a "silver bullet" is very unlikely to
emerge. "There are hundreds of computer languages and a
wide variety of systems" reports Kazim Isfahani, industry
analyst at Giga Information Group, an IT consultancy
group. 2° This is a perfect example of the false optimism of
technology and progress. The belief that for every problem
of technology, a solution is found with a technological "fix."

Another managerial cause of decisional inertia that led
to failure to act in a timely manner is top management's
general ignorance of management information systems. Cor-
porate and governmental management certainly appreciated
the benefits and results of computerization, but took little or
no interest in understanding the complexity of information
systems management. Hence one important lesson to learn
from Y2K is that top management must understand infor-

26 Computers and Society, December 1999

mation technology. In order to limit the effect of such causes
in the future, one must force CEOs and CIOs to be skilled
and knowledgeable about technology that is the lifeblood of
their corporation. Moreover, business schools must train
their students how to manage organizations that depend on
complex information technology systems.

As recently as a few years ago, programs were being writ-
ten that did not take into account date changes and date
fields in data processing. In fact, one survey reports that
only 20 percent of America's biggest companies have de-
vised a full-fledged strategy to deal with the problem. 21 Timely
planning depends on whether managers were alert to the
issue. Most were not because the information technology
(IT) industry was either in denial, or negligent. Even when
managers became aware of the problem, they also exhibited
denial and neglect. A typical response from industry experts
is, "I won't be in this position or this company in the year
2000. It's not my problem. ,,= For example, as recently as
December 4 1998, the Wall &reetJournal quoted a corporate
executive as stating, "This year 2000 stuff is waayyyy over
done. It's complete, complete lunacy. "23

Given the grave business, legal, and social risks and haz-
ards caused by Y2K, and, given the elucidation of such a
large set of causes as the seven identified and discussed above,
it is not difficult to conclude that accountability for safe,
reliable, and beneficial information technologies has been
greatly eroded in the Y2K case. In the next section, we turn
to a discussion of the role of professionalization in the con-
trol and management of potentially risky technologies such
as computerization.

Professionalization of Software Engineering

In his 1914 book Business: A Proffbssion, Brandeis identified
two distinctive attributes of a profession: the mastery of a
systematic body of theoretical and technical knowledge and
the development and internalization of an ethic of service. 24
Although he did not persuade business to heed his advice
about an ethic of service, his blandishments are as timely as
ever with respect to the professionalization of software engi-
neers and computer programmers. Well-established profes-
sions communicate their ethic of service through a code of
ethics and a procedure for monitoring their members' com-
pliance with the ethical principles enunciated in the code.
Hence, one way to determine a profession's self-acknowl-
edged ethic of service is to look at their code of ethics. When
one looks at the code of ethics of computer programmers
and software engineers, it would seem that many of the prin-
ciples of the code are violated in the case of Y2K.

Take for example the code of ethics of the Association of
Computing Machinery (ACM), one of the most established
of computing professions. As a "General Moral Imperative,"
the code of ethics of the ACM implores its members to

Contribute to society and human well being.., minimize nega-
tive consequences of computing systems, including threats to
health and safety.

Now, given the extent and extremity of the risks and
causes of the Y2k problem discussed above, it is safe to
assume that this code was violated.

Take also ACM General Moral Imperative 1.2, which
s t a t e s

Avoid harm to others...the computing professional has
the...responsibility to report any signs of systems dangers that
might result in serious personal or social damage. If one's supe-
riors do not act to curtail or mitigate such dangers, it may be
necessary to "blow the whistle" to help correct the problem or
reduce the risk."

Obviously, few, if any, computer professionals followed
this code in the case of Y2K. Or, take ACM Specific Profes-
sional Responsibility 2.1:

...Strive to achieve the highest quality...in professional
work...The computing professional must strive to achieve qual-
ity and to be cognizant of the serious negative consequences
that may result from poor quality in a system."

