A Methodology for Analyzing the
Performance of Authentication Protocols

ALAN HARBITTER

PEC Solutions, Inc.

and

DANIEL A. MENASCE
George Mason University

Performance, in terms of user response time and the consumption of processing and communica-
tions resources, is an important factor to be considered when designing authentication protocols.
The mix of public key and secret key encryption algorithms typically included in these protocols
makes it difficult to model performance using conventional analytical methods. In this article, we
develop a validated modeling methodology to be used for analyzing authentication protocol fea-
tures, and we use two examples to illustrate the methodology. In the first example, we analyze
the environmental parameters that favor one proposed public-key-enabled Kerberos variant over
another in the context of a large, multiple-realm network. In the second example, we propose a Ker-
beros variant for a mobile computing environment and analyze the performance benefits realized
by introducing a proxy to offload processing and communications workload.

Categories and Subject Descriptors: C.4 [Performance of Systems]: design studies, modeling
techniques; K.6.5 [Management of Computing and Information Systems]: Security and
Protection—authentication

General Terms: Design, Measurement, Performance, Security

Additional Key Words and Phrases: Authentication, Kerberos, mobile computing, performance
modeling, proxy servers, public key cryptography

1. INTRODUCTION

To meet the challenge of protecting information and computing systems against
unauthorized access, researchers and developers have focused attention on

Portions of this work have been published in preliminary form as HARBITTER, A. AND MENASCE,
D. A. 2001a. Performance of public key-enabled Kerberos authentication in large networks. In
Proceedings of the 2001 IEEE Symposium on Security and Privacy (Oakland, Calif., May). IEEE
Computer Society, Los Alamitos, Calif., pp. 170-183, and as HARBITTER, A. AND MENASCE,
D. A. 2001b. The performance of public key-enabled Kerberos authentication in mobile computing
applications. In Proceedings of the 8th ACM Conference on Computer and Communications Security
(CCS-8) (Philadelphia, Pa., Nov.). ACM, New York, pp. 78-85.

Authors’ addresses: A. Harbitter, Chief Technology Officer, PEC Solutions, Inc., 12750 Fair Lakes
Circle, Fairfax, VA 22033; email: alan.harbitter@pec.com; D. Menascé, Department of Computer
Science, George Mason University, 4400 University Drive, Fairfax, VA 22030; email: menasce@cs.
gmu.edu.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.

© 2002 ACM 1094-9224/02/1100-0458 $5.00

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002, Pages 458-491.

Analyzing the Performance of Authentication Protocols

Table I. Encryption Processing Times Vary Widely According to

Algorithm and Key Length

Encryption Algorithm Key Length Operation Time (msec)
DES 56 0.0006

Triple DES 112 (effective) 0.0016

AES (Rijndael) 128 0.0005

RSA encryption 1024 0.320

RSA decryption 1024 10.230

RSA encryption 2048 0.890

RSA decryption 2048 64.130

459

All results from the Crypto++ Benchmarks run on a Celeron 850-MHz processor
under Windows 2000 SP 1 [Dai 1999].

authentication protocols. Authentication protocols often use multiple encryp-
tion algorithms with widely varying performance characteristics. Table I shows
that the time required to decrypt a 64-byte block of data can vary from 0.0005
to 64.13 milliseconds—a factor of 105—depending upon the choices of algorithm
and key length.

A common approach in authentication protocols is to use asymmetric (pub-
lic key) cryptography to establish a symmetric (secret) session key. This ap-
proach takes advantage of the key management features of public key cryptog-
raphy, but recognizes that public key cryptography algorithms consume more
resources than symmetric key cryptography. The session key is used for the
remainder of the user session and for most encryptions to provide efficient con-
fidentiality or integrity services.

The authentication protocol designer faces many decisions about the use of
encryption—including the application of public or secret key algorithms—that
affect level of assurance and performance. Previous efforts to analyze protocol
performance have emphasized benchmark and measurement methods. While
these methods provide a picture of quantitative performance under specific
system conditions, they are limited in their ability to support, in more general
terms, the evaluation of the protocol design’s performance characteristics. We
present a methodology that is based on closed queuing network models—a tool
for analyzing the performance of authentication protocol design.

Section 2 summarizes related work that addresses the performance of se-
curity protocols. Section 3 provides some background information about the
proposed variants of the Kerberos authentication protocol (examples for our
methodology will employ these variants). We present our methodology in
Section 4. Sections 5 and 6 present two examples that demonstrate the ap-
plication of the methodology to protocol design issues: Kerberos protocol design
options are first examined in a large multiple-domain network (Section 5) and
then in a mobile computing setting (Section 6). Section 7 summarizes our re-
sults and suggests directions for future work.

2. RELATED WORK

Developers of security protocols and encryption algorithms have long recog-
nized the importance of performance. In many cases, researchers applied either

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

460 o A. Harbitter and D. A. Menasce

complexity analysis to evaluate algorithm performance or measurement tech-
niques to analyze system performance [Bassham 1999; Blaze 1996]. Protocol
performance has become an increasingly important topic as they are more
commonly used in production and high-workload computing and networking
environments.

Early work examined the impact of security protocols on network through-
put, seeking to determine whether encryption calculations would put a damper
on rapidly increasing data rates. Zorkadis [1994] identifies the communica-
tions performance impacts of five basic security services: authentication, ac-
cess control, confidentiality, integrity, and nonrepudiation. Zorkadis begins his
exploration of the impacts by constructing a simple queuing model for secure
communications.

Because Kerberos was the standard network authentication protocol in
the Open Software Foundation’s Distributed Computing Environment (DCE)
[Opengroup 1997], it has been analyzed in that context. DCE security services
have been benchmarked and analyzed [Martinka et al. 1993]. The performance
characteristics of Kerberos have been loosely measured in some of its pilot
applications [Stallings 1994], with good results. El-Hadidi et al. [1999] used a
single queue model based on M/D/1 and M/G/1 calculations to compare Kerberos
performance to Diffie-Hellman and their proposed hybrid protocol. Orozco-
Barbosa et al. [1998] used simulation analysis to evaluate the impacts of adding
security services to a cellular wireless network. Their models showed significant
performance degradation in response times when security services were added.

The predominant role of public key cryptography in electronic commerce
has motivated several performance studies. Apostolopoulos et al. [1999] look at
ways to reduce the impact of the private key encryption step in the Transport
Layer Security (TLS) protocol—the Internet standard for performing authenti-
cation and establishing secure communications. Menascé and Almeida [2000]
use analytical modeling to assess the trade-off between performance and secu-
rity in e-commerce applications using protocols such as TLS and payment ser-
vices such as SET. Lambert [1998] performs a high-level benchmark-supported
analysis of performance improvements anticipated from the use of elliptic curve
cryptography in e-commerce transactions.

Finally, in previous work, we conducted preliminary analyses of public-key-
enabled and proxy-assisted Kerberos [Harbitter and Menascé 2001a, 2001b],
forming the basis for the methodology and examples presented here. In contrast
to the other work published in this area, our methodology offers a way to explic-
itly model the performance of new protocol designs that mix asymmetric and
symmetric encryption. The flexibility of the closed queuing network formula-
tion permits general observations to be made about the protocol’s applicability
in a variety of operational environments and can help guide design decisions.

3. BACKGROUND: PUBLIC-KEY-ENABLED
AND PROXY-ASSISTED KERBEROS

Kerberos has become a mature network authentication protocol based on se-
cret key cryptography. One typical characteristic of a mature protocol is the

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Analyzing the Performance of Authentication Protocols . 461

existence of a wide range of proposals to extend it into uses that were not di-
rectly envisioned by its authors. This characteristic makes Kerberos a good
candidate for analysis to determine how each proposed variant will perform
and to motivate the proposal of new variants based on improving performance.

The following sections describe Kerberos operation and currently proposed
variants of Kerberos that introduce two new elements: public key cryptography
and a proxy server. Several proposals have been developed that add public key
cryptography to various stages of Kerberos to make the protocol work with large
user communities and Public Key Infrastructures (PKIs). The computational
requirements of public key cryptography are significantly higher than those of
secret key cryptography. As a result, the substitution of public key encryption
algorithms for secret key algorithms impacts performance. The addition of a
proxy into the Kerberos authentication can be used to off-load encryption pro-
cessing from either the client or the servers. This may be valuable for a mobile
computing setting in which processing, power, and communications resources
are constrained. However, the proxy also introduces delays into the transaction
by requiring authentication messages to be relayed between the client and the
server.

3.1 The Basic Operation of Kerberos

Kerberos is a network authentication scheme based on the early work of
Needham and Schroeder [1978]. Kerberos divides the world into realms, each
with a single primary Key Distribution Center (KDC), back-up KDCs, applica-
tion servers, and user workstations. A single realm corresponds to a commu-
nity of interest with a single security policy. Many good, detailed descriptions
of Kerberos protocol operation exist [Neuman and Ts’o 1994] and will not be
repeated here. Briefly, the client (Alice) engages in a multiple-step authentica-
tion to obtain access to the application server (Bob). Alice must first obtain a
Ticket-Granting Ticket (TGT) to a centralized Ticket-Granting Service (TGS)
offered by the KDC. She uses the TGT to obtain a service ticket to Bob. She
presents the service ticket to Bob and authenticates herself by demonstrating
knowledge of a secret session key securely passed to her by the KDC.

A large enterprise may consist of many realms, and Alice may wish to gain
access to an application server in a remote realm. To support “cross-realm” au-
thentication, Alice’s KDC and the remote KDC must have a trust relationship.
This trust relationship is implemented by sharing symmetric keys between the
KDCs. If such a trust relationship exists, Alice may gain access to the remote
server by first requesting a ticket to the remote realm’s KDC from her local
KDC. She will receive a ticket (a data structure encrypted with the KDC pair’s
shared symmetric key) to the remote TGS. When she presents the ticket to the
remote KDC, she can receive a service ticket for an application server in the
remote realm.

3.2 Proposals to Add Public Key Encryption to Kerberos

Kerberos message formats are defined such that the session keys are always in-
cluded in some encrypted portion of the message. As a result, Kerberos servers

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

462 o A. Harbitter and D. A. Menasce

do not need to store session keys or maintain a security association with
each client. Kerberos is stateless; state is represented through the Kerberos
tickets. Statelessness is valuable from the standpoint of robustness and
scalability.

