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An efficient method for evaluating attribute grammars by translating them into sets of procedures is 
presented. The basic idea behind the method is to consider nonterminal symbols of the grammar as 
functions that map their inherited attributes to their synthesized attributes. Associated with the 
nonterminal symbols are procedures that realize the functions. The attribute grammar is translated 
into a program consisting of these procedures. The essential point about this method is that attribute 
grammars are completely compiled into procedures, in contrast with evaluation algorithms that work 
interpretively in a table-driven manner. No information is stored in the nodes of derivation trees. 

Although this evaluation method is applicable principally to absolutely noncircular attribute 
grammars in which the dependency relation among attribute occurrences of every production rule 
does not contain cycles, it is shown how the method is extended to the general noncircular attribute 
grammars. Problems of evaluating a set of attributes simultaneously and of recursive descent 
evaluation are also discussed. 

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and 
Theory--semantics; D.3.4 [Programming Languages]: Processors--translator writing systems and 
compiler generators; F.3.2 [Logics and Meanings of Programs]:  Semantics of Programming 
Languages 
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1. INTRODUCTION 

A n  a l g o r i t h m  to  e v a l u a t e  a n  a t t r i b u t e  g r a m m a r  is p r e s e n t e d .  As  is wel l  k n o w n ,  
t h e  a t t r i b u t e  g r a m m a r  o f  K n u t h  [14, 15] is a ve ry  c o n v e n i e n t  too l  for  spec i fy ing  
t h e  s e m a n t i c s  of  p r o g r a m m i n g  l anguages ,  e spec i a l l y  for  a u t o m a t i n g  c o m p i l e r  
c o n s t r u c t i o n .  Seve ra l  c o m p i l e r  g e n e r a t o r  s y s t e m s  have  b e e n  b u i l t  b a s e d  on  i t  [5, 
10, 20]. T h e  use  o f  a t t r i b u t e  g r a m m a r s  is n o t  l i m i t e d  to  c o m p i l e r  c o n s t r u c t i o n ;  
o t h e r  a p p l i c a t i o n s  inc lude  t e x t  e d i t i n g  a n d  p r o g r a m  o p t i m i z a t i o n  [2, 4]. R e c e n t  
work  sugges t s  t h a t  a t t r i b u t e  g r a m m a r s  c a n  be  u sed  for  h i e r a r c h i c a l  a n d  f u n c t i o n a l  
p r o g r a m m i n g  [11]. 

W e  m u s t  have  e f f i c i en t  m e t h o d s  for  a t t r i b u t e  e v a l u a t i o n  for  t h e s e  a p p l i c a t i o n s  
to  have  p r a c t i c a l  i m p o r t a n c e .  S e m a n t i c  a n a l y s i s  a l g o r i t h m s  b a s e d  on  a t t r i b u t e  
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grammars, however, are currently not efficient enough compared with ad hoc 
algorithms used in the usual handwritten compilers. The lack of good algorithms 
for attribute evaluation has restricted their usage to experimental compilers. 
Although many efforts have been made to obtain efficient evaluators [3, 6, 7, 8, 
12, 13, 18, 19], we have not yet succeeded in getting an evaluator applicable to 
production quality compilers. 

Here we propose an efficient and natural algorithm for attribute evaluation in 
which the administrative tasks of keeping track of attributes both already and 
not yet evaluated are put into the preprocessing or syntax analysis phase. The 
evaluation phase concentrates on the evaluation of attributes. The algorithm 
accepts absolutely noncircular attribute grammars, although extensions to gen- 
eral noncircular attribute grammars are possible. 

For the absolutely noncircular grammars, Kennedy and Warren proposed a 
tree walk algorithm for attribute evaluation [12], and Saarinen improved it in 
the output-oriented form [21]. Their tree walk evaluator is a recursive procedure 
that visits nodes of derivation trees and evaluates their attributes. Each node of 
a derivation tree is equipped with two data fields, one for the state that  shows 
attributes already evaluated and the other for the attribute values. When the 
evaluator visits a node with a set of the inherited attributes currently available, 
called an input set, it finds an appropriate sequence of actions on the basis of 
the input set and the state of the node. The actions are either computations of 
attribute values by means of semantic functions or visits to descendant nodes. 
After the actions have been executed, the state of the node is updated. In general, 
nodes may be visited several times with different input sets and node states. The 
evaluator is table driven. 

In our algorithm, we consider nonterminal symbols to be functions that map 
their inherited attributes to their synthesized attributes. We associate procedures 
to realize these functions with the nonterminal symbols. The entire attribute 
grammar is then transformed into a set of mutually recursive procedures. Our 
algorithm is output oriented in the sense of Saarinen's. 

A difference between the tree walk evaluators and ours is that we do not attach 
any information to the nodes of derivation trees. We thoroughly analyze data 
dependency among attributes and completely compile the original grammar into 
procedures, so we do not require the states of nodes to indicate which attributes 
have been evaluated and which are left unevaluated. Another difference is storage 
allocation for attributes. In the tree walk evaluator of Kennedy and Warren, the 
attributes are stored in the nodes of derivation trees. Saarinen's evaluator stores 
some of them in the nodes and the others in a stack. We, however, store all of 
them in the stack of the activation records of procedure calls. 

When applied to an attribute grammar whose attribute evaluation process can 
be performed in a single scan from left to right [3], our algorithm can generate 
an evaluator that can be combined with the top-down parsers to result in 
recursive-descent compilers if the underlying context-free grammars are LL(k). 

In the following, we first state how absolutely noncircular attribute grammars 
are translated into procedures and then extend the method to general noncircular 
grammars. Next, we describe our storage allocation strategy and finally consider 
recursive-descent evaluation. 
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2. DEFINITIONS AND NOTATIONS 

An attribute grammar G is a context-free grammar G = (VN, VT, P, S)  augmented 
by semantic rules. In the following we use the same symbol G to denote both the 
entire attribute grammar and the underlying context-free grammar. We assume 
without loss of generality that  the initial symbol S never appears in the right 
side of any rule in P. 

With each symbol X • VN U VT is associated a set of attributes that  is denoted 
by A [X]. A [X] is a disjoint union of the set I[X] of inherited attributes and the 
set S[X] of synthesized attributes. We assume that  I[X] = 0 if X = S and S[X] 
= O i f X •  VT. 

If p is a rule 

p: Xo ---* X1X2 " "  X w  

and a is an attribute of Xh, that is, a • A[Xh](k = 0, 1 . . . . .  np), we say that p 
has an attribute occurrence a.k. It is called a synthesized occurrence if a • S[Xh] 
and an inherited occurrence if a • I[Xh]. 

