
Translation of Attribute Grammars
into Procedures

TAKUYA KATAYAMA
Tokyo Institute of Technology

An efficient method for evaluating attribute grammars by translating them into sets of procedures is
presented. The basic idea behind the method is to consider nonterminal symbols of the grammar as
functions that map their inherited attributes to their synthesized attributes. Associated with the
nonterminal symbols are procedures that realize the functions. The attribute grammar is translated
into a program consisting of these procedures. The essential point about this method is that attribute
grammars are completely compiled into procedures, in contrast with evaluation algorithms that work
interpretively in a table-driven manner. No information is stored in the nodes of derivation trees.

Although this evaluation method is applicable principally to absolutely noncircular attribute
grammars in which the dependency relation among attribute occurrences of every production rule
does not contain cycles, it is shown how the method is extended to the general noncircular attribute
grammars. Problems of evaluating a set of attributes simultaneously and of recursive descent
evaluation are also discussed.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory--semantics; D.3.4 [Programming Languages]: Processors--translator writing systems and
compiler generators; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming
Languages

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Attribute grammar, attribute evaluator

1. INTRODUCTION

A n a l g o r i t h m to e v a l u a t e a n a t t r i b u t e g r a m m a r is p r e s e n t e d . As is wel l k n o w n ,
t h e a t t r i b u t e g r a m m a r o f K n u t h [14, 15] is a ve ry c o n v e n i e n t too l for spec i fy ing
t h e s e m a n t i c s of p r o g r a m m i n g l anguages , e spec i a l l y for a u t o m a t i n g c o m p i l e r
c o n s t r u c t i o n . Seve ra l c o m p i l e r g e n e r a t o r s y s t e m s have b e e n b u i l t b a s e d on i t [5,
10, 20]. T h e use o f a t t r i b u t e g r a m m a r s is n o t l i m i t e d to c o m p i l e r c o n s t r u c t i o n ;
o t h e r a p p l i c a t i o n s inc lude t e x t e d i t i n g a n d p r o g r a m o p t i m i z a t i o n [2, 4]. R e c e n t
work sugges t s t h a t a t t r i b u t e g r a m m a r s c a n be u sed for h i e r a r c h i c a l a n d f u n c t i o n a l
p r o g r a m m i n g [11].

W e m u s t have e f f i c i en t m e t h o d s for a t t r i b u t e e v a l u a t i o n for t h e s e a p p l i c a t i o n s
to have p r a c t i c a l i m p o r t a n c e . S e m a n t i c a n a l y s i s a l g o r i t h m s b a s e d on a t t r i b u t e

Author's address: Department of Computer Science, Tokyo Institute of Technology, 2-12-10okayama,
Meguro, Tokyo, Japan 152.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1984 ACM 0164-0925/84/0700-0345 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984, Pages 345-369.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F579.586&domain=pdf&date_stamp=1984-07-01

346 • T. Katayama

grammars, however, are currently not efficient enough compared with ad hoc
algorithms used in the usual handwritten compilers. The lack of good algorithms
for attribute evaluation has restricted their usage to experimental compilers.
Although many efforts have been made to obtain efficient evaluators [3, 6, 7, 8,
12, 13, 18, 19], we have not yet succeeded in getting an evaluator applicable to
production quality compilers.

Here we propose an efficient and natural algorithm for attribute evaluation in
which the administrative tasks of keeping track of attributes both already and
not yet evaluated are put into the preprocessing or syntax analysis phase. The
evaluation phase concentrates on the evaluation of attributes. The algorithm
accepts absolutely noncircular attribute grammars, although extensions to gen-
eral noncircular attribute grammars are possible.

For the absolutely noncircular grammars, Kennedy and Warren proposed a
tree walk algorithm for attribute evaluation [12], and Saarinen improved it in
the output-oriented form [21]. Their tree walk evaluator is a recursive procedure
that visits nodes of derivation trees and evaluates their attributes. Each node of
a derivation tree is equipped with two data fields, one for the state that shows
attributes already evaluated and the other for the attribute values. When the
evaluator visits a node with a set of the inherited attributes currently available,
called an input set, it finds an appropriate sequence of actions on the basis of
the input set and the state of the node. The actions are either computations of
attribute values by means of semantic functions or visits to descendant nodes.
After the actions have been executed, the state of the node is updated. In general,
nodes may be visited several times with different input sets and node states. The
evaluator is table driven.

In our algorithm, we consider nonterminal symbols to be functions that map
their inherited attributes to their synthesized attributes. We associate procedures
to realize these functions with the nonterminal symbols. The entire attribute
grammar is then transformed into a set of mutually recursive procedures. Our
algorithm is output oriented in the sense of Saarinen's.

A difference between the tree walk evaluators and ours is that we do not attach
any information to the nodes of derivation trees. We thoroughly analyze data
dependency among attributes and completely compile the original grammar into
procedures, so we do not require the states of nodes to indicate which attributes
have been evaluated and which are left unevaluated. Another difference is storage
allocation for attributes. In the tree walk evaluator of Kennedy and Warren, the
attributes are stored in the nodes of derivation trees. Saarinen's evaluator stores
some of them in the nodes and the others in a stack. We, however, store all of
them in the stack of the activation records of procedure calls.

When applied to an attribute grammar whose attribute evaluation process can
be performed in a single scan from left to right [3], our algorithm can generate
an evaluator that can be combined with the top-down parsers to result in
recursive-descent compilers if the underlying context-free grammars are LL(k).

In the following, we first state how absolutely noncircular attribute grammars
are translated into procedures and then extend the method to general noncircular
grammars. Next, we describe our storage allocation strategy and finally consider
recursive-descent evaluation.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

Translation of Attribute Grammars into Procedures ° 347

2. DEFINITIONS AND NOTATIONS

An attribute grammar G is a context-free grammar G = (VN, VT, P, S) augmented
by semantic rules. In the following we use the same symbol G to denote both the
entire attribute grammar and the underlying context-free grammar. We assume
without loss of generality that the initial symbol S never appears in the right
side of any rule in P.

With each symbol X • VN U VT is associated a set of attributes that is denoted
by A [X]. A [X] is a disjoint union of the set I[X] of inherited attributes and the
set S[X] of synthesized attributes. We assume that I[X] = 0 if X = S and S[X]
= O i f X • VT.

If p is a rule

p: Xo ---* X1X2 " " X w

and a is an attribute of Xh, that is, a • A[Xh](k = 0, 1 np), we say that p
has an attribute occurrence a.k. It is called a synthesized occurrence if a • S[Xh]
and an inherited occurrence if a • I[Xh].

A semantic function [p,v is associated with every synthesized occurrence v = a.k
for k = 0 and inherited occurrence v = a.k for k = 1 , . . . , np, and is defined in
terms of other attribute occurrences of p. We denote the set of these attribute
occurrences by Dp.v. It is called a dependency set of fp.~. If Dp,~ = {v l , . . . , v,},
then fp,v is a mapping,

domain (vl) x . . . x domain(vn) - . domain(v).