And ACM Specific Professional Responsibility 2.5:

...Give comprehensive and thorough evaluations of computer
systems and their risks...Computer professionals are in a posi-
tion of special trust, and therefore have a special responsibility
to provide objective, credible evaluations to employers, clients,
users, and the public...any signs of danger from systems must be
reported to those who have opportunity and/or responsibility
to resolve them. ,,25

Computer professionals are responsible for the effective
development and operation of information systems. When
major events are known to occur that pose significant risks
or that will compromise the effective operation of these sys-
tems, such as the year 2000 date problem, computer tech-
nologists have a professional responsibility to alert manage-
ment and take corrective action in a timely manner. As com-
puter ethicist Helen Nissenbaum writes, "If any reasonable
person fails to take precautions of which he is capable, and
that any reasonable person with normal capacities would have
taken in those circumstances, then he is not excused from
blame merely because he did not intend the outcome. ''26 Since
computer professionals failed to take reasonable precautions
to avoid the Y2K problem, they are collectively responsible
for the predicament, even if they did not intend to cause
such a problem. Nor could they have fulfilled their responsi-
bilities simply by reporting the problem to top management
without any further action. This belief is shared by members
of the computing community itself and is expressed by Leon
Kapplelman, who states that

Computers and Society, December 1999 27

Potential fallout from Y2K problems will put our [the comput-
ing profession] credibility to the test of fire. Let's face it. Good
intentions aside, computing professionals created the Y2K prob-
lem. Notwithstanding varying degrees of complicity by engi-
neers, auditors, accountants, users, management, and others,
the simple fact is that the code is broken and the code is the
responsibility of the computing professionY

Ed Yourdon, computer and Y2K consultant, makes ex-
plicit the connection between a profession's adherence to a
code of ethics and its role in the mitigation of technical
failures, specifically the Y2K problem, when he states that
"if we computing professionals had insisted on following that
code of ethics [i.e., the ACM code], we might have avoided
the year 2000 problem altogether...,,28

The professionalization of computer programmers and
software engineers has been, in many ways a slow process.
The first major step was a workshop on Software Engineer-
ing Ethics held at Carnegie Mellon University's Software
Engineering Institute. 29 Many of the topics at the workshop
were of a pedagogical nature - how best to institute ethical
concerns into the computer science and software engineer-
ing curriculum. It was as early as 1975, however, that spe-
cialists were calling for the professionalization of computer
programming. 3° Palmer's article stressed the benefits that
could result from the licensing of computer programmers,
both for working professionals and their clients, as well as
the larger society that depends on computers and the soft-
ware that runs them.

There are two opposing views as to whether computer
programmers should be required to submit to a licensing
procedure. One side states that the licensing of computer
professionals is one way to achieve a heightened sense of
accountability, responsibility, and knowledge in software
development. The other side states that governmental regu-
lation should not get involved because it will stifle the cre-
ativity and innovation that computer programmers are known
for. 31

Before computer programmers and software engineers
can or cannot be held liable for their actions, however, they
need to clearly establish themselves as a profession, and, as
we have stated, the process has been slow. For instance, in
the mid-70s the Special Interest Group on Software Engi-
neering (SIGSOFT) was formed by the ACM, and the ACM
Software Engineering Notes and IEEE Transactions on Soft-
ware Engineering were first published. In 1993 the ACM and
IEEE Computer Society established a Joint Steering Com-
mittee for the Establishment of Software Engineering as a
Profession. 32

Finally, in January of 1994, the IEEE Computer Society,
in consultation with the ACM, drafted a Software Engineer-
ing Code of EthicsY Again, as with the ACM Code, many
of the principles of this proposed code were violated in the
case of Y2K. For instance, Principle 1.08 states that the pro-
fessional software engineer shall

Ensure adequate documentation on any project on which they
work, including a log of the problems discovered and solutions
adopted.

If this would have been followed in the case of Y2K, the
actual place of date-fields in complex programs, as well as
code that is re-used, would have been identified and docu-
mented, thus alleviating the literally thousands of man-hours
already spent on identifying, line-by-line, the two-digit date
fields in order to make the program Y2K compliant.

Take for example principle 1.12 that states

Whenever appropriate, delete outdated or flawed data.

If this had been heeded, programmers would have re-
fused to use two digit date-fields long ago, and not continued
to use them until very recently.

Another principle that was violated is 2.0 which states:

Disclose to appropriate persons or authorities any actual or
potential danger to the user, a third party, or the environment,
they reasonably believe to be associated with the software or
related documents for which they are responsible, or merely
know about.