A semantic function [p,v is associated with every synthesized occurrence v = a.k 
for k = 0 and inherited occurrence v = a.k for k = 1 , . . . ,  np, and is defined in 
terms of other attribute occurrences of p. We denote the set of these attribute 
occurrences by Dp.v. It is called a dependency set of fp.~. If Dp,~ = {v l , . . . ,  v,}, 
then fp,v is a mapping, 

domain (vl) x . . .  x domain(vn) - .  domain(v). 

Let p be a production rule Xo --~ X1X2 • • • Xnp. A dependency graph DGp for 
the production rule p, which gives dependency relationships among attribute 
occurrences of p, is defined by 

DGp = (DV~,, DE, )  

where the node set D Vp is the set of all attribute occurrences of p and the edge 
set DEp is the set of dependency pairs for p. Formally 

DVp = {a.kl k = 0 , . . . ,  np and a • A[Xh]} 

DEp = {(vl, v2)l vl • Dp.~2}. 

When a derivation tree T is given, a dependency graph DGT for the derivation 
tree T is defined to represent dependencies among attributes of nodes in T. DGT 
is obtained by pasting together DGp's according to the syntactic structure of T. 
Let T be a derivation tree, p: Xo -* X1 • • • X,p, the production rule applied at 
the root of T and Th, the kth subtree of T. DGT is recursively constructed from 
DGp, DGT 1 . . . . .  DGT. by identifying the nodes for attributes of Xh in DGp with 
the corresponding no~es for the attributes of the root of Th in DGT,, 1 <_ k <_ np. 
Figure 1 gives an example of DGT for the attribute grammar given in Example 1 
(see Section 3, p. 352). 

An attribute grammar is noncircular if DGT does not contain cycles for any T. 
Let T be a derivation tree with root note X • Vz~. DGT determines an IO graph 

IO[X, T] of X with respect to T. It gives an input-output relationship among 
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Fig. 1. An example of DGT. 

F 

1 

attributes of X, which is realized by the derivation tree T. That  is, 

IO[X, T] = (A[X], EIo[T D 

where an edge (a, s) is in EIo[T] C A[X] × S[X] iff there is in DGT a path from 
va to v,, where va and vs are nodes for attributes a and s of the root of T, and the 
attribute a is required to evaluate the synthesized attribute s. 

For general attribute grammars, there may be finitely many IO graphs for 
X E VN. We denote the set of these IO graphs by IO(X), that is, 

IO(X) = {IO[X, T]l T is a derivation tree}. 

When IO(X) = {IO1, I O 2 , . . . ,  ION} and IOk = (A[X], Ek), superimposing IOk 
results in a superimposed IO graph 

IO[X] = (A[X], EIO),  E i o  = uN=zEk 
which represents possible input-output relationships among attributes of X. An 
algorithm to obtain IO(X) and IO[X] is given in the literature [12, 15]. 

For a synthesized attribute s of a nonterminal symbol X, its input set in[s, X] 
is defined to be a set of attributes that may be required to evaluate s, that is, 

in[s, X] = {al(a, s) is an edge of IO[X]}. 

For a production rule p: Xo --* X1X2 • • • X,p its augmented dependency graph 
is defined by 

where 

DG* = (D V*, DE*) 

DV~= DVp 

DE* = DEp U {(a.k, s.k) l k -- 1 .... ,np and (a, s) E IO[Xh]}. 

DG* represents a dependency relation among attribute occurrences in p, which 
is realized partly by semantic functions and partly by derivation trees. 

An attribute grammar is absolutely noncircular iff DG* does not contain cycles 
for any production rule p. 

An example of IO[X] and DG* is given in Table I. 
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 3, July 1984. 
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Table I. Dependency Graphs, IO Graphs, and 
Augmented Dependency Graphs for G1. 

Dependency Graphs DGpS 

DG~ DG 2 DG 3 

DG4 DG 5 

IO Graphs I0 [X]'s 
IO[F]: [ ]  [ O [ L ] , I O [ B ] : [ ~  

Augumented Dependency Graphs DG;'s 

k B B 

DG; DG~ G~ 

3. TRANSLATION OF AN ABSOLUTELY NONCIRCULAR ATTRIBUTE 
GRAMMAR INTO A SET OF PROCEDURES 

Let X be a nonterminal symbol of an absolutely noncircular attribute grammar 
G = (VN, VT, P, S) and let s be a synthesized attribute of X. We associate with 
each pair (X, s) a procedure 

Rx,,(vl . . . . .  vm, T; v) 

where vl . . . .  , vm are parameters corresponding to the attributes in I = in[s, X], 
T is a derivation tree, and v is a parameter corresponding to s. Parameters to the 
left (right) of ";" are input (output) parameters. This procedure is intended to 
evaluate the synthesized attribute s when supplied with the values of attributes 
in I and a derivation tree T. When given the initial derivation tree To and a 
synthesized attribute So of the initial symbol S, we begin evaluation of So by 
executing the procedure call statement 

call Rs.,o(To; Vo) 

where v0 is a variable corresponding to So. (We assume without loss of generality 
that the purpose of attribute evaluation is to know the value of the only attribute 
So of S, though a more general case is touched upon in the later discussion.) 
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In the following we describe how to construct the procedure Rx,~(v~ . . . . .  vm, 
T; v). First we have to introduce variable symbols for attribute occurrences. 
However, for the sake of convenience, the same symbols are used for attribute 
occurrences and variables that correspond to them. In what follows, Xo = X, v = 
s.0, and {v l , . . . ,  v~} = {a.0 [ a E in[s, Xo]}. 

The procedure Rx,~ is formed in the following way. It first examines what 
production rule is applied at the root of the derivation tree T and then selects a 
sequence of statements to  calculate values of attribute occurrences of the pro- 
duction rule. We assume that nodes in derivation trees are labeled by the names 
of production rules applied there. The procedure has the form 

procedure Rx.s(vl . . . . .  vm, T; v) 
case production(T) of 

pl: Hp,,~(vl . . . . .  vm, T; v) 
P2: Hp~,~(vl . . . .  v~, T; v) 

end 
end 

where (1) "production(T)" is a function that  returns the name of the production 
rule applied at the root of T, (2) pl, P2 . . . .  are production rules with left-side 
symbol X, and (3) Hp.s (vl . . . .  , V,n, T; v) is a sequence of statements for evaluating 
s when the production rule at the root of T is p. 