Let p be a production rule Xo --~ X1X2 • • • Xnp. A dependency graph DGp for
the production rule p, which gives dependency relationships among attribute
occurrences of p, is defined by

DGp = (DV~,, DE,)

where the node set D Vp is the set of all attribute occurrences of p and the edge
set DEp is the set of dependency pairs for p. Formally

DVp = {a.kl k = 0 , . . . , np and a • A[Xh]}

DEp = {(vl, v2)l vl • Dp.~2}.

When a derivation tree T is given, a dependency graph DGT for the derivation
tree T is defined to represent dependencies among attributes of nodes in T. DGT
is obtained by pasting together DGp's according to the syntactic structure of T.
Let T be a derivation tree, p: Xo -* X1 • • • X,p, the production rule applied at
the root of T and Th, the kth subtree of T. DGT is recursively constructed from
DGp, DGT 1 DGT. by identifying the nodes for attributes of Xh in DGp with
the corresponding no~es for the attributes of the root of Th in DGT,, 1 <_ k <_ np.
Figure 1 gives an example of DGT for the attribute grammar given in Example 1
(see Section 3, p. 352).

An attribute grammar is noncircular if DGT does not contain cycles for any T.
Let T be a derivation tree with root note X • Vz~. DGT determines an IO graph

IO[X, T] of X with respect to T. It gives an input-output relationship among

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

348 • T. Katayama

Fig. 1. An example of DGT.

F

1

attributes of X, which is realized by the derivation tree T. That is,

IO[X, T] = (A[X], EIo[T D

where an edge (a, s) is in EIo[T] C A[X] × S[X] iff there is in DGT a path from
va to v,, where va and vs are nodes for attributes a and s of the root of T, and the
attribute a is required to evaluate the synthesized attribute s.

For general attribute grammars, there may be finitely many IO graphs for
X E VN. We denote the set of these IO graphs by IO(X), that is,

IO(X) = {IO[X, T]l T is a derivation tree}.

When IO(X) = {IO1, I O 2 , . . . , ION} and IOk = (A[X], Ek), superimposing IOk
results in a superimposed IO graph

IO[X] = (A[X], EIO), E i o = uN=zEk
which represents possible input-output relationships among attributes of X. An
algorithm to obtain IO(X) and IO[X] is given in the literature [12, 15].

For a synthesized attribute s of a nonterminal symbol X, its input set in[s, X]
is defined to be a set of attributes that may be required to evaluate s, that is,

in[s, X] = {al(a, s) is an edge of IO[X]}.

For a production rule p: Xo --* X1X2 • • • X,p its augmented dependency graph
is defined by

where

DG* = (D V*, DE*)

DV~= DVp

DE* = DEp U {(a.k, s.k) l k -- 1 ,np and (a, s) E IO[Xh]}.

DG* represents a dependency relation among attribute occurrences in p, which
is realized partly by semantic functions and partly by derivation trees.

An attribute grammar is absolutely noncircular iff DG* does not contain cycles
for any production rule p.

An example of IO[X] and DG* is given in Table I.
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

Translation of Attribute Grammars into Procedures • 349

Table I. Dependency Graphs, IO Graphs, and
Augmented Dependency Graphs for G1.

Dependency Graphs DGpS

DG~ DG 2 DG 3

DG4 DG 5

IO Graphs I0 [X]'s
IO[F]: [] [O [L] , I O [B] : [~

Augumented Dependency Graphs DG;'s

k B B

DG; DG~ G~

3. TRANSLATION OF AN ABSOLUTELY NONCIRCULAR ATTRIBUTE
GRAMMAR INTO A SET OF PROCEDURES

Let X be a nonterminal symbol of an absolutely noncircular attribute grammar
G = (VN, VT, P, S) and let s be a synthesized attribute of X. We associate with
each pair (X, s) a procedure

Rx,,(vl vm, T; v)

where vl , vm are parameters corresponding to the attributes in I = in[s, X],
T is a derivation tree, and v is a parameter corresponding to s. Parameters to the
left (right) of ";" are input (output) parameters. This procedure is intended to
evaluate the synthesized attribute s when supplied with the values of attributes
in I and a derivation tree T. When given the initial derivation tree To and a
synthesized attribute So of the initial symbol S, we begin evaluation of So by
executing the procedure call statement

call Rs.,o(To; Vo)

where v0 is a variable corresponding to So. (We assume without loss of generality
that the purpose of attribute evaluation is to know the value of the only attribute
So of S, though a more general case is touched upon in the later discussion.)

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

350 • T. Katayama

In the following we describe how to construct the procedure Rx,~(v~ vm,
T; v). First we have to introduce variable symbols for attribute occurrences.
However, for the sake of convenience, the same symbols are used for attribute
occurrences and variables that correspond to them. In what follows, Xo = X, v =
s.0, and {v l , . . . , v~} = {a.0 [a E in[s, Xo]}.

The procedure Rx,~ is formed in the following way. It first examines what
production rule is applied at the root of the derivation tree T and then selects a
sequence of statements to calculate values of attribute occurrences of the pro-
duction rule. We assume that nodes in derivation trees are labeled by the names
of production rules applied there. The procedure has the form

procedure Rx.s(vl vm, T; v)
case production(T) of

pl: Hp,,~(vl vm, T; v)
P2: Hp~,~(vl v~, T; v)

end
end

where (1) "production(T)" is a function that returns the name of the production
rule applied at the root of T, (2) pl, P2 are production rules with left-side
symbol X, and (3) Hp.s (vl , V,n, T; v) is a sequence of statements for evaluating
s when the production rule at the root of T is p.

Considering that absolute noncircularity allows attribute occurrences of p to
be evaluated consistently in a fixed order, whatever derivation trees follow right-
side nonterminal symbols of p, construction of Hp,~ proceeds as follows. First,
attribute occurrences ofp on which s.0 is dependent, directly or indirectly, in the
augmented dependency graph DG$ are listed in topological order. Associated
with each attribute occurrence is a statement for computing its value. It is an
assignment statement with a semantic function as its right side when the attribute
occurrence is defined in p; otherwise it is a procedure call statement. The sequence
of these statements is Hv,~.

The construction of Hp.~ is

(1) For the production rule p: Xo ---.> X I X 2 . . . Xnp, make an augmented
dependency graph

DG* = (O V a , DE~,).

(2) From DG* remove nodes and edges that are not located on any path leading
to s.0. Denote the resulting graph by

DG*[s] = (V, E).

(3) To each attribute occurrence x E Vo = V - {i.0[i E I[X0]}, assign a
statement st[x] for evaluating x as follows.