According to this principle, programmers have a respon-
sibility to insist that top management take action in the event
that software, which they write, poses a "potential danger"
to the user or a third party. It is safe to say that Y2K poses
more than potential danger to individuals, corporations, and
society at large, given everything demonstrated above.

Principle 2.04 states that professional software engineers
must

Cooperate in efforts to address matters of grave public concern
caused by software or related documents.

This principle obligates professionals to go beyond merely
reporting on problems, but also to help "coordinate efforts"
that cause "grave public concern." This, we can assume, would
include the possibility of blowing the whistle on companies
that refused to address the problem that Y2K has caused,
even after the problem was brought to top management. In
this sense, this principle is analogous to ACM's General Moral
Imperative 1.2. This calls for professionals to recognize that
their responsibilities go beyond the client, even self-interest,
in the spirit of an ethic of public service.

To recognize the wider social responsibilities of the pro-
fession, principle 2.07 states

[Do] not put self-interest, the interest of an employer, the inter-
est of a client, or the interest of the user ahead of the public's
interest.

Given that computers have a central and growing role in
commerce, industry, government, medicine, education, so-
cial affairs, and private use, the need for computer profes-
sionals to heed their social responsibilities can be expected

28 Computers and Society, December 1999

by the public at large. Computer professionals have in fact
realized the growing necessity of their important role in the
society at large. In 1981, as part of the growing concern over
the increasing use of computing technology in military ap-
plications, specifically, the perceived increased threat of
nuclear war, a group of computer professionals organized
what came to be known as the "Computer Professionals for
Social Responsibility" (CPSR). Its concerns cover everything
from military use of computing technology to issues of civil
liberties in cyberspace. This model organization stands as a
testament to the need for computer professionals to recog-
nize the leadership role they can, and must take, if society is
to be protected from the negative effects of computer tech-
nology. 34 In fact the Y2K problem has put into the question
the professionalism of the computing community, 35 and it is
incumbent on computer professionals to "save their sacred
honor" by responding to Y2K in a quick and thorough fash-
ion.

Conclusion

The need for a professional code of ethics arises mainly due
to the unequal balance of power between two parties - the
professional and the client. The professional has all of the
expertise upon which the client is totally dependent. In the
medical context, for example, the patient is vulnerable to the
knowledge and directives of the doctor and must have ut-
most trust that the doctor will act exclusively in the best
interest of the patient. Similar situations of vulnerability and
trust exist between lawyers and their clients. Analogously, a
vulnerable public can be harmed by technology created by
engineers employed by corporations and governments that
develop large-scale technological systems. One way to insure
that doctors, lawyers, and engineers can be trusted to act in
the interest of those they serve is to create in these profes-
sions a high level of commitment to an ethics of service.
From the perspective of the dependent and vulnerable cli-
ents, it is essential that these professions scrupulously en-
force their codes of ethics.

As society becomes more and more dependant on com-
puting technology and information systems, it becomes more
and more vulnerable to harm if these systems fail. Nothing
illustrates this more than the Y2K problem. Hence, the con-
clusion of this essay is: the computing community should
professionalize itself, by requiring their members to be li-
censed, and enforcing a code of ethics that mandates ac-
countability on the part of their members.

Y2K has already turned out to be the single most expen-
sive professional failure made in human history, and, no
matter what else Y2K may bring, it constitutes a perfect case
study in software engineering ethics, managerial ethics, and
engineering ethics. •

Notes
~ar2OOOIn3~rmationandReadinessDisclosumAct. Oct. 19, 1998, EL. 105-271, 112

Stat. 2386.
2 Harvard Business" Review, 76 (4), July/Aug, 1998, p. 162
3 Jimms, J (1998). Could Y2K cause a global recession? Fortune 138 (7) pp. 172-176.
4 %nner, E. (1996). Why things" bite back: technology and the revenge of unintended

consequences. New York: Vintage Books.
5 Gillin, B. (1984). "The problem you may not know you have", Computerworld,

February 13.
6 Ibid, p. 7.
7 Munro, Nell (1998) "The big glitch," National Journal30 (25) pp. 142-149.
8 Ibid.
9 Foremski, T. (1998, Wednesday, December 2). Millennium 'bomb' is already ticking.