A potential limitation of Kerberos in terms of scalability is its reliance on
symmetric key encryption [Ashely and Broom 1997]. Shared secrets must be
established and maintained between every user and the KDC, between every
application server and the KDC, and between remote KDCs. The use of pub-
lic key cryptography shifts key management from the KDC to a Certification
Authority (CA). Public key cryptography reduces the number of shared secrets
(i.e., symmetric keys) between KDCs, servers, and users. However, the scaling
merits of public-key- versus secret-key-based systems have not been definitively
proven. In addition, the introduction of public key technology into Kerberos
presents new key management challenges such as the reliable publishing and
maintenance of public keys.

There are several current proposals for adding public key cryptography to
Kerberos and hence changing the key management model. Internet drafts ex-
ist for three alternatives: (1) Public Key Cryptography for Initial Authentica-
tion in Kerberos (PKINIT) [Tung et al. 2001], (2) Public Key Cryptography for
Cross-Realm Authentication in Kerberos (PKCROSS) [Tung et al. 1998], and
(3) Public Key Utilizing Tickets for Application Servers (PKTAPP) [Medvinsky
et al. 1997]. PKINIT is the core specification. Both PKCROSS and PKTAPP use
variations of PKINIT message types and data structures to apply public key
cryptography to different Kerberos authentication steps.

PKINIT. The PKINIT Internet draft specifies that considerable message
content must be added to the initial Kerberos exchanges in order to replace the
user secret key authentication with public key authentication. The client may
send a chain of public key certificates to establish trust between the user and the
KDC and to relay the user’s public key. The client must send an authenticating
data structure signed with client’s private key. This information is included in
the Kerberos pre-authentication fields defined in the specification to support
extensions to the protocol. The KDC verifies the client’s identity by verifying
the digital signature and replies to the client with a chain of certificates for the
KDC’s public key, the KDC’s digital signature, and a secret key encrypted with
the client’s public key. The client can confirm the KDC’s identity by verifying
its digital signature.

Mandatory variations allow the substitution of a certificate serial number for
the certificate chain (assuming the KDC already has a trusted copy of the user’s
certificate) and the use of Diffie-Hellman to establish a session key. PKINIT
drafts have included several interesting options such as storing the user’s pri-
vate key on the KDC and allowing the user to generate the session key. (Allowing
the user to generate the session key could change scaling characteristics.)

PKCROSS. While PKINIT addresses the issue of managing secret keys for
a large number of clients, it does not address the issue of key management
among a large number of realms. A logical extension of PKINIT is the use of
public key encryption for multiple-realm, KDC-to-KDC authentications. This

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Analyzing the Performance of Authentication Protocols . 463

is the subject of the PKCROSS Internet draft specification. PKCROSS picks up
the multiple-realm authentication at the point at which the client has already
obtained a TGT. The client may or may not have authenticated to its local KDC
using PKINIT. If the client requests access to a server in a remote realm, its local
KDC initiates a PKCROSS transaction with the appropriate remote KDC. With
a few minor variations, the KDC-to-KDC authentication is performed using the
PKINIT protocol.

One variation is that the remote KDC is responsible for generating a “special
symmetric key it uses for PKCROSS requests” [Tung et al. 1998]. The local
KDC can skip the explicit exchange with the remote KDC if it currently has an
active, valid TGT sealed with a special symmetric key. Once the client possesses
a remote TGT, it may request additional service tickets in the remote realm
without involving the local KDC.

PKTAPP. In Kerberos, the KDC issues all tickets in its realm. Since
most authentication transactions have to transit the KDC, it can become
a performance bottleneck. Although secondary KDCs can be included in
the system, they are typically used as backups in the event of a primary
KDC failure. The PKTAPP Internet draft seeks to eliminate this poten-
tial bottleneck and reduce communications traffic by implementing the au-
thentication exchange directly between the client and the application server.
This variation was originally introduced as the Public-key-based Kerberos
for Distributed Authentication (PKDA) [Sirbu and Chuang 1997]. PKTAPP
proposes to implement PKDA using the PKINIT-specified message definitions
and exchanges.

PKTAPP is a more efficient protocol than traditional Kerberos from a mes-
sage exchange perspective: The client may deal directly with the application
server. The AS—-REQ message, the first message submitted by the client, con-
tains the client’s certificate chain and the identity of the service ticket re-
quested. The server response, an AS—-REP message, contains the server’s cer-
tificate chain and a secret key encrypted with the client’s public key. After
authentication, the client requests an application service ticket using a Ker-
beros Version 5 request. The entire authentication process is reduced to a total
of two message pairs.

We provide specifications of the PKCROSS and PKTAPP protocols in Ap-
pendix A. The PKINIT specification is embedded in the PKCROSS specification
since it is used by PKCROSS authenticate between remote realms. In all of the
public key extensions, there is no explicit requirement for advance knowledge
of identity between the client and the KDC or between the two KDCs. There is
no need to establish shared secrets or store a user record in a Kerberos database
ahead of time. The basis for trust between these entities is the certificate chain.

These protocols substitute public key infrastructure as the management
mechanism in lieu of sharing secret keys. Because of the additional processing
requirements, a performance price is paid each time a public key calculation
is substituted for a secret key calculation. Additionally, because public key
messages are larger than the corresponding Kerberos Version 5 messages and
more likely to fragment, the PKINIT draft recommends the use of TCP as the

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

464 o A. Harbitter and D. A. Menasce

underlying transport protocol. UDP, which has a significantly lower overhead,
is the protocol commonly used for secret-key-based Kerberos implementations.

3.3 Proposals to Add a Proxy Server to Kerberos

The application of proxy servers in protocol processing has been widely studied
[Zenel 1999; Fox and Gribble 1996]. The proxy can isolate the client and the
server for security purposes or, in a mobile computing setting, the proxy can off-
load processing from the mobile platform or network. The following paragraphs
review two protocols: IAKERB, an IETF draft to add a proxy to standard Ker-
beros [Swift et al. 2001], and Charon [Fox and Gribble 1996], a proxy-assisted
version of Kerberos for mobile computing applications. Finally, to shed addi-
tional light on proxy-assisted authentication in a wireless setting, we describe
features of another relevant protocol: the Wireless Application Protocol (WAP)
Wireless Transport Layer Security (WTLS) [WAP 2000b].

IAKERB. There may be situations in which a proxy server is already in
use in a computing network environment and the authentication protocol must
accommodate it. The JAKERB IETF draft adapts Kerberos to operate when a
client cannot communicate directly to a KDC and must do so through a proxy.
TAKERB operates in two modes: (1) proxy and (2) minimal messages. In “proxy”
mode, IAKERB specifies the protocol framing and addressing requirements,
allowing the proxy to serve as a pass-through node between the client and
KDC. In “minimal messages” mode, the Kerberos message formats are more
highly modified to support a PKTAPP-style authentication.

Charon. The Charon protocol adapts standard Kerberos authentication to
a mobile PDA (personal digital assistant) platform. Charon uses Kerberos to
establish a trust relationship between a user and a proxy. The mechanism
for establishing this relationship is similar to the method of establishing trust
between a user and an application server. As a result, several more message ex-
changes are required in Charon than in the standard Kerberos protocol, where
no proxy is involved.

Charon uses the same encryption algorithms (i.e., DES) on the PDA as stan-
dard Kerberos. There is no network performance advantage to using Charon
rather than an unmodified Kerberos. The benefit of Charon is that it has a
smaller memory footprint and it establishes a trust relationship between the
PDA and the proxy. The trust relationship allows the PDA user to take advan-
tage of the processing power of the proxy for compute-intensive operations.

The authors of Charon offer an example of potential areas for proxy as-
sistance: retrieving e-mail via a Kerberized POP service and distilling MIME
images in the messages to suit the client’s display. A trusted proxy can perform
these services without the risk of revealing private data to untrusted parties.
The authors suggest that, following the logic arguments in Burrows et al. [1990],
Charon can be proven to have the same authentication properties as Kerberos
because their protocol does not change Kerberos semantics.

WAP WTLS. WAP provides a lightweight set of protocols that allow
resource-constrained computing platforms, such as cell phones, to operate on a

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Analyzing the Performance of Authentication Protocols . 465

data network, such as the Internet. Because the WAP protocols are not di-
rectly interoperable with the traditional Internet protocols, a gateway (.e.,
proxy server) is required to perform protocol translation.

The WAP version of the TLS protocol is WTLS. WTLS provides options to per-
form both server-side and client-side authentication and certificate exchange.
The final result is the establishment of a session key that can be used to se-
curely exchange application data. WTLS resembles TLS, but is incompatible
with it. As a result, if the target application server only supports TLS, the WAP
proxy must perform a protocol translation from WTLS to TLS.

The level of assurance offered by WTLS has been criticized in the literature
[Khare 1999], and there are several objections to its use. For example, it allows
the use of weak encryption algorithms and features that make chosen-plaintext
attacks and brute force attacks easier to mount. Further, in order to translate
from WTLS to TLS, the WAP gateway must decrypt and re-encrypt messages
transiting from the user to the target server. As a result, a potentially untrusted
gateway has access to clear-text messages. There are several proprietary and
proposed standard solutions aimed at closing what has been called the “WAP
Gap” [Jormalainen and Laine 1999] and implementing end-to-end (i.e., mobile-
client-to-target-server) security with WAP [Cylink 2000; WAP 2000a].

4. METHODOLOGY

Our methodology follows standard practices for conducting a performance mod-
eling analysis: construct the model, validate the model, vary modeling param-
eters, and analyze the results. However, it is important to accommodate the
unique characteristics of security protocols in implementing the details of each
step. There are three high-level steps: develop a closed queuing network model
that reflects encryption algorithm performance, validate the model, and con-
duct “what-if” analyses.

4.1 Develop a Closed Queuing Network Model that Reflects Encryption
Algorithm Performance

To illustrate how the closed queuing network is constructed, consider Figure 1,
which models a Kerberos cross-domain authentication. Customers circulate
among the servers in the closed network and sequentially wait for service,
consume processing resources, and then proceed to the next service station.

Suppose that there are two customers, Alice and Bob, circulating in the net-
work. In the figure, both Alice and Bob are at the KDC queuing station. Alice is
performing a public-key-based initial authentication. Bob is waiting to request
a service ticket. The KDC is conducting a public key signature verification of
Alice’s PKINIT authenticator. When Bob enters the service center, the KDC will
conduct a secret key decryption and encryption on his behalf to issue a service
ticket. On Alice’s next trip through the service center, the KDC will conduct
secret key operations on her behalf to issue her a service ticket.