Case 1. If x = i.k for some i E I[Xk] and k = 1 np or x = s.O(= v) for
the attribute s ~ S[Xo] that Rx.~ is to evaluate, then st[x] is the assignment
statement

x , - / p , , (z ~ , z r)

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

Translation of Attribute Grammars into Procedures • 351

where [p,x is the semantic function for the attribute occurrence x and Dp,x -
{zl zr} is the dependency set for the semantic function fp, x.

Case 2. If x = t.k for some t ~ S[Xh] and k = 1 np, then st[x] is the
procedure call statement

call Rx,,~(wl wh, T[k]; x)

where {wl,.. •, wh} = {a.k [a E in[t, Xk]} and T[k] is the kth subtree of T.
(4) Let x~, x2 XM be elements in V0 that are listed according to the

topological ordering determined by E; that is, if (xo, Xb) E E, then a < b. Then
the sequence Hp,s of statements becomes as follows:

st[x1];

st[x2];

st[xM]

Note that statements in Hp,, satisfy the single-assignment rule. It is easy to
see that the ordering xl, XM ensures that values of attribute occurrences are
determined consistently if the attribute grammar is absolutely noncircular.

So far we have only considered construction of a procedure for a particular
X E VN and s E S[X0]. Now we state how the entire attribute grammar G is
translated into the corresponding program prog[G].

We start from the start symbol S and the synthesized attribute So of S. We
first construct the initial procedure Rs.so by the algorithm we have stated. The
body of Rs,,o may contain calls of other procedures Rx,, , and they are constructed
in the same way. Repeat this process until no new procedures appear.

Let Rs,,o, Rx,,1 RxN,,N be procedures thus obtained; then the entire program
prog[G] for evaluating So becomes (declarations for variables and types are
omitted}

program
procedure Rs,,o

end;

procedure Rxl,,,

end;

procedure RXN,~ N

end;
input_derivation_tree(To);
call Rs.,o(To; Vo);
output_attribute(vo)

end
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

352 • T. Katayama

This program consists of declarations for the procedures R followed by the
statements to input a derivation tree, activate the initial procedure, and output
the value of So.

We now give two examples.

Example 1. The following attribute grammar G1 = (VN, VT, P, F) transforms
the fractional part of binary notation into the corresponding number, where
attribute occurrence a.k is denoted by Xh.a.

Nonterminals Terminals

VN = {F,L,B} VT = {0, 1,.}

Attributes

I[F] = 0 S[F] = {val}
I[LI = [pos} S[L] = [val}
I[B]= [pos} S[B] = {val}

Productions

1: F--) .L
2: L---) B
3: Lo ---) BL1

4: B- - , 0
5 : B - * 1

Semantics

F.val = L.val; L.pos = 1
L.val = B.val; B.pos = L.pos
L0.val = B.val + L~.val;
Ll.pos = Lo.pos + 1; B.pos = L0.pos
B.val = 0
B.val = 2 1' (-B.pos)

In what follows we illustrate how this grammar G1 is transformed into the
corresponding program.

First we construct dependency graphs DGp, IO graphs IO[X], and augmented
dependency graphs. These are given in Table I.

Since all the augmented dependency graphs are acyclic, the attribute grammar
is absolutely noncircular. The procedure RL for the nonterminal symbol L and
its attribute val, for example, is of the following form.

procedure RL(L.pos, T; L.val)
case production(T) of

p2: Hv2.val(L.pos, T; L.val)
p3: Hp3.val(L.pos, T; L.val)

end
end

Because the nodes of DG~ (except Lo.pos) can be topologically ordered as

B.pos, B.val, Ll.pos, L~val, Lo.val

Hp3,val is a sequence of statements

B.pos (--- Lo.pos;

call RB (B.pos, T[1]; B.val);

L~.pos (-- L0.pos + 1;

call RL(Ll.pos, T[2]; Ll.val);

Lo.val (--- B.val + Ll.val
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

Translation of Attribute Grammars into Procedures • 353

The complete form of the procedure R L is contained in the next program which
is the desired one.for the attribute grammar G1. (We dropped the suffix "0"
from Lo.)

program
procedure RF(T; F.val)

L.pos (-- 1;
call RL(L.pos, T[2]; L.val);
F.val *-- L.val

end;

procedure RL(L.pos, T; L.val)
case production(T) of

p2: B.pos ~-- L.pos;
call RB(B.pos, T[I]; B.val);
L.val ~-- B.val

p3: B.pos (-- L.pos;
call RB(B.pos, T[1]; B.val);
Ll.pos (-- L.pos + 1;
call RL(L~.pos, T[2]; Ll.val);
L.val (-- B.val + L~.val

end
end;
procedure RB (B.pos, T; B.val)

case production(T) of
p4: B. val (-- 0
p5: B.val (-- 2 ~ (-B.pos)

end
end;

input_derivation_tree(To);
call RF(To; F.val);
output_attribute(F.val)

end

Example 2. In Example 1, a single procedure is associated with each nonter-
minal symbol. Now we give an example of attribute grammars that require
multiple procedures for single nonterminal symbols. The grammar G2 = (VN, VT,
P, S) computes 4 * n when a "+1 is given as an input string, by going down and
up derivation trees twice. Multiple procedures are essential and cannot be reduced
to a single procedure even by resorting to the simultaneous evaluation algorithm
presented in the next section.

Nonterminal Terminals

VN = {S, A} VT = {a}

Attributes

I[S] = 0 S[S] = {k}
I[A] = if, h} S I A l = {g, k}

Productions Semantics

1: S ---) A S .k = A.k; A .h = A.g; A.[= 0
2: Ao --* aA1 A~.f = Ao.f + 1; Ao.g = Al .g + 1;

A~.h = Ao.h + 1; Ao.k = A l . k + 1
3: A --) a A.g = A.f; A . k = A .h

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

354 • T. Katayama

Fig. 2. Dependencies among attribute occurrences in
a derivation tree of G2.

A

+1 +1 +1

+1 +1

=

+1

Figure 2 shows how attr ibutes are evaluated. The arrows represent dependen-
cies among occurrences of attr ibutes in the derivation tree. It is easy to see tha t
the value of every k cannot be determined until all the occurrences of [, g, and h
have been evaluated. This means tha t the synthesized attr ibutes k and g cannot
be evaluated simultaneously in a single pass.

G2 is absolutely noncircular and IO graphs are

IOtS] :

'ota] : [r lg l h l k l

Prog[G2] is given below. Procedures RAg and R A k are obtained from the nonter-
minal symbol A.

program
procedure RS(T; S.k)

A.f ~-- 0;
call RAg (A.[, T[1]; A~g);
A.h ~ A.g;
call RAk(A.h, T[1]; A.k);
S.k ~ A.k

end;
procedure RAg (Ao./, T; Ao.g)

case production(T) of
p2: AI.[*--Ao.[+ 1;

call RAg(A~.f, T[1]; A~.g);
Ao.g ~--- Al.g + 1

p3: Ao.g *-- Ao.[
end

end;
procedure RAk(Ao.h, ~, Ao.k)

case production(T) of
p2: Al.h *-- Ao.h + 1;

call RAk(AI.h, T[1]; Al.k);
Ao.k ~ Al.k + 1

p3: A0.k ~ A0.h
end

end;

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

Translation of Attribute Grammars into Procedures

I Figure 3

• "'--

355

input_derivation_tree(To);
call RS(To; S.k);
output_attribute(S.k)

end

4. SIMULTANEOUS EVALUATION

In the previous section we have associated one procedure with each synthesized
attribute. However, data dependency sometimes allows several attributes to be
evaluated simultaneously. It is desirable that our algorithm be modified to take
advantage of this fact and to produce procedures in which these attributes are
evaluated in a single procedure call, because this reduces overhead due to
procedure activations and increases the chances of parallel execution.