Financial 77rues. hfformation Technology, pp. 1.
to Garmer Group, 7 Oct. 1998. http://www.year2OO.com/costs.btm.
it Reinke, B. (1998, October). IT industry consultant. Quoted in Phillips, William.

Here comes the millennium bug. Popular Science, 253 (4), p.92.
~2. The statistics in this table were gathered from Computerworld 31 (51), December

22, 1997, pp. 2,5,6,8 and Computerworld 32 (25), June 22, 1998, pp. 7, 8, 10.
,3 Barr, Stephen (1999). "Deal reached on Bill to limit Y2K liability." The ~shington

Post, June 30, section A, p. A012.
,4 DeJager, Peter. (1998). "It's a people problem." Available at: bttp://www.year2000.com/

archive/people.html
,5 Keough, J. (1997). Your safety net has big holes in it. Solving the Year 2000

Problem.Boston: AP Professional, Chapter 3.
,6 Fairweather, B. (1998). Not facing the future: computing chaos in the new century?

http//www.ccsr.dmu.ac.uk/resources/professionalism/millennimn/Y2Kprob.html
17. Miller, C.S. (1995). "Microsoft Wakes Up to the Problem.." InJbworld, 20 (15): 1-

3: Condon, Don. (1995) "Microsoft Tries to Rewrite Programming." InJbword
24 (6): 7-12.

,8 Garner, M. (1996) Why the year 2000 problem happened, http://www.is.ufl.edu/
bawb080h.htm.

19 Meall, L. (1995). The century's time bomb. Accounumcy, 116 (128), 52-57.
20 Foremski, T. (1998, Wednesday, December 2). Millennium 'bomb' is already

ticking, lhTnancialTimes, pp.1; Cf., Newling, R. (1998, Wednesday, December
2). No magic bullet to save the laggards. Financial Times, pp. 8

21 Peters, James. (1997) "If wishes were noises," Computerworld31 (51), December 22,
p. 2; Hicks, John (1997). "Many companies just starting to address the Y2K
problem." Byte 21 (9), p. 24-28.; Feine, Jacob. (1997). "Slow responses to year
2000 problem." IEEESoftware 14 (3), pp. 126-133.

22 Furma, Jeffand Martola, Alberta (1994) "Year 2000 denial," ComputerworM 28 (43),
pp. 70-

23 Binkley, Christina (1998). "Millennium bugged: the big Y2K problem is the silly
questions," ~ l l Street Journal, December 4, p. 1.

24 Brandeis, L. (1914) Business:A Pro3~ssion, Boston: Small, Maynard, and Company.
25 We are grateful to the paper by Cappell and Kappelman, Cappel, J. and Kappelman,

L. (1998) "The Year 2000 Problem and Ethical Responsibility: A Call to Action,
In~brmation Society 14 (3), pp. 187-197 for drawing attention to the particular
codes cited.

26. Nissenbaum, Helen, (1994) "Computing and Responsibility," Communications of
theACM37 (1), pp. 77.

27 Kappelman, Leon (1999) "Saving Our Sacred Honor," Communications oftheACM
42 (5), p. 23.

2~ Yourdon, Ed. (1998) "The Moral Dimension of Y2K," Computerworld http://
www.computerworld.com/home/print.nsf/atl/98121482A6 (accessed 3/24/99).

29 .Gotterbarn, Donald (1990) "A Workshop Report: Software Engineering Ethics,"
Journal of Systems Software 11 215 -216.

30 Palmer, George (1975). "Programming, The Profession That Isn't," Datamation 21
(4), pp. 23-29.

3m. Gotterbarn, Don and Webber, James (1994) "Can Computer Programmers Commit
Malpractice?" Computerworld, 28 (35), pp. 37-41.

~2. Bagert, D. (1999). "Taking the Lead ill Licensing Software Engineers,"
Communications of the ACM 42 (4), pp. 27-29.

" . Gotterbarn, D., Miller, K. and Rogerson, S. (1997) "Software Engineering Code
of Ethics," Communications oftheACM40 (t), pp. 110-118.

34 To find out more information about CPSR, please visit their web-site at: http://
www.cosr.orff

35. Pollack, Andrew (1999). "Year 2000 Problem Tests Professionalism of Programmers."
The New York Times, May 3, section C, page 1.

Computers and Society, December 1999 29