Considering that  absolute noncircularity allows attribute occurrences of p to 
be evaluated consistently in a fixed order, whatever derivation trees follow right- 
side nonterminal symbols of p, construction of Hp,~ proceeds as follows. First, 
attribute occurrences ofp  on which s.0 is dependent, directly or indirectly, in the 
augmented dependency graph DG$ are listed in topological order. Associated 
with each attribute occurrence is a statement for computing its value. It is an 
assignment statement with a semantic function as its right side when the attribute 
occurrence is defined in p; otherwise it is a procedure call statement. The sequence 
of these statements is Hv,~. 

The construction of Hp.~ is 

(1) For the production rule p: Xo ---.> X I X 2  . . .  Xnp, make an augmented 
dependency graph 

DG* = ( O V a ,  DE~,). 

(2) From DG* remove nodes and edges that  are not located on any path leading 
to s.0. Denote the resulting graph by 

DG*[s] = (V, E). 

(3) To each attribute occurrence x E Vo = V - {i.0[i E I[X0]}, assign a 
statement st[x] for evaluating x as follows. 

Case 1. If x = i.k for some i E I[Xk] and k = 1 . . . . .  np or x = s.O(= v) for 
the attribute s ~ S[Xo] that  Rx.~ is to evaluate, then st[x] is the assignment 
statement 

x , - / p , , ( z ~  . . . .  , z r )  
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where [p,x is the semantic function for the attribute occurrence x and Dp,x - 
{zl . . . . .  zr} is the dependency set for the semantic function fp, x. 

Case 2. If x = t.k for some t ~ S[Xh] and k = 1 . . . . .  np, then st[x] is the 
procedure call statement 

call  Rx,,~(wl . . . . .  wh, T[k]; x) 

where {wl,.. •, wh} = {a.k [ a E in[t, Xk]} and T[k] is the kth subtree of T. 
(4) Let x~, x2 . . . . .  XM be elements in V0 that  are listed according to the 

topological ordering determined by E; that  is, if (xo, Xb) E E,  then a < b. Then 
the sequence Hp,s of statements becomes as follows: 

st[x1]; 

st[x2]; 

st[xM] 

Note that  statements in Hp,, satisfy the single-assignment rule. It is easy to 
see that  the ordering xl,  . . . .  XM ensures that  values of attribute occurrences are 
determined consistently if the attribute grammar is absolutely noncircular. 

So far we have only considered construction of a procedure for a particular 
X E VN and s E S[X0]. Now we state how the entire attribute grammar G is 
translated into the corresponding program prog[G]. 

We start from the start symbol S and the synthesized attribute So of S. We 
first construct the initial procedure Rs.so by the algorithm we have stated. The 
body of Rs,,o may contain calls of other procedures Rx,, ,  and they are constructed 
in the same way. Repeat this process until no new procedures appear. 

Let Rs,,o, Rx,,1 . . . . .  RxN,,N be procedures thus obtained; then the entire program 
prog[G] for evaluating So becomes (declarations for variables and types are 
omitted} 

program 
procedure Rs,,o 

end; 

procedure Rxl,,, 

end; 

procedure RXN,~ N 

end; 
input_derivation_tree(To); 
call Rs.,o(To; Vo); 
output_attribute(vo) 

end 
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This program consists of declarations for the procedures R followed by the 
statements to input a derivation tree, activate the initial procedure, and output 
the value of So. 

We now give two examples. 

Example 1. The following attribute grammar G1 = (VN, VT, P, F) transforms 
the fractional part of binary notation into the corresponding number, where 
attribute occurrence a.k is denoted by Xh.a. 

Nonterminals Terminals 

VN = {F,L,B} VT = {0, 1,.} 

Attributes 

I[F] = 0 S[F] = {val} 
I[LI = [pos} S[L] = [val} 
I[B]= [pos} S[B] = {val} 

Productions 

1: F-- )  .L 
2: L---) B 
3: Lo ---) BL1 

4: B- - ,  0 
5 : B - *  1 

Semantics 

F.val = L.val; L.pos = 1 
L.val = B.val; B.pos = L.pos 
L0.val = B.val + L~.val; 
Ll.pos = Lo.pos + 1; B.pos = L0.pos 
B.val = 0 
B.val = 2 1' (-B.pos) 

In what follows we illustrate how this grammar G1 is transformed into the 
corresponding program. 

First we construct dependency graphs DGp, IO graphs IO[X], and augmented 
dependency graphs. These are given in Table I. 

Since all the augmented dependency graphs are acyclic, the attribute grammar 
is absolutely noncircular. The procedure RL for the nonterminal symbol L and 
its attribute val, for example, is of the following form. 

procedure RL(L.pos, T; L.val) 
case production(T) of 

p2: Hv2.val(L.pos, T; L.val) 
p3: Hp3.val(L.pos, T; L.val) 

end 
end 

Because the nodes of DG~ (except Lo.pos) can be topologically ordered as 

B.pos, B.val, Ll.pos, L~val, Lo.val 

Hp3,val is a sequence of statements 

B.pos (--- Lo.pos; 

call  RB (B.pos, T[1]; B.val); 

L~.pos (-- L0.pos + 1; 

call  RL(Ll.pos, T[2]; Ll.val); 

Lo.val (--- B.val + Ll.val 
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The complete form of the procedure R L  is contained in the next program which 
is the desired one.for the attribute grammar G1. (We dropped the suffix "0" 
from Lo.) 

program 
procedure RF(T; F.val) 

L.pos (-- 1; 
call RL(L.pos, T[2]; L.val); 
F.val *-- L.val 

end; 

procedure RL(L.pos, T; L.val) 
case production(T) of 

p2: B.pos ~-- L.pos; 
call RB(B.pos, T[I]; B.val); 
L.val ~-- B.val 

p3: B.pos (-- L.pos; 
call RB(B.pos, T[1]; B.val); 
Ll.pos (-- L.pos + 1; 
call RL(L~.pos, T[2]; Ll.val); 
L.val (-- B.val + L~.val 

end 
end; 
procedure  RB (B.pos, T; B.val) 

case production(T) of 
p4: B. val (-- 0 
p5: B.val (-- 2 ~ (-B.pos) 

end 
end; 

input_derivation_tree(To); 
call RF(To; F.val); 
output_attribute(F.val) 

end 

Example  2. In Example 1, a single procedure is associated with each nonter- 
minal symbol. Now we give an example of attribute grammars that  require 
multiple procedures for single nonterminal symbols. The grammar G2 = (VN, VT, 
P, S) computes 4 * n when a "+1 is given as an input string, by going down and 
up derivation trees twice. Multiple procedures are essential and cannot be reduced 
to a single procedure even by resorting to the simultaneous evaluation algorithm 
presented in the next section. 