4.1 Simultaneous Evaluability

We begin this modification by introducing an OI graph, the dual concept of the
IO graph, which specifies how the values of inherited attributes are affected by
other attributes.

Let T be a derivation tree containing X E VN as one of its leaf nodes. An OI
graph OI[X, T] of X with respect to T is given by

OI[X, T] = (A[X], Eo,[T]), EoI[T] C A[X] x I[X]

where (a, i) E EoI[T] iff there is in DGT a path from va to vi, where va and vi are
nodes for attribute a and i of the leaf node X (Figure 3).

A superimposed OI graph OI[X] is defined in a way similar to IO[X]. That is,
if 0 1 1 , . . . , OIN are possible OI graphs of X and OIh = (A[X], Ek), then

N
OI[X] = (A [X] , EoI) , Eo! = U Ek.

k=l

We further define a dependency graph DG[X] of the nonterminal symbol X as
the union of IO graph and OI graph; that is,

DG[X] = (A[X], EIo U Eoi).

For an absolutely noncircular G a set 0 _C S[X] of synthesized attributes is
simultaneously evaluable iff no s~, s2 ~ 0 are connected in DG[X]. We extend the
function in[s, X] to allow such 0 as its first argument.

in[O, X] = U in[s, X].
sEO

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

356 • T. Katayama

E x a m p l e 3

(1) DG[X] for the attribute grammar G2 are given below.

DG[S] : N DG[A] : l e i th lk I
Since k and g are connected in DG[A], the set {g, k} of attributes of A is not
simultaneously evaluable.

(2) Let G ~ be a grammar obtained from G~ by adding the following semantic
rules.

Produc t ion A d d e d s e m a n t i c s

1: F--* .L F.length = L.length
2: L --~ B L.length = L.pos
3: Lo ~ BL1 Lo.length = Ll.length

Of course, the synthesized attribute "length" is added to S[F] and S I L l . It
represents the length of the binary notation. The dependency graph for L is as
follows.

DG[L] : [- p ~ l e n g t h]

As "val" and "length" are not connected, they are simultaneously evaluable.

4.2 Procedure Construction

Now we modify our algorithm. In essence it consists of assigning a single
procedure

RX, O(Vl Vm, T'~ u I Un)

to each set 0 that is simultaneously evaluable instead of assigning n procedures,
where u~ , . . . , un are parameters corresponding to the synthesized attributes in
0 and Vx vm are those for attributes in in[O, X]. Construction of Rx, o
parallels that of Rx, s, except at a few points. As in the case of Rx, s, the procedure
Rx, o has the following form.

procedure Rx.o(V~ v,,,, T; ul u.)
case production(T) of

pl: Hvl.o(Vl vm, T; ux u ,)
p2: Hp2.o(Vl vm, T; ul u ,)

end
end

For a production rule p: Xo ~)(1)(2 . . . X,~, and O C S[X0], which is
simultaneously evaluable, construction of statement sequence Hp, o proceeds in
the following steps.

The construction of Hp.o is

(1) Make DG$.
(2) Make DG* [0] = (V, E) by removing from DG$ nodes and edges which are

not located on any path leading to s.0 for s E O.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

Translation of Attribute Grammars into Procedures • 357

(3) For each k = 1 , . . . , np decompose the set

S*[Xh] = S[Xk] n {t l t .k • V}

into a set of mutually disjoint subsets

Okl, O k 2 , . . . , Okr

such that they satisfy the following two conditions.

(a) Each Okj is simultaneously evaluable.
(b) There are no cyclic dependencies among the set

O ~- {Okl, Ok2 , Okr}.

That is, if we define a relation < on 0 by

O h i < O k l iff some t • Ohi and s • Okj are eonnected in DG[Xk],

then no Oki satisfies

Oki < Oki

where < is the transitive closure of <.

When the decomposition is not unique, we should choose a maximal decom-
position, that is, one where the number r becomes minimum, to obtain high
efficiency in evaluation. A method of obtaining a maximal decomposition is given
in the following.

Oh1 = bottom(S* [Xk])

Oh2 = bottom(S* [Xk] -- Ok1)

Ok3 = b o t t o m (S * [X k] - Okl - Ok2)

where bottom(A) is a set of elements dependent on no elements of A in DG[Xk].
That is,

bottom(A) = {a[a E A and there is no edge leading to a in DG[X]}.

(4) Let DG~[O] = (V ' , E ') be a graph obtained from DG*[0] by grouping
elements of each Ohj into a single new node Vkj q~ V (Figure 4). Formally,

Y' = {g[v] IvE V}

E ' = {(g[ul, g [v l) l (u , v) • E}

where g is a function defined by

g[v] = vhj if v = s .k for some s, k, and j such that s • Okj

= V otherwise.

(5) To each element x in Vo = V' - {i.0] i • I[Xo]} assign a statement st[x]
as follows.

ACM Transactions on Programming Languages and Systems, VoL 6, No. 3, July 1984.

358 • T. Katayama

Figure 4
Ill

f - - , g Vkj

% ',~ ~;'Q,i "xl 'v , i
DG; DG'

Case 1. If x = i.k for some i ~ I[Xk] and k -- 1 , . . . , n or x = s.0 for s E S[Xo],
then st[x] is the assignment statement

x /p,x(zl zr)

where D,,x = { z l , . . . , Zr} is the dependency set for f,,~.

Case 2. If x = Vkj, then st[x] is the procedure call statement

call Rxk,okj(Wl wh, T[k]; X l , . . . , xc)

where (1) [w l , . . . , wh} = {i.k[i E in[Ohj, Xh]} and (2) {x l , . . . , xc} =
{t.kl t e OkJ.

(6) Same as (4) for Hp,~.

The translation of the entire attribute grammar G into the corresponding
program prog[G] is similar to the one given in the previous section. Let 0 be a
set of synthesized attributes of the initial symbol S. We start by constructing the
procedure Rs.o and then proceed to procedures that are called in it. Repeating
this process until all the necessary procedures are obtained and adding statements
to the input derivation tree, activate the initial procedure and output the values
of attributes in 0 to give the desired program.