The queuing network model captures the delays experienced as Alice and Bob
compete with other customers requesting services from the same resources—
reflecting the performance characteristics of many customers executing

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

466 o A. Harbitter and D. A. Menasce

Q%
ALICE

Client

workstations E— > Remote
KDC

Fig. 1. Modeling topology for a multiple-realm authentication.

simultaneously as independent threads in a multitasking server. We use a class-
switching formulation so the service times can be varied for each step in the
protocol. When Alice leaves the KDC service center, she will switch classes,
eventually joining the class Bob is in. The multiple-class, closed queuing net-
work with class switching is well understood [Bruell and Balbo 1980]. Class
switching is infrequently used in performance modeling and this is the first
application to authentication protocols.

In this type of queuing network, the steady state solution retains a “product
form” [Gross and Harris 1998]. In a product form queuing network, the
probability that the system is in a given state N = (ny, ng, ..., n;) representing
the number of customers at all £ servers is proportional to the product of the
marginal probabilities P;(n;) that server i has n; customers. The product form
queuing network can be solved efficiently even for large numbers of servers
and customers [Schweitzer 1991]. We provide the equations used to solve for
key performance metrics in Appendix B. This formulation allows us to model
a protocol with multiple phases in which each phase requires a significantly
different amount of computing or communications resources than the others.

This queuing model analysis of the protocol can accurately reflect the com-
plex performance characteristics of the authentication protocol. For example,
as the number of customers increases, servers with the largest portion of the
workload will saturate first. This may cause overall response times to increase
nonlinearly. Queues at the saturated servers will grow faster than others in
the system, resulting in underutilization of the nonsaturated server. These

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Analyzing the Performance of Authentication Protocols . 467

Windows NT Windows NT Proxy or Windows NT
=] Remote KDC Server Local KDC Server Application Server

i
ooy

Windows CE mobile
test client

[]

Windows 98 workload generation clients

Fig. 2. Multiple-realm test bed.

effects, caused by the specific branching and service characteristics of the pro-
tocol cannot be accurately captured by a simple analysis of service times.

4.2 Validate the Model

In order to trust the model’s predictions, we must demonstrate its accuracy
against an implementation. It is a challenge to validate the model of a new pro-
tocol because reference implementations may not exist. To support validation
of the model, we develop a “skeleton” software implementation of the proto-
col. The skeleton design consumes computing resources in a manner similar
to actual implementation (i.e., resulting from communications, encryption, and
message processing), but the skeleton software avoids many of the complexities
presented by implementing the real protocols. The skeleton software includes
calls to RSA and DES encryption libraries, use of TCP and UDP communica-
tions protocols, message parsing functions, and multithreading, but excludes
error processing and some optional protocol features. This reduces the complex-
ity of the software and the coding time for the skeleton, but supports validation
of the model. There have been software engineering studies that generally sup-
port the rationale for our approach. Cristian [1995] finds that in operational
computer software systems, often more than two-thirds of the source code is
devoted to detecting and handling exceptions, yet exceptions are expected to
occur infrequently.

We execute the skeleton implementation in a test bed to measure proto-
col no-load service times. Figure 2 illustrates our multiple-realm Kerberos
test bed.

We use instrumented code, an IP-layer packet monitor, and software moni-
tors to capture the service times and message sizes. We run automated scripts
on each client workstation to generate load on the servers and measure transac-
tion throughput and response times for several levels of workload submission.
Then, we enter similar workload profiles into the queuing model to validate
the model against the test bed emulations and assess predictive response time
accuracy.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

468 o A. Harbitter and D. A. Menasce

4.3 Conduct “What-If” Analyses

The input parameters of the validated model match the configuration con-
straints of the test bed and give only limited insight into operation in a produc-
tion environment. We adjust these parameters to reflect conditions we would
expect in the real world and explore the protocol’s sensitivity to variety in the
operational environment. The objective of the what-if analyses is to surface
general performance characteristics of the protocol design.

5. EXAMPLE 1: THE ANALYSIS OF PUBLIC-KEY-ENABLED KERBEROS
IN LARGE NETWORKS

The context for the first example is authentication in a large multiple-realm
network. To illustrate a potential application for this example, consider an
intelligent software agent representing a law enforcement official and collect-
ing information for an investigation. The agent “visits” on-line town halls and
virtual sheriff’s offices in a nationwide search for evidence and investigative
intelligence. At each stop, the agent must show well-accepted electronic cre-
dentials. The source and level of these credentials will be used to grant the
agent access to records tightly controlled for reasons of confidentiality and pri-
vacy. Further, the agent may be requested to pay for information with electronic
currency. The infrastructure to support this type of electronic investigation will
require scalable, robust authentication protocols.

The intelligent agent will probably transit multiple security realms with
varying numbers of application servers during the course of the cyber inves-
tigation. Both PKTAPP and PKCROSS are candidates for the authentication
protocol. A quick analysis might conclude that PKTAPP would have better per-
formance characteristics because the agent would authenticate directly to the
application server with only two message pairs. However, the agent may be in-
terested in authenticating to several servers within a single realm—as would
be the case for a visit to the cyber town hall, courthouse, police station, and
sheriff’s office in the same township.

If the agent uses PKCROSS, an expensive public key authentication would
be required only once—between the local KDC and the remote KDC. After the
cross-authentication and the provision of a TGT to the remote TGS, only secret
key encryption calculations would be required. At some application-server-to-
realm ratio, it would be more efficient to use the PKCROSS protocol. This is the
specific performance question we will explore: Under what circumstance is it
more efficient to authenticate to a central KDC than to individual application
servers?

5.1 Queuing Model

The KDCs, application server, communications networks, and client worksta-
tions are finite resources that process workload while Kerberos authentication
transactions are executing. We constructed a closed queuing network model to
represent each resource used by the protocols. The queuing network topology
in Figure 1 is suitable to support representation of both PKCROSS and PK-
TAPP. The topology envisioned in Figure 1 anticipates that the local KDC may

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Analyzing the Performance of Authentication Protocols . 469

A. PKCROSS Skeleton Implementation B. PKTAPP Skeleton Implementation
Client Workstation Local KDC Client Workstation Application Server
App Server
PKclient Process | KDC Process L1 PKclient Process P&pcess A1
A A
AS-REQ/REP PK-AS-REQ/REP
Thread thread
TG-REQ/REP App Server
Thread Process A2
AP-REQ/REP
Remote KDC thread
KDC Process R1
i PK-AS-REQ/REP
Thread Legend
i (N | sses— TCP connection
KDC Process R2 UDP datagrams
TGS-REQ/REP Thread Names
Thread
AS-REQ/REP:
Handles initial Kerberos V authentication requests and
— replies
Application Server TG-REQ/REP:
App Server Handles initial Kerberos V ticket requests and replies
EincesSIAY PK-AS/REQ/REP:
AP-REQ/REP Handles public key Kerberos authentication requests
Thread and replies
AP-REQ/REP:

Handles Kerberos V application server authentications

Fig. 3. The public-key-enabled Kerberos skeleton software architecture.

be connected to the client by a local area network (LAN), and the remote KDC
and application server may be connected by a wide area network (WAN). The
validated model will use the LAN to connect all KDCs and server, matching the
test bed configuration.

5.2 Model Validation

There are no production implementations of PKCROSS or PKTAPP; so our
approach, which is to begin by building “skeleton” implementations of these two
protocols, is warranted. We developed the skeletons in standard C and used the
RSA reference library, RSAREF [Johnson 2000], for public key encryption and
Karn’s DES library [Karn 2000] for symmetric key encryption. We implemented
the KDCs and application servers on Microsoft Windows NT and the clients on
Microsoft Windows 98. However, we did not use any operating-system-specific
extensions in the C programs.

Figure 3 presents the software architecture of the skeletons. In the
PKCROSS transaction, the client process steps through the standard Kerberos
authentication message sequence to request service from an application server
in a remote realm.

The primary purpose of the skeleton software on the client is to issue re-
quests, quickly confirm the validity of the response, and timestamp the trans-
action to report response time statistics. The client-side processing has been

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

470 o A. Harbitter and D. A. Menasce

Table II. Encryption Operations for PKCROSS and PKTAPP with One Application Server

Authentication No. Private Key | No. Public Key No. Secret Key
Transaction Operations Operations Operations
PKCROSS
Client 0 0 7
Local KDC 2 3 5
Remote KDC 1 4 4
Application Server 0 0 3
Totals 3 7 19
PKTAPP
Client 2 3 3
Application Server 1 4 4
Totals 3 7 7

simplified to focus on the shared resources: KDCs and application servers. The
client process will loop through many transactions for the purpose of reporting
average response time statistics.

A single process runs on the local KDC to accept client requests in UDP data-
grams and use PKINIT to cross-authenticate the requests with the remote KDC.
Two processes run on the remote KDC: one waits for standard Kerberos re-
quests arriving as UDP datagrams, and the other opens a TCP listening socket
and waits for PKINIT transactions. The architecture follows the PKINIT IETF
draft recommendations that public key exchanges should use TCP to accommo-
date longer message sizes and reduce the potential for message fragmentation.
All KDC and application server processes are multiple-threaded; when they re-
ceive a message, they dispatch a thread to process and respond to the request.
In the final step of the transaction, the client authenticates to the application
server using a ticket received from the remote KDC.

In the PKTAPP transaction, the client process has the same role and inter-
acts with two server processes. It conducts a PKINIT exchange over a TCP con-
nection to a multiple-threaded server process and obtains a service ticket. The
client completes the authentication by sending a UDP datagram (a Kerberos
Version 5 AP-REQ message) to a multiple-threaded process running on the
same physical server.

The baseline PKCROSS and PKTAPP transactions are constructed with one
application host in a remote realm. Because the environment under study is
a large multiple-realm network, we assume that the client and KDCs must
present certificates for authentication (i.e., no parties store certificate serial
numbers and local copies of certificates). Further, we assume that the remote
server must validate two certificates in a chain corresponding to the certificate
signed by the local CA and a certificate signed by the remote CA. We apply the
same assumptions for authenticating the local KDC to the remote KDC.