Nonterminal  Terminals 

VN = {S, A} VT = {a} 

Attributes 

I[S] = 0 S[S] = {k} 
I[A] = if, h} S I A l  = {g, k} 

Productions Semantics  

1: S ---) A S .k  = A.k; A .h  = A.g; A.[ = 0 
2: Ao --* aA1 A~.f = Ao.f + 1; Ao.g = Al .g  + 1; 

A~.h = Ao.h + 1; Ao.k = A l . k  + 1 
3: A --) a A.g = A.f; A . k  = A .h  
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Fig. 2. Dependencies among attribute occurrences in 
a derivation tree of G2. 

A 

+1 +1 +1 

+1 +1 

= 

+1 

Figure 2 shows how attr ibutes are evaluated. The arrows represent dependen- 
cies among occurrences of attr ibutes in the derivation tree. It is easy to see tha t  
the value of every k cannot  be determined until  all the occurrences of [, g, and h 
have been evaluated. This means tha t  the synthesized attr ibutes k and g cannot  
be evaluated simultaneously in a single pass. 

G2 is absolutely noncircular and IO graphs are 

IOtS]  : 

'ota] : [ r lg l  h l k l  

Prog[G2] is given below. Procedures RAg  and R A k  are obtained from the nonter- 
minal symbol A. 

program 
procedure RS(T; S.k) 

A.f ~-- 0; 
call RAg (A.[, T[1]; A~g); 
A.h ~ A.g; 
call RAk(A.h, T[1]; A.k); 
S.k ~ A.k 

end; 
procedure RAg (Ao./, T; Ao.g) 

case production(T) of 
p2: AI.[*--Ao.[+ 1; 

call RAg(A~.f, T[1]; A~.g); 
Ao.g ~--- Al.g + 1 

p3: Ao.g *-- Ao.[ 
end 

end; 
procedure RAk(Ao.h, ~, Ao.k) 

case production(T) of 
p2: Al.h *-- Ao.h + 1; 

call RAk(AI.h, T[1]; Al.k); 
Ao.k ~ Al.k + 1 

p3: A0.k ~ A0.h 
end 

end; 
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input_derivation_tree(To); 
call RS(To; S.k); 
output_attribute(S.k) 

end 

4. SIMULTANEOUS EVALUATION 

In the previous section we have associated one procedure with each synthesized 
attribute. However, data dependency sometimes allows several attributes to be 
evaluated simultaneously. It is desirable that our algorithm be modified to take 
advantage of this fact and to produce procedures in which these attributes are 
evaluated in a single procedure call, because this reduces overhead due to 
procedure activations and increases the chances of parallel execution. 

4.1 Simultaneous Evaluability 

We begin this modification by introducing an OI graph, the dual concept of the 
IO graph, which specifies how the values of inherited attributes are affected by 
other attributes. 

Let T be a derivation tree containing X E VN as one of its leaf nodes. An OI 
graph OI[X, T] of X with respect to T is given by 

OI[X, T] = (A[X], Eo,[T]), EoI[T] C A[X] x I[X] 

where (a, i) E EoI[T] iff there is in DGT a path from va to vi, where va and vi are 
nodes for attribute a and i of the leaf node X (Figure 3). 

A superimposed OI graph OI[X] is defined in a way similar to IO[X]. That is, 
if 0 1 1 , . . . ,  OIN are possible OI graphs of X and OIh = (A[X], Ek), then 

N 
OI[X] = ( A [ X ] ,  EoI) ,  Eo!  = U Ek. 

k=l  

We further define a dependency graph DG[X] of the nonterminal symbol X as 
the union of IO graph and OI graph; that is, 

DG[X] = (A[X], EIo U Eoi). 

For an absolutely noncircular G a set 0 _C S[X] of synthesized attributes is 
simultaneously evaluable iff no s~, s2 ~ 0 are connected in DG[X]. We extend the 
function in[s, X] to allow such 0 as its first argument. 

in[O, X] = U in[s, X]. 
sEO 
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E x a m p l e  3 

(1) DG[X] for the attribute grammar G2 are given below. 

DG[S] : N DG[A] : l e i th  lk I 
Since k and g are connected in DG[A], the set {g, k} of attributes of A is not 
simultaneously evaluable. 

(2) Let G ~ be a grammar obtained from G~ by adding the following semantic 
rules. 

Produc t ion  A d d e d  s e m a n t i c s  

1: F--* .L F.length = L.length 
2: L --~ B L.length = L.pos 
3: Lo ~ BL1 Lo.length = Ll.length 

Of course, the synthesized attribute "length" is added to S[F] and S I L l .  It 
represents the length of the binary notation. The dependency graph for L is as 
follows. 

DG[L] : [ - p ~ l e n g t h  ] 

As "val" and "length" are not connected, they are simultaneously evaluable. 

4.2 Procedure Construction 

Now we modify our algorithm. In essence it consists of assigning a single 
procedure 

RX,  O(Vl  . . . . .  Vm, T'~ u I . . . . .  Un) 

to each set 0 that is simultaneously evaluable instead of assigning n procedures, 
where u~ , . . . ,  un are parameters corresponding to the synthesized attributes in 
0 and Vx . . . . .  vm are those for attributes in in[O, X]. Construction of Rx,  o 
parallels that of Rx, s, except at a few points. As in the case of Rx,  s, the procedure 
Rx, o has the following form. 

procedure  Rx.o(V~ . . . . .  v,,,, T; ul . . . . .  u.) 
case production(T) of 

pl: Hvl.o(Vl . . . . .  vm, T; ux . . . . .  u ,)  
p2: Hp2.o(Vl . . . . .  vm, T; ul . . . . .  u ,)  

end 
end 

For a production rule p: Xo ~ )(1)(2 . . .  X,~, and O C S[X0], which is 
simultaneously evaluable, construction of statement sequence Hp, o proceeds in 
the following steps. 

The construction of Hp.o is 

(1) Make DG$. 
(2) Make DG* [0] = (V, E) by removing from DG$ nodes and edges which are 

not located on any path leading to s.0 for s E O. 
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(3) For each k = 1 , . . . ,  np decompose the set 

S*[Xh] = S[Xk]  n {t l t .k • V} 

into a set of mutually disjoint subsets 

Okl, O k 2 , . . . ,  Okr 

such that they satisfy the following two conditions. 

(a) Each Okj is simultaneously evaluable. 
(b) There are no cyclic dependencies among the set 

O ~- {Okl, Ok2 . . . .  , Okr}. 