Example 4. Consider the grammar G ~ introduced in Example 3. The transla-
tion algorithm in Section 3 generates five procedures RF, val, RF, length, RL,val, RL,length,
and Rs,va~. On the other hand, if we use the simultaneous evaluation algorithm,
three procedures RF, Ival,length}, RL3val,length}, and RB,~ are constructed. RL, Ival,length},
for example, is given below, where it is denoted by RL.

Procedure RL(L.pos, T; L.val, L.length)
case production(T) of

p2: B.pos ~-- L.pos;
call RB(B.pos, T[1]; B.val)
L.val .-- B.val;
L.length ~-- L.pos

p3: B.pos ~-- L.pos;
call RB(B.pos, T[1]; B.val)
Ll.pos ~ L.pos + 1;
call RL(L~.pos, T[2]; Ll.val, Ll.length)
L.val ~-- B.val + L~.val
L.length ~-- L~.length

end
end
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

Translation of Attribute Grammars into Procedures • 359

5. EXTENSION TO GENERAL NONCIRCULAR GRAMMARS
The algorithm just stated is based on the assumption that augmented dependency
graphs do not contain cycles; that is, the grammar is absolutely noncircular. The
algorithm cannot be directly applied to general noncircular grammars. It has
another problem, stated below, in evaluating absolutely noncircular grammars;
we do not consider this a serious drawback in the usual situation.

In our approach we constructed procedures for nonterminal symbols on the
basis of the superposed IO graphs. Although this made it possible to completely
compile attribute grammars into procedures, there may occur cases for which we
have to supply extra input parameters that are not used in the particular calls of
the procedures. Consider, for example, a nonterminal symbol X with I[X] = {il,
i2}, S[X] = {s} and

IO(X) = {[i1[i21 sl, l i l l i 2 [s [} , IO[X]: l i l [i 2 ' [s [.

In our approach we associate a procedure Rx,,(il*, i2", T; s*) to X and s, where
a* denotes parameters for the attribute a, and values of il and i2 must be prepared
in calling Rx.,, although only one of them is actually required. Of course this is
remedied by the call-by-name parameter mechanism with a heavy implementa-
tion overhead. A slight additional effort, however, enables our algorithm to be
adapted to this situation.

5.1 Conversion to Simple Attribute Grammars

First we define a restricted class of attribute grammars. A noncircular attribute
grammar G is simple iff there is only one IO graph for any nonterminal symbol
X, that is, IO[X, T] does not depend on the derivation tree T. It is obvious that
G is absolutely noncircular if it is simple. By definition, procedures obtained from
a simple attribute grammar do not suffer from the preparation of extra parameters
discussed above.

We can show that any noncircular grammar G is convertible to an equivalent
simple one. This is based on the following observation.

Suppose we are given a derivation tree T of a noncircular attribute grammar
G. We attach an IO graph d = IO[X, Tx] to each nonterminal node X in T, where
Tx is the subtree of T with X as its root. Denote the resulting tree by T' . By
definition, every distinct nonterminal symbol [X, d] in this augmented tree T '
has the unique IO graph d, and T ' is considered a derivation tree in some simple
attribute grammar G '.

Formally, the simple attribute grammar G ', which is equivalent to the noncir-
cular G, is obtained in the following way.

Syntactically, G' = (V~, V~, P ' , S ') is given by

v ~ = {[x, d l l X ~ VN, d e IO(X)}

V~ = VT

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

360 • T. Katayama

P ' = {[Xo, do] --. [X1, dl] . . . [X,p, d,p]l
Xo ~ X1 . . . X ,~ ~ P,
dk E IO(Xk) for 1 <_ k <_ np,
and do = DGp[d~ dnp]J {a.Ola E A[Xo]}}

S ' = [S, ds]

where DGp[d , , . . . , d,p] is a graph obtained from DGp, the dependency graph for
the production p, by adding edges (i.k, s.k) for I <- k <_ np and (i, s) 6 dh. When
a graph D = (V, E) with a node set V and an edge set E is given, the notation
D] Vo, where Vo C V, denotes a graph Do = (Vo, Eo) where Eo = {(vl, v2)l vl, v2
are in Vo and there is a path from v~ to v2 in D}. We assume without loss of
generality that the IO graph for S is unique.

As for the semantics, G ' has the same structure as G. That is, (1) [X, d] has
the same set of attributes as X

A[[X, d]] = A[X]

and (2) if p is Xo--* X~ . . . X~o and p ' is the corresponding production in G ',
that is, p ' : [Xo, do] --* [X,, d,] . . . [X,p, d~o], then

fp..o =/p.o

It is easy to show that G and G ' are syntactically and semantically equivalent.
That is, the following theorem holds.

THEOREM
(1) For any derivation tree T in G there exists a derivation tree T ' in G' such

that, if the root of T is X and IO[X, T] = d, then the root of T ' is [X, d], and,
conversely, for any T ' there exists T such that, if the root of T ' is [X, d], then the
root o[T is X and IO[X, T] = d.

(2) For such T and T ' attribute values of corresponding nodes are identical.

PROOF

{1) The second part is proved in the same way as the first part, so we only
prove the first part. The proof is performed by induction on derivation trees.

It is obviously true for T with J T[= 1, where I T [denotes the height of T.
Assume it holds for any T with [T[_ h. Let T be a derivation tree such that
I T I = h + 1 and the production rule applied at its root is p: Xo --* X1 • .. X,~. If
we denote its subtree with root Xk by Tk (1 <_ k <_ np), then, by assumption, there
exists in G' a derivation tree Th whose root is [Xk, dk], where dk = IO[Xk, Tk].
Therefore construction of P ' assures the existence of T ' whose root is [Xo, do]
such that do = DGp[dl , d~o]l[a.Ola E A[Xo]}. It is easy to see do --
IO[Xo, T] and we have proved our claim. []

(2) The proof is obvious by the choice of A [[X, d]] and fp',v. []

Generally, the complexity of transforming G into G' is intrinsically exponential
in the size of G [7], because the transformation requires the enumeration of all
the IO graphs IO[X, T], and the number of possible IO graphs is exponential in
the size of G. However, this does not mean that it is impossible to do the
transformation in practice, since the usual attribute grammars used for the
description of programming languages will not differ greatly from absolutely

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

Translation of Attribute Grammars into Procedures • 361

noncircular ones, and, in addition, the transformation may well be performed
off-line, that is, only once prior to generating evaluators.

5.2 Attribute Evaluation

Now, when a derivation tree T in G is given, its attribute evaluation under G can
be replaced by the following two steps.

(1) Transform T into T ' .
(2) Evaluate T ' under G'

Step (2) is, of course, to feed T ' to a program prog[G '], which is obtained
from G' by our algorithm. Step (1) can be performed with a small additional cost
in a syntax analysis phase. When given a nonterminal node Xo in T and a pro-
duction rulep: X0 --* X1 . . - X,~, which is applied there, IO graph do = IO[X0, Txo]
is determined uniquely from dk = IO[Xk, Tx,] for 1 <_ k <_ np by

do = DGp[dl d,~][[a.O[a • A[Xo]};

so, a single bottom-up scan of T is enough to decide the IO[X, Tx]'S for all the
X's in T and to transform T into T '.