We configured the client, KDCs, and application server implementations to
perform all encryption operations with 1024-bit RSA keys and standard DES.
Table II summarizes the encryption operations performed. The total number
of public and private key operations for authentication to a single applica-
tion server is identical for PKCROSS and PKTAPP. This observation is intu-
itive because both protocols use the PKINIT message interchange for a single

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Analyzing the Performance of Authentication Protocols . 471

120

-
o
o

[o]
o
L

—&— Measured
—&— Predicted

[*2]
o

Response time in seconds
iy
o

20 A

0 T T T T T
0.05 0.06 0.06 0.07 0.07 0.08 0.08

Throughput in transactions/second

55

50

45

40 0

35

i - —&—— Measured
=
e 2 ---M- - . Predicted

20 /
15 I

5

Response Time in seconds

0 T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Throughput in transactions/second

Fig. 4. Calibration results for the PKCROSS (top) and PKTAPP (bottom) transactions.

authentication between KDCs (in the case of PKCROSS) and between the client
and the server (in the case of PKTAPP). PKCROSS requires more secret key
operations because there are additional message exchanges among the KDCs.

The model’s predictive accuracy for PKCROSS and PKTAPP transactions
is shown in Figure 4. Both graphs demonstrate good calibration between the
model and observed test bed results. The predicted response times and through-
puts are within 3 percent of measured results.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

472 o A. Harbitter and D. A. Menasce

60 -+ 5
PKTAPP PKTAPP ¢ [
\ *

2 5 4 servers - 2 servers / *
° o v
5 I PKCROSS
8 40 R 1 & 16 servers .
£
(]
-§ 30 ..‘
@ PKTAPP ¢
c 1 server,”
2 20 s
2 crossover o
x line .- et

10 -

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Throughput in transactions/second

Fig. 5. Comparative PKCROSS and PKTAPP performance.

5.3 “What-If” Analysis

We used the validated model to investigate performance with an increased
number of application servers. As the number of application servers increases,
the number of “visits” made to the corresponding servers in each transaction
increases. The PKTAPP transaction will include an additional set of public
key authentication calculations for every additional application server. In the
PKCROSS transaction, there is only one public key authentication—between
the local and remote realm KDCs—regardless of the number of application
servers in the remote realm.

Figure 5 presents the comparative performance—response time plotted as
a function of PKCROSS and PKTAPP transaction throughput—for an increas-
ing number of application servers. The transactions for PKCROSS represent
authentication to one and sixteen application servers in the remote realm. The
transactions for PKTAPP represent authentication to one, two, and four servers
in the remote realm. We expect that uses similar to the example offered in at the
beginning of this section could require authentication to four or more servers
in a single realm.

The transaction rates for both protocols were increased until the overall
response time became unstable and grew rapidly. In the PKCROSS transaction,
the first bottleneck was the remote KDC processor, which had two processes
running (one processing Kerberos UDP messages and the other listening for
PKINIT transactions over TCP connections) and handled half the public key
calculations for the KDC-to-KDC PKINIT exchange.

The next bottleneck, with very similar workload, was the local KDC. The
application server was under-utilized; it conducted the final user authentica-
tion with only secret key encryption. Under PKCROSS, the KDCs remained the
saturation point regardless of the number of remote realm application servers
participating in the authentication.The indifference of the PKCROSS protocol
to the number of servers in the remote realm is shown clearly in Figure 5.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Analyzing the Performance of Authentication Protocols . 473

The analysis demonstrates that, while PKTAPP is a significantly better perfor-
mance choice for a single remote server, PKCROSS is significantly more stable
for anything greater than two servers in the remote realm.

Our model accounts only for application server workload generated by au-
thentications. In general, the application server will carry additional processing
workload. If we had added that workload to the model, it would make PKCROSS
look even more favorable.

We call the number of servers per realm that favor PKCROSS performance
over PKTAPP the “crossover.” The crossover may vary with server and network
capacity. The test bed was constructed with low-performance servers and a
10-Mbps local area network, which has much better performance than typical
Internet connections.

We repeated the model variations over a range of server and network per-
formance. We increased the performance of KDCs and application servers (i.e.,
service times were reduced) by one and two orders of magnitude. As a result, we
studied a range of processor performance that varied from a “1” to “100” SPEC
CINT95 [SPEC 2000] rating—from a very-low-end Intel Pentium processor to
a high-end server. Network performance ranged from LAN speeds to a network
throughput of 12,750 bytes per second and a latency of 80.5 milliseconds to
characterize slow Internet links [Menascé and Almeida 2002].

The results of our fast-processor/slow-network model are documented in
Figure 6. This analysis indicates that as long as the capacity of the KDCs and
applications servers are approximately the same, the performance benefits of
PKCROSS, when more than two application servers are accessed in the remote
realm, hold for increased processor capacity and reduced network throughput.
One might first guess that the increased network time would favor PKTAPP
because PKCROSS includes more message exchanges. The increased network
delay does result in more separation between the PKCROSS response time
curves for authentications of 1, 8, and 16 application servers. However, because
PKTAPP sends large messages carrying certification chains to each application
server, we observe the same crossover result.

The quantitative analysis was required to determine the contribution of net-
work and processing delay in the response times of each protocol. The queuing
model was required to project the shape of the response time curves. Figure 6
illustrates that with one or two application servers in the remote realm, the
response time in the stable portion of the PKCROSS and PKTAPP curves (i.e.,
below 6 transactions per second) are close in value. However, as the response
times become unstable (when the local KDC saturates), PKCROSS and PK-
TAPP result in significantly different performance profiles.

5.4 Summary of Proposed Protocol Enhancements and Benefits

We have demonstrated, through the use of validated analytical queuing mod-
els, the quantitative performance differences between two proposals to public-
key-enable Kerberos, PKCROSS and PKTAPP. Our analysis shows that, over
the range of server and network capacity studied, PKCROSS outperforms the
simpler protocol, PKTAPP, for authenticating to more than one application

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

474 o A. Harbitter and D. A. Menasce

14 -

< PxTARP ! PKTAPP & PKTAPP
12 o 8servers | Zse(vers . 1server |
= P : = PKCROSS
0 : ;
'g 10 24 servers | : 1,2,8,&16
g H_,_%p,—/// ¢
= 8 L/
@ o ; %
-E R4 :
3} 6 & *= 4‘—_’,/‘:/ *
= “ ,.
& 4 —*
& 00- - —-@--.------ AR _’q’% crossover K
2 X K ¥ line P
-0 -@ .o PO P P — -
0 T T T T T T T i
0 2 4 6 8 10 12 14 16

Throughput (transactions/second)

Fig. 6. Comparative PKCROSS and PKTAPP performance with increased server capacity and
decreased network throughput.

server in a remote realm. This finding can be used to guide a high-level proto-
col that combines PKTAPP and PKCROSS to improve performance.

Use of such a high-level protocol would require that each application server
provide support for both PKTAPP and traditional Kerberos. It would also re-
quire that the client know, a priori, the number of servers that would be au-
thenticated to in a given realm. Neither requirement is onerous. The application
server could support both PKTAPP and traditional Kerberos on two well-known
ports. PKTAPP could be listening on a TCP socket; Kerberos could be awaiting
UDP datagrams. The client, in the process of searching for information over a
large number of servers, is often presented with a “hit list” before beginning
the process of server authentications. This would allow the client to use either
PKTAPP or PKCROSS based on the number of servers for each realm. This
type of scenario fits well within the criminal investigation example offered at
the beginning of this section.

6. EXAMPLE 2: THE ANALYSIS OF PUBLIC-KEY-ENABLED KERBEROS IN
MOBILE COMPUTING ENVIRONMENTS

In a mobile computing context, the performance implications of protocol design
are often accentuated by limitations in the capacity of the mobile processor and
wireless network. The resources required to perform public key operations and
transmit large messages may result in unacceptable performance characteris-
tics and extended user authentication response times.

In this example, we explore the performance of user authentication from
mobile devices. Specifically, we develop and analyze a variant of PKINIT that
can use a proxy server to assist the mobile device. Adapting PKINIT to a mobile
computing platform would provide a mature authentication mechanism and
allow mobile users to operate in a PKI-supported environment.

Section 3 provided background information on current systems that can
compensate for the resource limitations of mobile computing platforms by

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Analyzing the Performance of Authentication Protocols . 475

off-loading processing to a proxy server (i.e., Charon and WAP WTLS).
Questions remain about the performance value of proxy servers.

Proxies can help resource-constrained mobile devices communicate as peers
on the Internet, but they can also introduce an additional layer of complexity,
possibility of network delay, and opportunity for security breach. With the rapid
increases in computing capacity of mobile devices such as PDAs and cell phones,
it may not be beneficial to invest in proxy-based architectures and protocols that
address what may be a short-term resource constraint.

We begin formulating our authentication protocol for the mobile platform
by identifying a set of design guidelines. We have chosen guidelines that could
lead to lower response times and address some of the limitations identified in
Charon and WTLS:

Reduce the number of public [private key operations performed on the mobile
platform. In general, public key operations consume significant processing
resources and will adversely affect performance and user response time. In
some algorithms, and depending upon the encryption parameters used, private
key operations (e.g., signing) consume more compute resources than public key
operations (e.g., signature verification). Minimizing the number of public and
private key operations will always improve performance; trading a private key
operation for a public key operation may improve performance.

When a proxy is used, maintain the option to preserve the encrypted data
stream through the proxy. The fundamental criticism of WAP WTLS security
is that it requires the data stream to be decrypted and re-encrypted in the proxy.
PKINIT for mobile platforms should implement end-to-end security and should
not require decryption in the proxy. However, if the proxy is proven to be trusted,
it may be valuable to provide an option for the proxy to decrypt the data stream
so that it can support the mobile platform in a manner similar to Charon.

Retain the standard Kerberos formats for messages sent to the KDC and appli-
cation server. This will allow the protocol to be used with standard Kerberos
KDCs and application server implementations.

Preserve the semantics of Kerberos. This will allow existing proofs of
Kerberos authentication properties to be used in arguing that the new protocol
achieves the same objectives.

Figure 7 maps the PKINIT protocol onto a mobile client, a KDC, and a target
application server. We call this adaptation M-PKINIT. In M-PKINIT, only minor
modifications are made to the PKINIT protocol. One modification is to use an
optional feature, which appeared in a PKINIT draft that expired May 26, 1998,
and has been removed in more recent drafts. This feature accommodates the
operation of PKINIT if the client only possesses a signing key and can also be
used with RSA, which allows both signing and encryption with the same key
and algorithm.