That is, if we define a relation < on 0 by 

O h i < O k l  iff some t •  Ohi and s •  Okj are eonnected in DG[Xk], 

then no Oki satisfies 

Oki < Oki 

where < is the transitive closure of <.  

When the decomposition is not unique, we should choose a maximal decom- 
position, that is, one where the number r becomes minimum, to obtain high 
efficiency in evaluation. A method of obtaining a maximal decomposition is given 
in the following. 

Oh1 = bottom(S* [Xk]) 

Oh2 = bottom(S* [Xk] -- Ok1) 

Ok3 = b o t t o m ( S * [ X k ]  - Okl - Ok2) 

where bottom(A) is a set of elements dependent on no elements of A in DG[Xk]. 
That is, 

bottom(A) = {a[a  E A and there is no edge leading to a in DG[X]}. 

(4) Let DG~[O] = ( V ' ,  E ' )  be a graph obtained from DG*[0] by grouping 
elements of each Ohj into a single new node Vkj q~ V (Figure 4). Formally, 

Y' = {g[v] IvE V} 

E '  = {(g[ul, g [ v l ) l ( u ,  v) • E} 

where g is a function defined by 

g[v] = vhj if v = s .k  for some s, k, and j such that  s • Okj 

= V otherwise. 

(5) To each element x in Vo = V' - {i.0] i • I[Xo]} assign a statement st[x] 
as follows. 

ACM Transactions on Programming Languages and Systems, VoL 6, No. 3, July 1984. 



358 • T. Katayama 

Figure 4 
Ill 

f -  . . . . .  - ,  g Vkj 
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Case 1. If x = i.k for some i ~ I[Xk] and k -- 1 , . . . ,  n or x = s.0 for s E S[Xo], 
then st[x] is the assignment statement 

x  /p,x(zl . . . . .  zr) 

where D,,x = { z l , . . . ,  Zr} is the dependency set for f,,~. 

Case 2. If x = Vkj, then st[x] is the procedure call statement 

call  Rxk,okj(Wl . . . . .  wh, T[k]; X l , . . . ,  xc) 

where (1) [ w l , . . . ,  wh} = {i.k[ i E  in[Ohj, Xh]} and (2) {x l , . . . ,  xc} = 
{t.kl t e OkJ. 

(6) Same as (4) for Hp,~. 

The translation of the entire attribute grammar G into the corresponding 
program prog[G] is similar to the one given in the previous section. Let 0 be a 
set of synthesized attributes of the initial symbol S. We start by constructing the 
procedure Rs.o and then proceed to procedures that  are called in it. Repeating 
this process until all the necessary procedures are obtained and adding statements 
to the input derivation tree, activate the initial procedure and output the values 
of attributes in 0 to give the desired program. 

Example 4. Consider the grammar G ~ introduced in Example 3. The transla- 
tion algorithm in Section 3 generates five procedures RF, val, RF, length, RL,val, RL,length, 
and Rs,va~. On the other hand, if we use the simultaneous evaluation algorithm, 
three procedures RF, Ival,length}, RL3val,length}, and RB,~ are constructed. RL, Ival,length}, 
for example, is given below, where it is denoted by RL. 

Procedure RL(L.pos, T; L.val, L.length) 
case production(T) of 

p2: B.pos ~-- L.pos; 
call RB(B.pos, T[1]; B.val) 
L.val .-- B.val; 
L.length ~-- L.pos 

p3: B.pos ~-- L.pos; 
call RB(B.pos, T[1]; B.val) 
Ll.pos ~ L.pos + 1; 
call RL(L~.pos, T[2]; Ll.val, Ll.length) 
L.val ~-- B.val + L~.val 
L.length ~-- L~.length 

end 
end 
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5. EXTENSION TO GENERAL NONCIRCULAR GRAMMARS 
The algorithm just stated is based on the assumption that  augmented dependency 
graphs do not contain cycles; that is, the grammar is absolutely noncircular. The 
algorithm cannot be directly applied to general noncircular grammars. It has 
another problem, stated below, in evaluating absolutely noncircular grammars; 
we do not consider this a serious drawback in the usual situation. 

In our approach we constructed procedures for nonterminal symbols on the 
basis of the superposed IO graphs. Although this made it possible to completely 
compile attribute grammars into procedures, there may occur cases for which we 
have to supply extra input parameters that are not used in the particular calls of 
the procedures. Consider, for example, a nonterminal symbol X with I[X] = {il, 
i2}, S[X] = {s} and 

IO(X) = {[i1[i21 sl,  l i l l i 2 [ s [ } ,  IO[X]: l i l [ i 2 ' [ s [ .  

In our approach we associate a procedure Rx,,(il*, i2", T; s*) to X and s, where 
a* denotes parameters for the attribute a, and values of il and i2 must be prepared 
in calling Rx.,, although only one of them is actually required. Of course this is 
remedied by the call-by-name parameter mechanism with a heavy implementa- 
tion overhead. A slight additional effort, however, enables our algorithm to be 
adapted to this situation. 

5.1 Conversion to Simple Attribute Grammars 

First we define a restricted class of attribute grammars. A noncircular attribute 
grammar G is simple iff there is only one IO graph for any nonterminal symbol 
X, that is, IO[X, T] does not depend on the derivation tree T. It is obvious that 
G is absolutely noncircular if it is simple. By definition, procedures obtained from 
a simple attribute grammar do not suffer from the preparation of extra parameters 
discussed above. 

We can show that any noncircular grammar G is convertible to an equivalent 
simple one. This is based on the following observation. 

Suppose we are given a derivation tree T of a noncircular attribute grammar 
G. We attach an IO graph d = IO[X, Tx] to each nonterminal node X in T, where 
Tx is the subtree of T with X as its root. Denote the resulting tree by T' .  By 
definition, every distinct nonterminal symbol [X, d] in this augmented tree T '  
has the unique IO graph d, and T '  is considered a derivation tree in some simple 
attribute grammar G '. 

Formally, the simple attribute grammar G ', which is equivalent to the noncir- 
cular G, is obtained in the following way. 

Syntactically, G'  = (V~, V~, P ' ,  S ') is given by 

v ~  = {[x, d l l X  ~ VN, d e IO(X)} 

V~ = VT 
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P '  = {[Xo, do] --. [X1, dl] . . .  [X,p, d,p]l 
Xo ~ X1 . . .  X ,~  ~ P, 
dk E IO(Xk) for 1 <_ k <_ np, 
and do = DGp[d~ . . . . .  dnp]J {a.Ola E A[Xo]}} 

S '  = [S, ds] 

where DGp[d , , . . . ,  d,p] is a graph obtained from DGp, the dependency graph for 
the production p, by adding edges (i.k, s.k) for I <- k <_ np and (i, s) 6 dh. When 
a graph D = (V, E) with a node set V and an edge set E is given, the notation 
D] Vo, where Vo C V, denotes a graph Do = (Vo, Eo) where Eo = {(vl, v2)l vl, v2 
are in Vo and there is a path from v~ to v2 in D}. We assume without loss of 
generality that the IO graph for S is unique. 