The above process for evaluating a general noncircular attribute grammar G
may be reformulated to produce a single program for attribute evaluation. We
first augment G with semantic rules to calculate IO graphs of nonterminal nodes
in derivation trees. The augmented grammar G* is translated into a program
prog* [G*] whose structure is similar to prog[G*] except at one point.

Suppose we attempt to evaluate attributes of a nonterminal node X in a
derivation tree T and there are several production rules with left-side symbol X
in G*. In prog[G*] we made the selection of a sequence Hp,, of statements on the
basis of what production rule is applied at X in T. In prog*[G*], on the other
hand, a pair of production rules p applied at X and the IO graph d of X is used
to select the proper sequence of statements. That is, the following procedure is
associated with X and s • S[X], where d(T) is the IO graph of the root node
of T.

procedure Rx,.~(vl vm, T; v)
case (production(T), d(T)) of

(p,d):Hp,,(wl wh, T;x)

end

Needless to say, the semantic rules of G* are made so that the evaluation of
the d's precedes that of other attributes existing in the original grammar G, and
the evaluated values of the d's must be attached to the nodes of the derivation
trees.

Extension to the case of the simultaneous evaluation is similar. We attach to
each nonterminal symbol of G a pair from its IO graph and OI graph. This
process can be accomplished by a top-down traversal of derivation trees followed
by a bottom-up one, that is, by applying a recursive procedure to them. This may
be also done in the syntax analysis phase.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

362 • T. Katayama

Example 4. Consider the following attribute grammar G3 = (VN, VT, P, S) .

N o n t e r m i n a l s Terminals

VN = {S, A, B} VT = {al, ~2}

I[S] --
I[A] = {al, a2}
I[B] = {bl, b2}

Product ion

At t r ibu tes

sis]
S[A]
SIS]

1: S --* A A . a l

2: A --* B B.b l

A.a3

3: B --) a l B.b3

4: B --, a2 B.b3

= It}
= {a3, a4}
= {b3, b4}

Seman t i c s

= 1; A.a2 = 1; S.r = A.a3 + A.a4

-- A .a l ; B.b2 = A.a2;

-- B.b3; A .a4 -- B.b4;

= B.b l ; B.b4 = B.b2

= B.b2; B.b4 = B . b l

This grammar is not simple because we have two IO graphs for A and B. So
we split A into A1 and A2, and B into B1 and B2.

IO(A) = {dA1 : l a l [a 2 i a 3 [a 4 [, dA2:

IO(J~) ~-- {eB1 -"] bX [b2 I b3 [5_4 I , dB2 :

[a l { a2 l a3 Ja41 } , ~ . _ ,

Production rules and semantic rules of the simple grammar G ~ are given below,
where we write, for example, A1 for [A, dA1].

Product ion Semant i c s

1: S ' --* A1 A l . a l = 1; A l . a 2 -- 1; S ' .r = A l . a 3 + A l . a 4

2: S ' --* A2 A 2 . a l = 1; A2.a2 -- 1; S ' .r = A2.a3 + A2.a4

3:A1 --* B1 B l . b l = Al.al ; B l . b 2 = Al.a2;
A l . a 3 = Bl.b3; A l . a 4 = B l . b 4

4:A2 ---) B2 B2 .b l = A2.al; B2.b2 = A2.a2;
A2.a3 = B2.b3; A2.a4 = B2.b4

5:B1 --) e l B l . b 3 = Bl.b!; B l . b 4 = B l . b 2

6:B2 ---) a2 B2.b3 = B2.b2; B2.b4 = B 2 . b l

Correspondence between derivation trees in G and G ' is given in Figure 5.

6. STORAGE ALLOCATION FOR ATTRIBUTES

Efficiency of an attribute evaluator depends largely on the policy of where to
store the values of attribute instances. The tree walk evaluator of Kennedy and
Warren stores them in the nodes of derivation trees. This policy is natural and
has the advantage that the computed attribute values can be referenced several
times without doing recomputations. This advantage can turn out to be a
disadvantage, because the memory space allocated to attribute instances cannot
be freed until the entire process of attribute evaluation is completed. To solve
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

A Io, la2io3]o4]

I I I
e I b m 4 1

J,

Translation of Attribute Grammars into Procedures

1
AI

al

s',
A A2

L
B2

a2 !2

• 363

Fig. 5. Correspondence between derivation trees in G
and G'.

this problem, Saarinen classified the attribute instances into significant and
temporary ones. An attribute instance is defined to be significant if its lifetime
reaches beyond one visit call to a descendant node; otherwise it is defined to be
temporary. He proposed a tree walk evaluator in which the significant instances
were stored on the derivation trees and the temporary ones in a stack. That
strategy makes it possible to reuse the memory space allocated to temporary
instances.

In our evaluator, we place the value of every attribute instance on the stack of
the activation records of procedure calls, and no values are stored in derivation
trees. Since we do not require the evaluation states to be stored in their nodes,
no information is attached to the nodes. This is an advantage over the tree walk
evaluators, especially in the case of constructing evaluators for the class of
grammars that do not require derivation trees for their attribute evaluation
[171.

Though every attribute instance is stored in a stack in our evaluator, we do
not have to recompute it, even in the case in which its life span reaches beyond
one visit to a descendant. This is accomplished by allocating the entire attribute
space for all descendants at once before the first visit to them and freeing it after
the last visit. It is easy to see that the maximum length of the stack is proportional
to the height of the derivation tree.

One of the merits of this strategy is that it can be realized very naturally by
the standard procedure mechanism of programming languages, such as Pascal.
We do not have to manipulate the stack explicitly in this case because it is
represented by the stack of activation records of procedure calls. This is also
preferable from the standpoint of efficiency, since many machines offer hardware
support for procedure mechanisms.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

364 • T. Katayama

Up to now, we have mentioned neither the parameter-passing mechanism nor
the declaration of variables for our procedures. This was to clarify the control
structure of the evaluator. Now we make these things explicit. We assume that
our procedures are written in a programming language where (1) every parameter
is passed by reference and (2) local variables of procedures are created when the
procedures are called and destroyed when they return. We use the symbol v a t
to denote variable declaration. Type declaration is omitted, as it is irrelevant
here.

6.1 Procedure Construction

The construction of the procedures is similar to the constructions given in
Sections 3 and 4. We show briefly how to construct the procedure Rx,, for the
nonterminal symbol X and its synthesized attribute s. As in the case of Section
3, we first prepare formal parameters vl , vm, T, and v, which correspond to
attributes in in[s, X], a derivation tree, and s, respectively. These are reference
parameters. We assume a data type definition for the derivation tree T such that
T[k], which expresses the kth subtree of T, can be treated as a variable.