In this situation, the client generates the session key and encrypts it with
the KDC’s public key. Normally, the KDC generates the session key and
encrypts it with the client’s public key. This feature swaps a private key
operation for a public key operation on the mobile platform. It assumes that

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

476 o A. Harbitter and D. A. Menasce

Mobile
Client KDC Server
Alice Bob
Authentication Function
Initial TGT request to KDC: Alice E'l>
generates a session key, encrypts it with P
the KDC’s public key, and signs it with \,&
her private key. The KDC returns a
standard Kerberos response.
Service ticket request: Alice can now E{>
trust the KDC because it has
demonstrated knowledge of its private <:E
key by decrypting the session key. She
requests a ticket to the application
server using secret key encryption.
Server authentication: Alice AP-REQ ™
authenticates to Bob using the standard d
secret key Kerberos exchange. ﬂ AP-REP

*a standard Kerberos Version 5 message that contains
a PA-PK-AS-SIGN pre-authentication field including
the “userCert” and “encSignedRandomKeyPack”

Fig. 7. M-PKINIT transaction.

the client knows the KDC’s public key prior to receiving it as a part of the
certification chain. One potential security risk is that the mobile client will not
generate a session key that is strong enough. However, the KDC retains the
option to reject the client-generated session key if it does not meet the KDC’s
policies for encryption strength.

Figure 8 maps the PKINIT protocol onto a mobile client, a KDC, a proxy, and
an application server. We call this adaptation MP-PKINIT.

MP-PKINIT also saves a public key operation by allowing the client to gener-
ate the KDC session key. In the first message sent from the client to the proxy,
the client has the option of revealing the KDC session key to the proxy. To do
this, the client encrypts the session key with the proxy’s public key so that the
discovery of the session key requires knowledge of the proxy private key. The
proxy introduces additional store-and-forward steps into the protocol, which
will certainly increase processing and communications overhead. To mitigate
this overhead, an additional shortcut is taken: the client’s certificate chain is
cached at the proxy, eliminating the need to transfer the client certificates over
the wireless network.

6.1 QUEUING MODELING

The queuing model topology presented in Figure 1 also applies for M-PKINIT
and MP-PKINIT if a mobile client is substituted for the client, a wireless
network for the local area network, and a proxy server for the local KDC.
We adjusted the branching probabilities of the modeled M-PKINIT and
MP-PKINIT transactions to reflect the path they followed through the closed
queuing network.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Analyzing the Performance of Authentication Protocols . 477
Mobile Server
Client Proxy KDC
Alice Bob

Authentication Function

Optional

Initial TGT request: Alice
generates a session key,
encrypts it with the KDC’s
public key, and signs it with
her private key. She may do
the same for the proxy.

Service ticket request: Alice
can trust the KDC because it
has demonstrated knowledge
of its private key by
decrypting the session key.
She requests a ticket to
application server using
secret key encryption.

Server authentication: Alice
authenticates to Bob using
the standard secret key
Kerberos exchange.

Alice can encrypt the same
or a new session key with the
proxy’s public key and sign it.
This creates a trust
relationship with the proxy.
The proxy may take over the
responsibility of forwarding a
cached copy of client's
certificate(s) to the KDC.

Alice can trust the Proxy if it
has demonstrated knowledge
of its private key by
decrypting the session key.

If Alice has established trust
with the Proxy, the Proxy can
assist in applications
functions such as filtering

M-AS-REQ '\,

K M-AS-REP

AS-REQ*

AS-REP

i

M-TGS-REQ TGS-REQ

N
v

NS

/1 M-TGS-REP TGS-REP

\'7

i

N
M-AP-REQ AP-REQ
q

)

M-AP-REP AP-REP

|
N\

<

content.

*a standard Kerberos Version 5 message that contains a
PA-PK-AS-SIGN pre-authentication field including the
“userCert” and “encSignedRandomKeyPack”

Fig. 8. MP-PKINIT transaction.

6.2 Modeling Validation

Lacking any implementation of the M-PKINIT and MP-PKINIT protocol de-
signs to evaluate performance characteristics, we constructed implementations
similar to the PKCROSS skeleton. In the new implementation, two processes
run on the proxy and Kerberos KDC. One process, on both the proxy and the
server, opens a TCP listening socket and waits for PKINIT transactions. The
other process waits for standard Kerberos requests arriving as UDP datagrams.
TCP connections are kept open as long as possible to reduce the effects of con-
nection setup and “slow starts” [Stevens 1999]. For example, the proxy holds
its connection with the client open while it communicates with the KDC on the
client’s behalf. All of the standard (i.e., non-public-key) Kerberos transactions
use UDP. KDC, proxy, and application server processes are multiple-threaded.
When they receive a message, they dispatch a thread to process and respond to
the request. The mobile client either communicates entirely through the proxy
or directly to the KDC and application server, depending on the protocol we are
testing.

We focused on the mobile client device in the development and test configu-
ration shown in Figure 3. The mobile device is a Vadem Clio C-1000, which uses
Windows CE, a popular operating system for PDAs and other handheld devices.
The C-1000 incorporates a 100-MHz MIPS R4000 CPU and has 16 MB of RAM
available for programs and storage. The remaining processing elements—the

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

478 o A. Harbitter and D. A. Menasce

Table ITI. Service Time Measurements for M-PKINIT and MP-PKINIT

Time in Milliseconds for Protocol Phase
Protocol Variant Pre-auth | Auth | Post-auth | TGT & ST Total
1. M-PKINIT standard 864 3060 255 61 4240
2. M-PKINIT client session key 929 5404 4 65 6398
3. MP-PKINIT standard 866 3240 256 144 4507
4. MP-PKINIT client session key 920 5587 2 136 6646
5. MP-PKINIT trusted proxy 1773 8595 2 136 10506
6. MP-PKINIT proxy assist 1807 8421 3 142 10373

KDC, proxy, and servers—are configured as described in Example 1 (Section
5). The configuration includes conventional Windows client workstations to
generate larger numbers of transactions and load the servers. We wrote the
application in C++ and employed the same public and secret key encryption
libraries as in Section 5.

The skeleton implementation and test platform allowed us to measure ser-
vice time for an authentication transaction under a variety of protocol permu-
tations. The protocol permutations selectively engage subsets of the features
proposed in this section. Table III summarizes the results.

We recorded service times for six permutations:

(1) M-PKINIT standard: The unmodified PKINIT protocol skeleton running on
the mobile client, a KDC, and an application server.

(2) M-PKINIT client session key: The PKINIT skeleton modified to allow the
client to generate the session key and thereby trade a private key operation
for a public key operation on the mobile platform.

(3) MP-PKINIT standard: The PKINIT skeleton modified to incorporate a
proxy server. The proxy only performs store-and-forward operations.

(4) MP-PKINIT client session key: The PKINIT skeleton modified to incorporate
a proxy server and allow the client to generate the session key.

(5) MP-PKINIT trusted proxy: The PKINIT skeleton modified to include an
authentication between the client and the proxy and thereby establish a
trust relationship.

(6) MP-PKINIT proxy assist: The PKINIT skeleton modified to include mutual
authentication. In addition, the proxy caches and adds the client’s certificate
chain to the transaction as it passes through, reducing the message size
across the wireless network.

Only in the MP-PKINIT trusted proxy and MP-PKINIT proxy assist transac-
tions can the proxy provide added benefit to the client. In the other adaptations,
the proxy acts as a pass-through node. The authentication transaction is divided
into four segments for the purpose of service time measurement and analysis:

(1) Pre-auth includes the mobile device’s processing prior to transmission of
the first message.

(2) Auth includes transmission and Proxy/KDC processing time to process the
first authentication message.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Analyzing the Performance of Authentication Protocols . 479

(3) Post-auth includes the mobile device’s processing of the reply from the
Proxy/KDC.

(4) TGT & ST includes all other client, Proxy, KDC, and application server pro-
cessing related to the Kerberos Ticket Granting Ticket and Service Ticket.

Table III illustrates the impact when the client generates the session key.
Row 2 service times reflect the increases in Pre-auth and Auth to account for the
additional time required for the client to generate the key, sign it, and encrypt
it with the KDC’s public key, and then for the KDC to decrypt the key and verify
the client’s signature.

In contrast, there is a saving in PDA service time during the Post-auth
step. Only the KDC can decrypt the session key with its private key, so
the client can authenticate the KDC by confirming that the KDC properly
encrypted the “EncKDCRepPart” portion of the message. No further pub-
lic key operations are required in Post-Auth for the client to authenticate
the KDC.

For the test configuration, the increase in KDC service time means that the
M-PKINIT client session key transaction produces a longer response time than
the M-PKINIT standard transaction. This effect is similar when the same fea-
ture is added to MP-PKINIT (rows 3 and 4 in Table III), although the total
response time is higher because additional delays are introduced by commu-
nicating through the proxy. Even more delay is added when the proxy and
client mutually authenticate to establish a trust relationship (rows 5 and 6 of
Table III). The MP-PKINIT proxy assist transaction (row 6) does not produce a
meaningful reduction in service time over the MP-PKINIT trusted proxy trans-
action (row 5) because the message size saving that results when the proxy
caches the client certificate is not significant at the local area network speeds
of the test configuration.

Figure 9 plots the results of the model’s predictions against measured results
for the test configuration. We recompiled and relinked the Windows CE client
source code in a standard Win32 environment so that it could be run on a stan-
dard PC for the purpose of generating higher transaction rates and workload.
Only very minor code changes were required for the port from CE to Win32.
The figure demonstrates good calibration between the model and observed test
bed results, supporting the model’s predictive accuracy.

6.3 “What-If” Analysis

The performance of the components in a typical mobile computing environment
may vary significantly from our test configuration. In particular, the network
that connects all computers in the test configuration is a 10-Mbps Ethernet.
Generally, data transfer rates in a wireless network will be significantly slower.
The link between the KDC and the application server will most likely run
at wide area network speeds rather than local area network speeds. On the
other hand, the servers (i.e., KDC, proxy, and application servers) will most
likely be more powerful than the low-end Pentium workstations we used for
testing. We modified the transaction component service times in three ways

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

480 o A. Harbitter and D. A. Menasce

24— —a
22 L]
% 20 ;0_4T
2 16 * "
£ 14 j
P /
£ 12 #a
2 10
5 ° '
2 6 /
€ 4
2
0 , : : : . ;
0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
Throughput in transactions/second
e \P-PKINIT measured —&—— M-PKINIT measured
cecBeee VP-PKINIT predicted ™ e M-PKINIT predicted

Fig. 9. Model calibration results.
for the “what-if” analyses:

(1) We lowered wide area network throughput to 127,500 bytes per second and
added a latency of 44.5 milliseconds to reflect wide area Internet perfor-
mance [Menascé and Almeida 2002].

(2) We used two wireless network transmission capacities—9600 bits per sec-
ond with a latency of 520 milliseconds to represent 2G, and 384 Kbits per
second with a latency of 100 milliseconds to represent 3G network capaci-
ties [PCIA 1998; Alanko et al. 1994; Liljebeg et al. 1996; Metricom 2001].