As for the semantics, G '  has the same structure as G. That  is, (1) [X, d] has 
the same set of attributes as X 

A[[X, d]] = A[X] 

and (2) if p is Xo--* X~ . . .  X~o and p '  is the corresponding production in G ', 
that is, p ' :  [Xo, do] --* [X,, d,] . . .  [X,p, d~o], then 

fp..o =/p.o 

It is easy to show that G and G ' are syntactically and semantically equivalent. 
That is, the following theorem holds. 

THEOREM 
(1) For any derivation tree T in G there exists a derivation tree T '  in G'  such 

that, if the root of T is X and IO[X, T] = d, then the root of T '  is [X, d], and, 
conversely, for any T '  there exists T such that, if the root of T '  is [X, d], then the 
root o[ T is X and IO[X, T] = d. 

(2) For such T and T '  attribute values of corresponding nodes are identical. 

PROOF 

{1) The second part is proved in the same way as the first part, so we only 
prove the first part. The proof is performed by induction on derivation trees. 

It is obviously true for T with J T[ = 1, where I T [ denotes the height of T. 
Assume it holds for any T with [ T[ _ h. Let T be a derivation tree such that 
I T I = h + 1 and the production rule applied at its root is p: Xo --* X1 • .. X,~. If 
we denote its subtree with root Xk by Tk (1 <_ k <_ np), then, by assumption, there 
exists in G' a derivation tree Th whose root is [Xk, dk], where dk = IO[Xk, Tk]. 
Therefore construction of P '  assures the existence of T '  whose root is [Xo, do] 
such that do = DGp[dl . . . .  , d~o]l[a.Ola E A[Xo]}. It is easy to see do -- 
IO[Xo, T] and we have proved our claim. [] 

(2) The proof is obvious by the choice of A [[X, d]] and fp',v. [] 

Generally, the complexity of transforming G into G' is intrinsically exponential 
in the size of G [7], because the transformation requires the enumeration of all 
the IO graphs IO[X, T], and the number of possible IO graphs is exponential in 
the size of G. However, this does not mean that it is impossible to do the 
transformation in practice, since the usual attribute grammars used for the 
description of programming languages will not differ greatly from absolutely 
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noncircular ones, and, in addition, the transformation may well be performed 
off-line, that is, only once prior to generating evaluators. 

5.2 Attribute Evaluation 

Now, when a derivation tree T in G is given, its attribute evaluation under G can 
be replaced by the following two steps. 

(1) Transform T into T ' .  
(2) Evaluate T '  under G' 

Step (2) is, of course, to feed T '  to a program prog[G '], which is obtained 
from G' by our algorithm. Step (1) can be performed with a small additional cost 
in a syntax analysis phase. When given a nonterminal node Xo in T and a pro- 
duction rulep: X0 --* X1 . . -  X,~, which is applied there, IO graph do = IO[X0, Txo] 
is determined uniquely from dk = IO[Xk, Tx,] for 1 <_ k <_ np by 

do = DGp[dl . . . . .  d,~][[a.O[a • A[Xo]}; 

so, a single bottom-up scan of T is enough to decide the IO[X, Tx]'S for all the 
X's  in T and to transform T into T '. 

The above process for evaluating a general noncircular attribute grammar G 
may be reformulated to produce a single program for attribute evaluation. We 
first augment G with semantic rules to calculate IO graphs of nonterminal nodes 
in derivation trees. The augmented grammar G* is translated into a program 
prog* [G*] whose structure is similar to prog[G*] except at one point. 

Suppose we attempt to evaluate attributes of a nonterminal node X in a 
derivation tree T and there are several production rules with left-side symbol X 
in G*. In prog[G*] we made the selection of a sequence Hp,, of statements on the 
basis of what production rule is applied at X in T. In prog*[G*], on the other 
hand, a pair of production rules p applied at X and the IO graph d of X is used 
to select the proper sequence of statements. That  is, the following procedure is 
associated with X and s • S[X], where d(T)  is the IO graph of the root node 
of T. 

procedure Rx,.~(vl . . . . .  vm, T; v) 
case (production(T), d(T)) of 

(p,d):Hp,,(wl . . . . .  wh, T;x) 

end 

Needless to say, the semantic rules of G* are made so that the evaluation of 
the d's precedes that of other attributes existing in the original grammar G, and 
the evaluated values of the d's must be attached to the nodes of the derivation 
trees. 

Extension to the case of the simultaneous evaluation is similar. We attach to 
each nonterminal symbol of G a pair from its IO graph and OI graph. This 
process can be accomplished by a top-down traversal of derivation trees followed 
by a bottom-up one, that is, by applying a recursive procedure to them. This may 
be also done in the syntax analysis phase. 
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Example  4. Consider the following attribute grammar G3 = (VN, VT, P,  S ) .  

N o n t e r m i n a l s  Terminals  

VN = {S, A,  B} VT = {al, ~2} 

I[S] -- 
I[A] = {al, a2} 
I[B] = {bl, b2} 

Product ion  

At t r ibu tes  

sis] 
S[A ] 
SIS] 

1: S --* A A . a l  

2: A --* B B.b  l 

A.a3 

3: B --) a l  B.b3 

4: B --, a2 B.b3 

= It} 
= {a3, a4} 
= {b3, b4} 

Seman t i c s  

= 1; A.a2 = 1; S.r  = A.a3 + A.a4  

-- A .a l ;  B.b2 = A.a2; 

-- B.b3; A .a4  -- B.b4; 

= B.b l ;  B.b4 = B.b2 

= B.b2; B.b4 = B . b l  

This grammar is not simple because we have two IO graphs for A and B. So 
we split A into A1 and A2, and B into B1 and B2. 

IO(A) = {dA1 : l a l [ a 2  i a 3 [ a 4  [ , dA2: 

IO(J~)  ~-- {eB1 -" ] bX [ b2 I b3  [5_4 I , dB2 : 

[ a l  { a2 l a3 Ja41 } , ~ . _  , 

Production rules and semantic rules of the simple grammar G ~ are given below, 
where we write, for example, A1 for [A, dA1]. 