For each production rule p = pl, P2, . . •, with left side symbol X, find a list of
p 's attribute occurrences x~, x2 which correspond to attributes of the right-
side nonterminal symbols of p and are necessary to evaluate s.0. Then construct
the sequence Hp., of statements for evaluating s as in a manner given earlier. The
procedure Rx., has, at this time, inner procedures Qp., for each p = p~, p2
and Qp., consists of the declaration of variables xl, x2 and the body Hp.,.
The body of Rx., is a case statement for selecting an appropriate call of Qp., on
the basis of the production rule applied. Thus we have the following.

P r o c e d u r e Rx,,(vl vm, T; v)

p r o c e d u r e Qp,,
v a r xl, x2, . . . ,
Hp.~

e n d

c a s e product ion(T) o f

p: call Qp,s

e n d
e n d

It is easy to see that this procedure realizes our storage allocation strategy.
That is, when the procedure Rx, s is called at a node with label X to evaluate s, it
determines the production rule applied there and allocates space for attribute
occurrences x~, x2, . . •, of descendant nodes. Note that the space for X has been
provided by the caller of Rx,s and passed to Rx,~ via a reference parameter-passing
mechanism. Of course, the space for x~, x2 , . . , becomes free after Rx,8 has
returned.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

Translation of Attribute Grammars into Procedures • 365

6.2 A Simple Optimization

It has been observed by compiler writers that many attribute definitions serve
only to copy attribute values without changing them. Omission of these attribute
transfers greatly increases the efficiency of evaluators. It is easy to modify our
evaluator to exploit this fact.

Let p be a production rule

Xo---, X1X2 . . . X ~

and s a synthesized attribute of Xo. When x is an attribute occurrence of p, which
is necessary to evaluate s.0 and whose value is defined by a mere transfer of the
value of an attribute occurrence y, the straightforward implementation of the
procedure Rx,, requires the assignment statement

x<.- -y

to be included in Hv,,. We can, however, remove it from Hp,, unless both x and y
correspond to attributes of Xo. There are two cases:

(1) x = i.k for k ~ 0, i E I[Xk].
(2) x = s . 0 a n d y = a . k f o r k ~ 0 , aEA[Xk] .

In case (1), we replace Hp,, by Hi,, and remove x from the list of variable
declaration of Qp,,. H'v., is obtained by first removing the assignment x <--- y from
H~,, and then substituting y for x, that is,

H'p,~ = [Hv,~ - Ix *'-" Y}]x,--y.

Similarly, in case (2), Hv,8 is replaced by

H~,8 = [Hp,s - Ix ~- y}]y~-x

and y is removed from the variable declaration. It is easy to see that the resulting
procedure R ~,, is equivalent to the original Rx,,.

Example 5. We show in the following the complete form of the program for
the attribute grammar G1 given in Example 1, for which we have already shown
a program that does not consider storage allocation. Note that we removed
assignment statements for the mere transfer of attribute values.

program
vat T, F.val
procedure RF(T; F.val);

vat L.pos
L.pos ~-- 1;
call RL(L.pos, T[2]; F.val);

end;
procedure RL(L.pos, T; L.val)

procedure Qp2
call RB(L.pos, T[1]; L.val)

end;
procedure Qp3

var B.val, Ll.pos, Ll.val;
call RB (L.pos, T[1]; B.val);
Ll.pos <--- L.pos + 1;

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

366 • T. Katayama

call RL(Ll.pos, T[2]; Ll.val);
L.val ,-- B.val + Ll.val

end;
case production(T) of

p2: call Qp2
p3: call Qp3

end
end;
procedure RB (B.pos, T; B.val)

case production(T) of
p4: B.val *- 0
p5: B.val ~-- 2 1' (-B.pos)

end
end;
input_derivation_tree(T);
call RF(T; F.val);
output_attribute(F.val)

end

7. RECURSIVE DESCENT COMPILATION

In this section we show that our evaluation method can be used to generate
recursive-descent compilers mechanically from absolutely noncircular attribute
grammars if their attribute evaluation proceeds from left to right [3] and their
underlying context-free grammar is LL(k).

Suppose an attribute grammar G admits left-to-right evaluation. That is, for
any production rule p: Xo ---* X1X2 • • • Xnp we assume the following holds:

(1) D~,s.o N So = O for all s ~ S[Xo],
(2) Dp.i.k N {So L) LJT, Sh (Ih tJ Sh)} = O for all k = 1 np and i ~ I[Xk],

where Ik and S , are the sets of inherited and synthesized attribute occurrences
of Xh, respectively, and Dp, v is the dependency set for the semantic function [p,v.
Bochmann [3] showed that this condition implies that the attributes in any
derivation tree can be evaluated in a single pass from left to right. As a result,
already evaluated nodes are not necessary if the results of the evaluations are
saved somewhere. We also do not need attributes of nodes that are located to the
right of the node whose attributes we are going to evaluate. Therefore, if the
underlying context-free grammar is LL(k), that is, top-down parsing can proceed
from left to right by looking k symbols ahead, construction of derivation trees is
not necessary since the node to be evaluated can be known from the lookahead
symbols. The idea of evaluating attributes without constructing derivation trees
is found in several papers [8, 19]. Lewis et al. [17] combined the left-to-right
evaluation and LL(k) to obtain an "attributed pushdown machine." If, in addition,
the grammar is absolutely noncircular, a slightly modified version of our algo-
rithm can generate what are called recursive-descent compilers. In the following,
we show an example of constructing a recursive-descent evaluator.

The first thing we have to do is to make the constructed procedures not
explicitly contain the derivation tree T. Instead, we set the input string as global
data that are accessible from all procedures and insert read statements in
appropriate places to ensure that correct substrings, that is, correct subtrees, are
visible from the procedures. We assume the existence of a function "lookahead"

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

Translation of Attribute Grammars into Procedures • 367

which returns the lookahead symbols and replaces the function "production."
We also have to change the case statements to reflect this replacement so that
they make selections based on these lookahead symbols.