(3) We varied the server capacities by speed-up factors ranging from 30 to 100.

We expect at least a factor of ten improvement in server capacity over the
low-powered PCs used—a comparison using benchmarks such as SPEC CINT
suggests that multipliers as high as 100 are appropriate if comparing the CPU
capacity of a high-end server to our test bed PCs.

Figure 10 presents an analysis of service time sensitivity to server and
wireless network capacity. In this analysis, we used two wireless network
capacities—at 2G and 3G levels—and we varied server capacities by a mul-
tiplier ranging from 1 to 20 times the capacity of those in the test bed. At both
wireless network capacities we modeled, the M-PKINIT client session key pro-
tocol variant performed slightly better than the M-PKINIT standard variant
as the server speed-up range hit the factor of ten.

A more interesting result is that adding the proxy service—in this case,
caching certificates for the client—significantly reduces response times at 2G
speeds from about 20 seconds to just above 14 seconds. This reduction is based
on an average certificate size of 1.8 KB, consistent with the range of sizes of

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Analyzing the Performance of Authentication Protocols . 481

w
°
c
<]
o
o
A
g 18 -—
[N “y
o
2 16 . =
a \ B--m..g. ., .
& 14 v S) B - -6 c] B - -3 B = B
c ®
2 N
§ 12 X ®—< oy
c ~ -
8 MR TN
103 ==& g N4 = =F = =P = =0 = =P = =3 =
c N & i kg 3 d -0 - =
]
b= o~
L 8+ o e
£ e — e
2
5 6
<
4
2 T T T T T T T T T
1 3 5 7 9 11 13 15 17 19
Server Improvement Multiplier
—{1=—M-PKINIT std on 2G net ——&——M-PKINIT client key on 2G net = 4= MP-PKINIT proxy assist on 2G net
=——O=—=M-PKINIT std on 3G net ——&—M-PKINIT client key on 3G net = 0= MP-PKINIT proxy assist on 3G net

Fig. 10. Sensitivity to server and network capacity.

commercial certificates [Taschler 1997; OSD 2000]. When the wireless network
throughput is increased to 3G speeds, the proxy is a response time burden and
increases the response time by more than 2 seconds. The quantitative analysis
was required to determine the relative response time contribution of processing
and network delay leading to this observation.

Figure 11 presents the results of the queuing network model with a plot
of M-PKINIT and MP-PKINIT authentication transaction throughput versus
response time at a wireless network speed of 9600 bps and with several server
speed-up multipliers. The figure shows a long, flat response time curve and a
sharp knee for all modeled conditions. This is a result of the dominance of the
wireless network delay in the total response time.

The wireless network was modeled as a fixed delay server—no increases in
response time occurred as a result of increased authentication traffic. We made
this assumption because we have no control over the amount of additional traffic
going through the wireless network, and we would expect authentication traffic
to be a negligible fraction of the overall traffic. We derived the throughput for the
wireless network by degrading transmission speeds to account for frame errors
using the measurements and analysis performed by Xylomenos and Polyzos
[1999].

Figure 11 demonstrates that the response times start to climb rapidly at the
point at which the KDC saturates and server delay exceeds wireless network
delay. The KDC is the bottleneck server in all models. To underscore the role of
the KDC, we decreased the acceleration of the proxy—the KDC was increased
by a factor of 50, and the Proxy by a factor of 30. This made no noticeable change

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

482 o A. Harbitter and D. A. Menasce

28 -

26
0 24]
kel 3
c
S 22 :
@ 4 ——KDC*50, Proxy*50
£ 20 s KDC*50 no proxy
[]
£ 18 A -- - A- - - KDC*50, Proxy*30
@ ———KDC*100, proxy*100
2 16 v
2
B 14 Wematematailiianet=
o

12 |

10

0 2 4 6 8 10 12 14 16 18 20
Throughput in transactions per second

Fig. 11. Server-driven performance characteristics for M-PKINIT and MP-PKINIT.

in the response time curve, indicating that the proxy can be a lower capacity
server than the KDC with little detrimental impact on user performance.

The nonproxy protocol curve knee occurs at the same place as the proxy
version because the KDC workload is the same for proxy and nonproxy protocol
variants. Finally, we observe the positive effect of increasing the capacity of the
KDC by a factor of 100—more than double the achievable throughput.

The queuing network model analysis was required to confirm that our obser-
vations about the benefits of the proxy are invariant when the KDC and proxy
servers are placed under load from multiple authentication users. If the proxy
server saturated before the KDC, then it would be possible that, at some work-
load level, inclusion of the proxy in the 2G network would not result in improved
performance. Figure 11 demonstrates that over a wide range of workload, the
proxy has a positive effect on user authentication response time.

6.4 Summary of Proposed Protocol Enhancements and Benefits

At the beginning of this section, we defined four design guidelines for adapting
Kerberos to a mobile computing environment. We can now assess the proposed
PKINIT adaptations against these guidelines:

Did we reduce the number of public key operations performed on the mobile
platform? By using an optional feature of PKINIT intended for situations
in which only a signing key is available, we swapped a private key operation
for a public key operation and eliminated the need for the client to validate
the KDC’s signature on the PKINIT reply message. The client did not have
to verify the KDC’s signature because the KDC can only decrypt the client-
generated session key with the client’s private key. If the KDC can reply with a
message encrypted with the session key, it has effectively authenticated itself
to the client. Both M-PKINIT and MP-PKINIT reduce the number of public key
operations performed on the mobile platform.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Analyzing the Performance of Authentication Protocols . 483

When a proxy was used, did we maintain the options to preserve the encrypted
data stream through the proxy? The client can choose whether or not to send
the proxy a session key. The session key, encrypted with the proxy’s public key,
can be the same session key as that used for the KDC or it can be a unique
key—it is the client’s choice. MP-PKINIT provides the option for the client to
preserve the encrypted data stream through the proxy.

Did we retain the standard Kerberos message formats to the KDC and ap-
plication server? There are two difficulties in implementing MP-PKINIT and
maintaining standard Kerberos message formats. First, Kerberos was not de-
signed to communicate through a proxy, and several implementation details
must be addressed to make this work. The IAKERB protocol specification works
through these details. Second, the KDC must know and implement the PKINIT
optional feature that allows the client to use a signing key. This feature is not
in the current PKINIT draft. We observed that having the client generate the
session key only nominally reduces overall response times, and then only if the
KDC is not the bottleneck; it may not be worth changing current Kerberos im-
plementations to support this feature. Beyond these two areas, both M-PKINIT
and MP-PKINIT can employ standard Kerberos message formats at the inter-
faces to the KDC and application server.

Did we preserve the semantics of Kerberos? The introduction of the proxy
and the client-generated session key represents a change to the semantics of
Kerberos. The change is significant enough to require reformulation of the Ker-
beros formal logic arguments before one could assert that M-PKINIT and MP-
PKINIT have the same authentication properties as Kerberos.

Our measurements and models have demonstrated that public key Kerberos
is a feasible candidate for authentication in a mobile environment. We achieved
reasonable performance with a well-proven public key encryption algorithm:
RSA with 1024-bit keys. At G2 wireless network speeds (9600 bps), assistance
is required from a proxy server in order to reduce total authentication response
times—the proxy reduces the wireless network message traffic by caching cer-
tificates for the client. The current IETF draft for PKINIT allows the KDC to
store client private keys. While this would eliminate the need to transmit cer-
tificates, it would also limit the protocol’s use to situations in which the client
was preregistered with the KDC.

7. SUMMARY AND FUTURE WORK

Performance is an important design consideration in authentication protocols.
Our primary contribution is the development of a methodology for analyzing the
performance characteristics of alternatives in authentication protocol design.
This methodology has the following benefits and features:

The predictive step is based on closed queuing models. We have selected a
technique that combines a class-switching formulation with an efficient solution
method. This combination of techniques allows us to model some of the unique
features of authentication protocols. For example, authentication protocols

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

484 o A. Harbitter and D. A. Menasce

often include multiple encryption steps that alternately apply asymmetric
and symmetric algorithms. Consecutive requests for service to processing or
communications resources may have widely variant service demands. The re-
sultant service time distributions are difficult to model analytically. The class-
switching formulation provides an approach to capture the performance char-
acteristics of this type of resource consumption profile within the constraints
required to compute an efficient numerical solution.

We use “skeleton implementations” to validate the predictive model. If a de-
signer seeks to evaluate new features, operational protocol implementations
may not be available and it may be difficult to validate the model against em-
pirical measurements. In our methodology, we develop software skeletons that
capture the performance characteristics of the protocol without requiring a full
implementation.

The general predictive methodology can be used to assess performance under
a widely variant set of operating conditions. In contrast, experimental testing
can be limited in its ability to support performance evaluation under the range
of operating conditions that the protocol under study may be subjected to in
production use. The closed queuing network models can accommodate a wide
range of input parameters and be used to explore performance under many
different applications of the studied protocol.

In developing the examples to illustrate our methodology, we have made
several contributions in the area of authentication protocol design based on
Kerberos. In our first example, we analyze two proposed, public key variants
of Kerberos: PKCROSS and PKTAPP. Our analysis shows that, over the range
of server and network capacity studied, PKCROSS outperforms the simpler
protocol, PKTAPP, for authenticating to more than one application server in
a remote realm. This finding can be used to guide a high-level protocol that
combines both PKTAPP and PKCROSS to improve performance.

In our second example, we demonstrate that a proxy server can be used
between the client and the server to significantly improve public key-enabled
Kerberos performance in a mobile setting. We show that as wireless network
speeds increase, the role of the proxy is less beneficial from a performance
perspective and may negatively impact response time.