Product ion  Semant i c s  

1: S ' --* A1  A l . a l  = 1; A l . a 2  -- 1; S ' .r = A l . a 3  + A l . a 4  

2: S ' --* A2  A 2 . a l  = 1; A2.a2 -- 1; S ' .r = A2.a3 + A2.a4 

3:A1 --* B1 B l . b l  = Al.al ;  B l . b 2  = Al.a2; 
A l . a 3  = Bl.b3; A l . a 4  = B l . b 4  

4:A2 ---) B2 B2 .b l  = A2.al; B2.b2 = A2.a2; 
A2.a3 = B2.b3; A2.a4 = B2.b4 

5:B1 --) e l  B l . b 3  = Bl.b!;  B l . b 4  = B l . b 2  

6:B2 ---) a2 B2.b3 = B2.b2; B2.b4 = B 2 . b l  

Correspondence between derivation trees in G and G '  is given in Figure 5. 

6. STORAGE ALLOCATION FOR ATTRIBUTES 

Efficiency of an attribute evaluator depends largely on the policy of where to 
store the values of attribute instances. The tree walk evaluator of Kennedy and 
Warren stores them in the nodes of derivation trees. This policy is natural and 
has the advantage that the computed attribute values can be referenced several 
times without doing recomputations. This advantage can turn out to be a 
disadvantage, because the memory space allocated to attribute instances cannot 
be freed until the entire process of attribute evaluation is completed. To solve 
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Fig. 5. Correspondence between derivation trees in G 
and G'. 

this problem, Saarinen classified the attribute instances into significant and 
temporary ones. An attribute instance is defined to be significant if its lifetime 
reaches beyond one visit call to a descendant node; otherwise it is defined to be 
temporary. He proposed a tree walk evaluator in which the significant instances 
were stored on the derivation trees and the temporary ones in a stack. That 
strategy makes it possible to reuse the memory space allocated to temporary 
instances. 

In our evaluator, we place the value of every attribute instance on the stack of 
the activation records of procedure calls, and no values are stored in derivation 
trees. Since we do not require the evaluation states to be stored in their nodes, 
no information is attached to the nodes. This is an advantage over the tree walk 
evaluators, especially in the case of constructing evaluators for the class of 
grammars that do not require derivation trees for their attribute evaluation 
[171. 

Though every attribute instance is stored in a stack in our evaluator, we do 
not have to recompute it, even in the case in which its life span reaches beyond 
one visit to a descendant. This is accomplished by allocating the entire attribute 
space for all descendants at once before the first visit to them and freeing it after 
the last visit. It is easy to see that  the maximum length of the stack is proportional 
to the height of the derivation tree. 

One of the merits of this strategy is that  it can be realized very naturally by 
the standard procedure mechanism of programming languages, such as Pascal. 
We do not have to manipulate the stack explicitly in this case because it is 
represented by the stack of activation records of procedure calls. This is also 
preferable from the standpoint of efficiency, since many machines offer hardware 
support for procedure mechanisms. 
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Up to now, we have mentioned neither the parameter-passing mechanism nor 
the declaration of variables for our procedures. This was to clarify the control 
structure of the evaluator. Now we make these things explicit. We assume that 
our procedures are written in a programming language where (1) every parameter 
is passed by reference and (2) local variables of procedures are created when the 
procedures are called and destroyed when they return. We use the symbol v a t  
to denote variable declaration. Type declaration is omitted, as it is irrelevant 
here. 

6.1 Procedure Construction 

The construction of the procedures is similar to the constructions given in 
Sections 3 and 4. We show briefly how to construct the procedure Rx,, for the 
nonterminal symbol X and its synthesized attribute s. As in the case of Section 
3, we first prepare formal parameters vl . . . .  , vm, T, and v, which correspond to 
attributes in in[s, X], a derivation tree, and s, respectively. These are reference 
parameters. We assume a data type definition for the derivation tree T such that  
T[k], which expresses the kth subtree of T, can be treated as a variable. 

For each production rule p = pl, P2, . .  •, with left side symbol X, find a list of 
p 's  attribute occurrences x~, x2 . . . . .  which correspond to attributes of the right- 
side nonterminal symbols of p and are necessary to evaluate s.0. Then construct 
the sequence Hp., of statements for evaluating s as in a manner given earlier. The 
procedure Rx., has, at this time, inner procedures Qp., for each p = p~, p2 . . . . .  
and Qp., consists of the declaration of variables xl, x2 . . . . .  and the body Hp.,. 
The body of Rx., is a case statement for selecting an appropriate call of Qp., on 
the basis of the production rule applied. Thus we have the following. 

P r o c e d u r e  Rx,,(vl . . . . .  vm, T; v) 

p r o c e d u r e  Qp,, 
v a r  xl, x2, . . . ,  
Hp.~ 

e n d  

c a s e  product ion(T)  o f  

p: call Qp,s 

e n d  
e n d  

It is easy to see that  this procedure realizes our storage allocation strategy. 
That  is, when the procedure Rx, s is called at a node with label X to evaluate s, it 
determines the production rule applied there and allocates space for attribute 
occurrences x~, x2, . .  •, of descendant nodes. Note that  the space for X has been 
provided by the caller of Rx,s and passed to Rx,~ via a reference parameter-passing 
mechanism. Of course, the space for x~, x2 , . . ,  becomes free after Rx,8 has 
returned. 
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6.2 A Simple Optimization 

It has been observed by compiler writers that  many attribute definitions serve 
only to copy attribute values without changing them. Omission of these attribute 
transfers greatly increases the efficiency of evaluators. It is easy to modify our 
evaluator to exploit this fact. 

Let p be a production rule 

Xo---, X1X2 . . .  X ~  

and s a synthesized attribute of Xo. When x is an attribute occurrence of p, which 
is necessary to evaluate s.0 and whose value is defined by a mere transfer of the 
value of an attribute occurrence y, the straightforward implementation of the 
procedure Rx,, requires the assignment statement 

x<.- -y  

to be included in Hv,,. We can, however, remove it from Hp,, unless both x and y 
correspond to attributes of Xo. There are two cases: 

(1) x = i.k for k ~ 0, i E I[Xk]. 
(2) x = s . 0 a n d y = a . k f o r k ~ 0 ,  aEA[Xk] .  

In case (1), we replace Hp,, by Hi,,  and remove x from the list of variable 
declaration of Qp,,. H'v., is obtained by first removing the assignment x <--- y from 
H~,, and then substituting y for x, that  is, 

H'p,~ = [Hv,~ - Ix *'-" Y}]x,--y. 