Example 6. Let us reexamine the grammar G1 considered in Example 1. G1 is
LL(2), left-to-right evaluable and absolutely noncircular, so we can apply the
above method. The generated program for the recursive-descent evaluation is
shown below, where lookahead[1] and lookahead[2] are the first and the second
symbols of the current input string, respectively, and "read" is a statement to
delete its first symbol. Note that the generated procedures do not contain a
parameter for the derivation tree.

program
var F.val;
procedure RF(; F.val)

var L.pos
L.pos +- 1;
read;
call RL(L.pos; F.val)

end;
procedure RL(L.pos; L.val);

procedure Qp2
call RB (L.pos; L.val);

end;
procedure Qp3

var B.val, Ll.pos, L,.val;
call RB (L.pos; B.val);
Ll.pos *-- L.pos + 1;
read;
call RL(L~.pos; L,.val);
L.val *-- B.val + L,.val

end;
case lookahead[2] of

' ' : Qp2
'0', '1': Qp3

end
end;
procedure RB (B.pos; B.val)

case lookahead[1] of
'0': B.val *-- 0
'1': B.val *-- 2 ~(-B.pos)

end
end;
input_string;
call RF(; F.val);
output _ attribute (F.val)

end

8. DISCUSSION

We have presented an efficient method for evaluating attribute grammars by
translating them into sets of procedures. The basic idea behind the method is to
consider nonterminal symbols of the grammar as functions that map their
inherited attributes to their synthesized attributes and to associate with the
grammar procedures that realize the functions.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

368 • T. Katayama

The essential point about our methodis the complete compilation of attribute
grammars into procedures, in contrast to the tree walk evaluators, which work
interpretively in a table-driven manner [12, 13]. It is one of the characteristics
of our evaluator that we do not attach any information to the nodes of derivation
trees, not even the values of attribute instances. Our strategy for allocating
storage for the attribute instances is to store their values in the stack of the
activation records of procedure calls. This is realized implicitly by the standard
procedure mechanism of the programming languages.

An attractive feature of our method is that well-developed techniques for
program optimizations can be applied to the generated procedures. For example,
the next program for recursive-descent evaluation of binary numbers is obtained
from the one constructed in Example 6 by applying replacement of a nonrecursive
procedure call by its body.

program
var F.val, L.pos;
procedure RL(L.pos; L.val)

procedure Qp3
var B.val, Ll.pos, Ll.val;
case lookahead[1] o f

'0': B.val *-- 0
T: B.val *-- 2 1' (-L.pos)

end;
Ll.pos *- L.pos + 1;
read;
call RL(L~.pos; Ll.val);
L.val *-- B.val + Ll.val

end;
case lookahead[2] o f

' ': case lookahead[1] of
'0': L.val *-- 0
'1': L.val *-- 2 T (-L.pos)

ACKNOWLEDGMENTS

The author wishes to thank Masayuki Takeda for a critical reading of the
manuscript. He pointed out the superiority of associating procedures with non-
terminal symbols over associating them with production rules, which was the
author's original formulation. The author also thanks referees for their sugges-
tions for improving the paper.

REFERENCES

1. ASBROCK, B. Attribut-Implementierung und -Optimierung fiir Attribute Grammatiken. Di-
plomarbeit, Fakult/it ffir Informatik, Universit/it Karlsruhe, Karlsruhe, West Germany, July
1979.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

end
'0', '1': Qp3
end

end;
input_string;
L.pos .-- 1;
read;
call RL(L.pos; F.val);
output _ attribute(F.val)

end

Translation of Attribute Grammars into Procedures • 369

2. BABICH, W.A., AND JAZAYERI, M. The method of attributes for data flow analysis, parts I and
II. Acta In[. 10 (1978), 245-272.

3. BOCHMANN, G.V. Semantic evaluation from left to right. Commun. ACM 19, 2 (Feb. 1976),
55-61.

4. DEMERS, A., REPS, T., AND TEITLEBAUM, T. Incremental evaluation for attribute grammars
with applications to syntax-derected editors. In Conference Record of the 8th Annual ACM
Symposium on Principles of Programming Languages (Williamsburg, Va., Jan. 26-28, 1981).
ACM, New York, pp. 105-116.

5. GANZINGER, H., RIPKEN, K., AND WILHELM, R. MUGI--An incremental compiler-compiler.
In Proceedings of the ACM Annual Conference (Houston, Tex., Oct. 20-22). ACM, New York,
1976, pp. 415-418.

6. JAZAYERI, M. On attribute grammars and the semantic specification of programming languages.
Ph.D. dissertation, Computer and Information Science Dept., Case Western Reserve Univ.,
Cleveland, Ohio, Oct. 1974.

7. JAZAYERI, M., OGDEN, W.F., AND ROUNDS, W.C. The intrinsically exponential complexity of
the circularity problem for attribute grammar. Commun. ACM 18, 12 (Dec. 1975), 697-706.

8. JAZAYERI, M., AND POZEFSKY, D. Algorithms for efficient evaluation of multi-pass attribute
grammars without a parse tree. Tech. Rep. TR77-001, Department of Computer Science, Univ.
of North Carolina, Chapel Hill, N.C., May 1974.

9. KASTENS, U. Ordered attribute grammars. Acta In[. 13 (1980), 229-256.
10. KASTENS, U., AND ZIMMERMANN, E. GAG-A generator based on attributed grammar. Bericht

Nr. 14/80, Institute fiir Informatik II, Universi~t Karlsruhe, Karlsruhe, West Germany.
11. KATAYAMA, T. HFP: A hierarchical and functional programming based on attribute grammar.

In Conference Record of the 5th International Conference on Software Engineering (San Diego,
Calif., Mar. 1981), pp. 343-352.

12. KENNEDY K., AND WARREN, S.K. Automatic generation of efficient evaluators for attribute
grammars. In Conference Record of the 3rd ACM Symposium on Principles o[Programming
Languages (Atlanta, Ga., Jan. 1976), ACM, New York, pp. 32-49.

13. KENNEDY, K., AND RAMANATHAN, J. A deterministic attribute grammar evaluator based on
dynamic sequences. ACM Trans. Prog. Lang. Syst. 1, 1 (July 1979), 142-160.

14. KNUTH, D.E. Examples of Formal Semantics. Lecture Notes in Mathematics, vol. 188. Springer-
Verlag, New York, 1971.

15. KNUTH, D.E. Semantics of context-free languages. Math. Syst. Theory J.2 (1968), 127-145.
16. KNUTH, D.E. Semantics of context-free languages: Correction. Math. Syst. Theory J.5

(1971), 95.
17. LEWlS, P.M., ROSENKRANTZ, D.J., AND STEARNS, R.E. Attributed translations. J. Comput.

Syst. Sci. 9 (1974), 279-307.
18. MADSEN, O.L. On defining semantics by means of extended attribute grammars. Rep. DAIMI

PB-109, Computer Science Department, Aarhus Univ., Aarhus, Denmark, Jan. 1980.
19. POZEFSKY, D. Building efficient pass-oriented attribute grammar evaluatore. Tech. Rep. TR

79-006, Dept. of Computer Science, Univ. of North Carolina, Chapel Hill, N.C., 1979.
20. RAIHA, K.J., SAARINEN, M., SOISALON-SOININEN, E., AND TIENARI, M. The compiler writing

system HLP. Rep. A-1978-2, Dept. of Computer Science, Univ. of Helsinki, Helsinki, Finland,
Mar. 1978.

21. SAARINEN, M. On Constructing Efficient Evaluators for Attribute Grammars. Lecture Notes in
Computer Science, vol. 62. Springer-Verlag, New York, 1978.

Received July 1980; revised December 1981, March and September 1983; accepted October 1983

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984.