There is more work to be done to further develop the two examples and to
refine the methodology. The development of these protocols would undoubtedly
benefit from extending the what-if analyses to a broader range of underlying en-
cryption protocols and potential operational environments. Further, we selected
our examples from proposed variants of the Kerberos authentication protocol.
These protocols have similar, but not identical security semantics. Our method-
ology most directly applies to the analysis of protocols with identical security
semantics, but differing performance characteristics. A more general problem
would be to extend the methodology to compare protocols with differing secu-
rity and performance characteristics so as to understand security-performance
trade-offs. We believe that our analysis methodology is applicable to a broad
range of protocols. Experimentation with analysis of a wider variety of authen-
tication and security protocol designs and an extension to security/performance
trade-offs remains as future work.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Analyzing the Performance of Authentication Protocols . 485

APPENDIX A. PROTOCOL SPECIFICATIONS FOR PKCROSS AND PKTAPP

The essential elements (i.e., excluding addressing and policy information) of
the PKCROSS protocol are specified below using the following notation:

A is the client’s name (Alice);

B is the applications server’s name (Bob);

KDC-L and KDC-R are the local and remote Key Distribution Centers;
realmp, and realmgare the names of the local and remote realms;

K is principal X’s long-term secret key;

Ky is a session key used to communicate between principals X and Y;

Ks is the remote KDC’s secret key used for cross-realm authentications;

Kiemp is a temporary key used in the PKINIT exchange between local and
remote KDCs;

Kiandom 1s a key used to encrypt the PKINIT reply;
PRIV is principal X’s private key;

PUBk is principal X’s public key;

N is a nonce;

T is a timestamp; and

CCx is the certificate chain for principal X.

Message 1. A— KDC-L: A, “krbtgt,” realmy,, N

Message 2. KDC-L — A: realmy, A, {“krbtgt,” Kakpc-1, A, T}Kkpe-L, {Kakpe-L,
N, T, “krbtgt”} K,

Message 3. A— KDC-L: {“krbtgt,” Kikpcr, A, T}Kkpc.L, {A, realmy, T,
N}Kukpce.L, “krbtgt”, realmg, N

Message 4. KDC-L— KDC-R: T, N, {T, N}JPRIVkpc., CCxpc., KDC-L,
“pkeross,” N

Message 5. KDC-R— KDC-L: {Ktemp}PUBKDC-Ly {Krandom, Na {Krandoma
N}PRIVkpc-r}Ktemp, CCkpc.r, KDC-L, {“pkcross”, Kkpc.rkpc-r, KDC-L, T}Ks,
{Kkpc.L,kpc-r, N, T, “pkeross”}Krandom

Message 6. KDC-L — A: realm;, A, {“pkcross,” Kakpcr, A, TYKkpc-L,KDCR,
{“pkeross”, Kkpc.Lkpcr, KDC-L, T}Ks, {Ka kpcr, N, T, “krbtgt”} K, xpe.L

Message 7. A— KDC-R: {“krbtgt,” K, xpcr, T}Kkpc.Lkpcr, {“pkcross”,
KKDC-L,KDC-R, KDC—L, T}Ks, {A, realmL, T, N}KaKDC-R, B, realmR, N

Message 8. KDC-R — A: A, realm;,, B, realmg, {B, K., T}Ky, {Kap, N, T, B,
realmg}K, kpc-r

Message 9. A — B: {B, Ky, T}Ky, {A, realmp, T, N}Kg;,

Message 10. B— A: {T, N}Kg,

This specification assumes that the RSA algorithm is used so that digital
signatures are accomplished by encrypting a message with a private key. In
the first message, Alice requests a ticket granting ticket (TGT) from her local
KDC. Her local KDC replies with a TGT and a session key encrypted with Alice’s
long-term secret key. In Message 3, Alice requests a TGT for the remote realm.
She includes her local TGT and an authenticator. The authenticator contains
an indication of her identity and a timestamp, both encrypted with the session

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

486 o A. Harbitter and D. A. Menasce

key. At this point, the local KDC must establish a trust relationship with the
remote KDC using PKCROSS. That is accomplished in Messages 4 and 5. In
Message 4, the local KDC sends the first PKINIT message to the remote KDC.
This message includes an authenticator signed by the local KDC. In Message 5,
the remote KDC responds as per PKINIT with a TGT. The remote KDC uses
a special secret key for cross-realm authentications (Kg) for encrypting the
cross-realm ticket. The remaining transactions use secret key encryption and
standard Kerberos Version 5. In Message 6, the local KDC passes the remote
TGT back to Alice. The local KDC includes the cross realm ticket as well as a
ticket to the remote KDC. Alice requests a service ticket to application server
Bobin Message 7. She must include the cross realm ticket in this request so that
the remote KDC can extract the session keys. In Message 8, she receives her
ticket to Bob. Finally, Alice authenticates to Bob in Message 9 and 10. If there
are multiple application servers in the remote realm, Alice repeats Messages 7
through 10 to authenticate to each server.

The essential elements of the PKTAPP protocol are specified below, using
the same notation conventions followed to specify PKCROSS.

Message 1. A— B: T, N, {T, NJPRIV,, CCy, A, BN

Message 2. B— A: {Ktemp}PUB4, {Krandom, N, {Krandom, N}PRIVp}Ktemp, CGy,
A, {B; Kab, A, T}Kb, {Kab, N, T, B}Krandom

Message 3. A— B: {B, Ky, T}K,, {A, realmp, T, N}Kg,

Message 4. B— A: {T, N}1Ky,

In Message 1, Alice sends her signed authenticator and her certificate chain
in the request to obtain a service ticket to Bob. Bob responds with an encrypted,
signed random key and a service ticket with an encrypted session key in Mes-
sage 2. Alice now has a service ticket, but she still must authenticate to server
Bob. This final authentication is accomplished with Message 3 and 4 using the
secret session key that Bob associated with the service ticket. If Alice wishes
to authenticate to other application servers in the remote realm, she must do
so by repeating Messages 1 through 4 with each server.

APPENDIX B. THE MULTI-CLASS/CLASS-SWITCHING QUEUING
NETWORK SOLUTION

The Mean Value Analysis (MVA) algorithm provides a stable, exact, iterative
solution for closed queuing networks. It is based on three relations that hold for
product form queuing networks models: the arrival theorem, the forced flow law,
and Little’s formula. The arrival theorem states that a new customer arriving
at a queuing server will join a line that has the same average length as the total
average length of the same queuing station in a network with one less customer.
The forced flow law relates the system throughput (1) with the throughput for
individual queuing servers (;). Little’s formula states that average number of
customers in line at a queuing servers is equal to the arrival rate to the server
times the average wait for service.

These theorems can be combined to derive the equations behind the iterative
MVA method. Before writing these equations, we note that our queuing network

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Analyzing the Performance of Authentication Protocols . 487

solution must take into account situations in which different customers waiting
at a queuing server have different mean service times and different branching
characteristics upon departure from a station. To model these situations, re-
quires the introduction of classes of customers and the ability of customers to
switch from one class to another. Bruell and Balbo [1980] have generalized the
MVA algorithm to allow for these features. Bruell and Balbo first group the
classes of users into equivalence classes (ECs). An EC is a closed group such
that there is zero probability the each customer within a specific EC will switch
to class outside of the EC. Further, all classes within an EC are reachable from
each other. The MVA equations can then be written as:

Wiq(fir) = sig(1 + Ly — 1)) (B.1)
n
hog (Ry) = 7 (B.2)
Y Zlﬂil Uig Wiq (nU)
)Liq (ﬁU) =)LOq (ﬁU)Uiq (B.3)
Liy(ny) = hig(ny)Wig(ny) (B.4)
U
LiGiy) = Y Lig(iy) (B.5)
q=1

for U ECs numbered from q¢ =1, 2, ... U where:

-

ny = the vector (ny,...,n,,...,ny) of the number of customers in each
EC for the current system state;
Wiq (i) = the mean response time at serveri (i =1,..., M) for EC q with riyy
customers in the system,;
sig = the average service time for an EC q customer at serveri(i=1, ...,
M);
Li, (iy) = the queue length at server i (i=1,..., M) when there are riyy cus-
tomers in the system;

Viq = the visit ratio of customers in EC q at serveri(i=1,..., M);
Aig = the throughput of customers in EC q at serveri(i=1,..., M);

1, = thevector(0,...,1,...,0) where all components except for the gth,
which is equal to 1, are zero.

Equation (B.1) states the arrival theorem. Equation (B.2) is Little’s Law for
the entire system. Equation (B.3) is the forced flow theorem. Equation (B.4) is
Little’s Law for each queuing station. Finally, Eq. (B.5) states that the total
queue length at server i is equal to the sum of the queue lengths at server
i due to customers from all ECs. Note that Eq. (B.1) depends upon a queue
length with a customer population that is one less than the current state of the
system. As a result, MVA is an iterative algorithm. The solution for the full
system is computed by iterating equal;ions (B.1) through (B.5) for all M devices
in the system, starting from 7iy = 0 up to the full number of customers in
each EC.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

488 o A. Harbitter and D. A. Menasce

The visit ratios, v;4, in Egs. (B.2) and (B.3) can be calculated from the visit
ratios for the classes r of the original problem as follows:

ZreECq Vir
ZreECq Vor

The visit ratios to each server in each class (v;,) are determined by the switch-
ing properties of each customer of class r in equivalence class EC,,.

Equations (B.1) through (B.5) provide performance metrics based on equiva-
lence classes. Bruell and Balbo [1980] provide the following equations to convert
from the equivalence classes g back to the classes r:

(B.6)

Vig =

Uir

Air = m (B.7)

Wir (i) = 5ir (1 + LitGi — 1,)) (B.8)
Xir (M) = dirhig () (B.9)

nir (iy) = kir (i) Wir () (B.10)

The validity and accuracy of these equations require some restrictions on
the server queuing disciplines and service-time distributions. If we want dif-
ferent service times for each class (as one would expect with different types
of encryption performed at different phases of the protocol) we are limited to
either “processor sharing” or “infinite server” queuing disciplines. In a proces-
sor sharing queue, service begins immediately for each customer joining the
service center, but the service time lengthens in proportion to the total number
of customers currently being serviced. This is a good model for multitasking,
time slice scheduling operating systems. The customer at an infinite server ex-
periences fixed delays independent of the number of customers at the service
center. This type of server is appropriate to modeling the public networks in
our problem. We expect that a very large user community will share the net-
work and that workload increases from just our authentication users will not
substantially impact the network response time.

For large numbers of customers, the MVA algorithm results in alarge number
of iterations. In order to eliminate iterations, we use a fixed-point approxima-
tion (AMVA) developed by Schweitzer and Bard [Schweitzer 1991]. Specifically,
we rewrite Eq. (B.1) as follows:

U
- ng—1 - -
Wig (iv) = sig |1+ 2 —LigGo)+ Y. LuGio) |, (B.1D)
q s=1&s#q

where n, is the total number of customers in equivalence class q.