Similarly, in case (2), Hv,8 is replaced by 

H~,8 = [Hp,s - Ix ~- y}]y~-x 

and y is removed from the variable declaration. It is easy to see that  the resulting 
procedure R ~,, is equivalent to the original Rx,,. 

Example 5. We show in the following the complete form of the program for 
the attribute grammar G1 given in Example 1, for which we have already shown 
a program that does not consider storage allocation. Note that we removed 
assignment statements for the mere transfer of attribute values. 

program 
vat  T, F.val 
procedure RF(T; F.val); 

vat  L.pos 
L.pos ~-- 1; 
call RL(L.pos, T[2]; F.val); 

end; 
procedure RL(L.pos, T; L.val) 

procedure Qp2 
call RB(L.pos, T[1]; L.val) 

end; 
procedure Qp3 

var B.val, Ll.pos, Ll.val; 
call RB (L.pos, T[1]; B.val); 
Ll.pos <--- L.pos + 1; 
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call RL(Ll.pos,  T[2]; Ll.val); 
L.val ,-- B.val + Ll.val 

end; 
case production(T) of 

p2: call Qp2 
p3: call Qp3 

end 
end; 
procedure RB (B.pos, T; B.val) 

case production(T) of 
p4: B.val *- 0 
p5: B.val ~-- 2 1' (-B.pos) 

end 
end; 
input_derivation_tree(T); 
call RF(T; F.val); 
output_attribute(F.val) 

end 

7. RECURSIVE DESCENT COMPILATION 

In this section we show that  our evaluation method can be used to generate 
recursive-descent compilers mechanically from absolutely noncircular attribute 
grammars if their attribute evaluation proceeds from left to right [3] and their 
underlying context-free grammar is LL(k). 

Suppose an attribute grammar G admits left-to-right evaluation. That is, for 
any production rule p: Xo ---* X1X2 • • • Xnp we assume the following holds: 

(1) D~,s.o N So = O for all s ~ S[Xo], 
(2) Dp.i.k N {So L) LJT, Sh (Ih tJ Sh)} = O for all k = 1 . . . . .  np  and i ~ I[Xk],  

where Ik and S ,  are the sets of inherited and synthesized attribute occurrences 
of Xh, respectively, and Dp, v is the dependency set for the semantic function [p,v. 
Bochmann [3] showed that this condition implies that  the attributes in any 
derivation tree can be evaluated in a single pass from left to right. As a result, 
already evaluated nodes are not necessary if the results of the evaluations are 
saved somewhere. We also do not need attributes of nodes that  are located to the 
right of the node whose attributes we are going to evaluate. Therefore, if the 
underlying context-free grammar is LL(k), that  is, top-down parsing can proceed 
from left to right by looking k symbols ahead, construction of derivation trees is 
not necessary since the node to be evaluated can be known from the lookahead 
symbols. The idea of evaluating attributes without constructing derivation trees 
is found in several papers [8, 19]. Lewis et al. [17] combined the left-to-right 
evaluation and LL(k) to obtain an "attributed pushdown machine." If, in addition, 
the grammar is absolutely noncircular, a slightly modified version of our algo- 
rithm can generate what are called recursive-descent compilers. In the following, 
we show an example of constructing a recursive-descent evaluator. 

The first thing we have to do is to make the constructed procedures not 
explicitly contain the derivation tree T. Instead, we set the input string as global 
data that are accessible from all procedures and insert read statements in 
appropriate places to ensure that  correct substrings, that  is, correct subtrees, are 
visible from the procedures. We assume the existence of a function "lookahead" 
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which returns the lookahead symbols and replaces the function "production." 
We also have to change the case statements to reflect this replacement so that  
they make selections based on these lookahead symbols. 

Example 6. Let us reexamine the grammar G1 considered in Example 1. G1 is 
LL(2), left-to-right evaluable and absolutely noncircular, so we can apply the 
above method. The generated program for the recursive-descent evaluation is 
shown below, where lookahead[1] and lookahead[2] are the first and the second 
symbols of the current input string, respectively, and "read" is a statement to 
delete its first symbol. Note that  the generated procedures do not contain a 
parameter for the derivation tree. 

program 
var F.val; 
procedure RF( ; F.val) 

var L.pos 
L.pos +- 1; 
read; 
call RL(L.pos; F.val) 

end; 
procedure RL(L.pos; L.val); 

procedure Qp2 
call RB (L.pos; L.val); 

end; 
procedure Qp3 

var B.val, Ll.pos, L,.val; 
call RB (L.pos; B.val); 
Ll.pos *-- L.pos + 1; 
read; 
call RL(L~.pos; L,.val); 
L.val *-- B.val + L,.val 

end; 
case lookahead[2] of 

' ' :  Qp2 
'0', '1': Qp3 

end 
end; 
procedure RB (B.pos; B.val) 

case lookahead[1] of 
'0': B.val *-- 0 
'1': B.val *-- 2 ~(-B.pos) 

end 
end; 
input_string; 
call RF( ; F.val); 
output _ attribute (F.val) 

end 

8. DISCUSSION 

We have presented an efficient method for evaluating attribute grammars by 
translating them into sets of procedures. The basic idea behind the method is to 
consider nonterminal symbols of the grammar as functions that  map their 
inherited attributes to their synthesized attributes and to associate with the 
grammar procedures that realize the functions. 
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The essential point about our methodis the complete compilation of attribute 
grammars into procedures, in contrast to the tree walk evaluators, which work 
interpretively in a table-driven manner [12, 13]. It is one of the characteristics 
of our evaluator that we do not attach any information to the nodes of derivation 
trees, not even the values of attribute instances. Our strategy for allocating 
storage for the attribute instances is to store their values in the stack of the 
activation records of procedure calls. This is realized implicitly by the standard 
procedure mechanism of the programming languages. 

An attractive feature of our method is that  well-developed techniques for 
program optimizations can be applied to the generated procedures. For example, 
the next program for recursive-descent evaluation of binary numbers is obtained 
from the one constructed in Example 6 by applying replacement of a nonrecursive 
procedure call by its body. 

program 
var F.val, L.pos; 
procedure  RL(L.pos; L.val) 

procedure  Qp3 
var B.val, Ll.pos, Ll.val; 
case  lookahead[1] o f  

'0': B.val *-- 0 
T: B.val *-- 2 1' (-L.pos) 

end; 
Ll.pos *- L.pos + 1; 
read; 
call RL(L~.pos; Ll.val); 
L.val *-- B.val + Ll.val 

end; 
case  lookahead[2] o f  

' ': case lookahead[1] of  
'0': L.val *-- 0 
'1': L.val *-- 2 T (-L.pos) 
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