With Eq. (B.11) substituting for Eq. (B.1), we can implement a
multiclass/class-switching AMVA algorithm by successively solving Eqgs (B.1)
through (B.5) until the error in subsequent L;;’s is less than some threshold
value ¢.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Analyzing the Performance of Authentication Protocols . 489

Authentication Step Server Service Time Class Visits Authentication Step Server Service Time Class Visits
(sir) (r) (i) (sir) (r) ()

Establish a TCP I client I 1.797 1 1 I client 0.003 3 1
connection between the wireless net 0.103 1 7 wireless net 0.103 1 7
client and the proxy and network 0.045 1 11 network 0.045 1 1
send the first PKINIT 0.000 1 1 0.000 5 2
message. network 0.045 1 11 network 0.045 1 11
wireless net 0.103 1 7 wireless net 0.103 1 7
0.001 2 2 Request a service ticket 0.011 4 1
wireless net 0.154 2 1 for the application server wireless net 0.114 3 3
network 0.055 2 1 network 0.047 4 6
Establish a TCP 0.057 2 1 0.001 7 1
connection between the network 0.045 1 11 network 0.047 4 6
proxy and the KDC, then 0.000 1 1 Pass the service ticket 0.000 4 1
forward the first PKINIT network 0.045 1 1 back to the client network 0.047 4 6
message to the KDC and 0.000 3 2 0.000 6 2
add.on the caghed network 0.071 3 2 network 0.047 4 6
certificate chain. 0.108 2 1 wireless net 0.114 3 3
network 0.071 3 2 Authenticate to the 0.020 5 1
0.003 4 1 application server wireless net 0.114 3 3
network 0.045 1 1" network 0.047 4 6
Pass a TGT from the 0.000 3 1 0.000 3 2
KDC to the client. network 0.045 1 11 network 0.047 4 6
000 5 2 o000 1
network 0.045 1 1" network 0.056 5 2
wireless net 0.103 1 7 0.000 8 1
0.001 2 2 network 0.056 5 2
wireless net 0.103 1 7 wireless net 0.106 4 1

network 0.045 1 11

0.000 6 2

network 0.045 1 11

wireless net 0.103 1 7

Fig. B.1. The MP-PKINIT transaction and its modeling parameters.

To apply these equations, we must express the authentication transaction in
terms of the inputs to the AMVA algorithm: s;. and v;.. Figure B.1 illustrates
how a sample transaction is mapped onto the AMVA inputs. We measured
the service time and visit counts in Figure B.1 from the test bed described in
Section 3 of this article. The numbers in Figure B.1 have been adjusted to rep-
resent a server speed-up factor of 50 (over our test bed servers) and 3G wireless
networks. We conduct further what-if modeling by modifying the visit counts,
service times, and the number of customers to reflect the range of operational
conditions.

ACKNOWLEDGMENTS

The authors would like to extend special thanks to the reviewers for comments
that greatly improved the quality of the final article.

REFERENCES

Aranko, T., Koso, M., LAAMANEN, H., LILJEBERG, M., MOILANEN, M., AND RAATIKAINEN, K. 1994. Mea-
sured performance of data transmission over cellular telephone networks. Department of Com-
puter Science, Report C-1994,-53. University of Helsinki, Helsinki, Finland. November.

AprostoLoPoULOS, G., PERIS, V., AND SaHA, D. 1999. Transport layer security: How much does it
really cost? In Proceedings of IEEE INFOCOM’99 (New York, New York, March). IEEE Computer
Society Press, Los Alamitos, Calif., pp. 717-725.

AsHELY, P., AND Broom, B. 1997. A survey of secure multi-domain distributed architectures. Fac-
ulty of Information Technology, Queensland University of Technology, Queensland, Australia.
Bassuam, L. E. 1999. Efficiency testing of ANSI C implementations of round 1 candidate algo-
rithms for the advanced encryption standard. Computer Security Division, Information Technol-

ogy Laboratory, National Institute of Standards and Technology.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

490 o A. Harbitter and D. A. Menasce

Braze, M. 1996. High-Bandwidth Encryption with Low-Bandwidth Smartcards. D. Gollman,
ed. Lecture Notes in Computer Science, vol. 1039. Springer-Verlag, Cambridge, UK,
33-40.

BrueLL, S. C. aND BaitBo, G. 1980. Computational Algorithms for Closed Queueing Networks.
Elsevier North Holland, Inc., New York, NY.

Burrows, M., ABapi, M., aND NEEDHAM, R. 1990. A logic of authentication. ACM Trans. Comput.
Syst. 8, 1, 18-36.

CrisTiaN, F. 1995. Exception handling and tolerance of software faults. In Software Fault Toler-
ance, M. R. LYU, ed. Wiley, Chichester, UK, 81-107.

CyLink 2000. Closing the “Gap in WAP.” www.securitytechnet.com, http://www.securitytechnet.
com/resource/rsc-center/vendor-wp/cylink/Gapinwap.pdf.

Dai, W. 1999. Crypto++ 3.1 benchmarks. www.eskimo.com, http://www.eskimo.com/~weidai/
benchmarks.html.

Ei-Hapini, M. T, Hegazi, N. H., aND Astan, H. K. 1999. Performance evaluation of a new hybrid
encryption protocol for authentication and key distribution. In Proceedings of the 4th IEEE Inter-
national Symposium on Computers and Communications (Red Sea, Egypt, July). IEEE Computer
Society Press, Los Alamitos, Calif.

Fox, A., AND GRIBBLE, S. D. 1996. Security on the move: Indirect authentication using Kerberos.
In Proceedings of the 2nd Annual International Conference on Mobile Computing and Networking
(Rye, New York, Nov.). ACM, New York, 155-163.

Gross, D., AND Harris, C. M. 1998. Fundamentals of Queueing Theory. Third ed. Wiley, New York.

HARBITTER, A., AND MENASCE, D. A. 2001a. Performance of public key-enabled Kerberos authen-
tication in large networks. In Proceedings of 2001 IEEE Symposium on Security and Privacy
(Oakland, Calif., May). IEEE Computer Society, Los Alamitos, Calif., 170-183.

HARBITTER, A., AND MENASCE, D. A. 2001b. The performance of public key-enabled Kerberos au-
thentication in mobile computing applications. In Proceedings of the 8th ACM Conference on
Computer and Communications Security (CCS-8) (Philadelphia, Penn., Nov.). ACM New York,
78-85.

JonnsoN, M. 2000. North American cryptography archives. www.cryptography.org, http:/
cryptography.org/ cgi-bin/noexport.cgi.

JORMALAINEN, S., AND LAINE, J. 1999. Security in the WTLS. Helsinki University of Technology,
Helsinki, Finland.

Karn, P. 2000. The crypto CD. www.cryptocd.org, ftp:/ftp.pini.org/pub/cryptocd/source/cyphers/
des/c/karn/.

KuHare, R. 1999. W* effect considered harmful, 4K Associates. IEEE Internet Comput (July-Aug.),
89-92.

LamBert, P. 1998. Elliptic curve cryptography delivers high performance and security for
e-commerce. Comput. Sec. J. XIV, 4, 23-29.

LigeBeG, M., HELIN, H., Kojo, M., AND RaaTIKAINEN, K. 1996. Mowgli WWW software: Improved
usability of WWW in mobile WAN environments. In Proceedings of IEEE GLOBECOM 96
(Westminster, London, England, Nov.), IEEE Computer Society Press, Los Alamitos, Calif., 33—
37.

MARTINKA, J. J., FRIEDRICH, R. J., FRIEDENBACH, P. M., AND SIENKNECHT, T. F. 1993. A performance
study of DCE 1.0.1 cell directory service: Implications for application and tool programmers. Net-
worked Systems Architecture, Hewlett-Packard. International Workshop OSF DCE, Karlsruhe,
Germany, Oct.

Mebpvinsky, A., Hur, M., anD NEUMAN, C. 1997. Public key utilizing tickets for application
servers (PKTAPP). www.ietforg, http://www.ietf.org/internet-drafts/draft-ietf-cat-kerberos-pk-
tapp-03.txt.

MenNascg, D. A. aND ALMEIDA, V. AL F. 2000. Scaling for E-Business: Technologies, Models, Perfor-
mance, and Capacity Planning. Prentice-Hall, Upper Saddle River, N.dJ.

MenNascg, D. A. anp ALMEIDA, V. AL F. 2002. Capacity Planning for Web Services: Metrics, Models,
and Methods. Prentice-Hall, Upper Saddle River, N.J.

MetricoM 2001. Ricochet Security Whitepaper, Apr. Metricom, Inc.

NEeepHAM, R. M. AND SCHROEDER, M. D. 1978. Using encryption for authentication in large net-
works of computers. Commun. ACM 21, 993-999.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Analyzing the Performance of Authentication Protocols . 491

NeumaN, B. anp Ts’o, T. 1994. Kerberos: An authentication service for computer networks. IEEE
Commun. Magazine 32, 9, 33—38.

OpengrouP 1997. DCE 1.1: Authentication and Security Services. www.opengroup.org,
http://www.opengroup.org/publications/catalog/c311.htm.

OR0zC0-BARBOsA, L., SERRANO, L., AND QUirRoz, E. 1998. Performance evaluation of the IS-41 se-
curity mechanisms in a PCS supporting intelligent network services. In Proceedings of IEEE
IN’98 Workshop (Bordeaux, France, May). IEEE Computer Society Press, Los Alamitos, Calif.,
142-154.

Osp 2000. Consideration of smart cards as the DoD PKI authentication device carrier, Office of
the Secretary of Defense. www.c3i.0sd.mil, http://www.c3i.0osd.mil/ebpublic/smartcardreport.pdf.

PersoNaL CoMMUNICATIONS INDUSTRY Assoctation. 1998. Market demand forecast for terrestrial
third generation (IMT-2000) service for the Personal Communications Industry Association.
www.pcia.com, www.pcia.com/advocacy/3gstudy.htm.

ScHWEITZER, P.J. 1991. A survey of mean value analysis, its generalizations, and applications, for
networks of queues. William I. Simon Graduate School of Business Administration, University
of Rochester, Rochester, N.Y.

SirBU, M. A., AND CHUANG, J. C.-I. 1997. Distributed authentication in Kerberos using public key
cryptography. In Proceedings of Symposium on Network and Distributed System Security (San
Diego, Calif., Feb.), IEEE Computer Society Press, Los Alamitos, Calif.

SpEc 2000. CPU95 benchmarks. http://www.spec.org/osg/cpu95/.

Starrings, W. 1994, Kerberos keeps the enterprise secure. In Data Communications, 103—111.

SteEVENS, W. R. 1999. TCP/IP Illustrated, vol. 1. Addison-Wesley, Reading, Mass.

Swirt, M., TROSTLE, J., ABOBA, B., AND ZorN, G. 2001. Initial and padd through authentication us-
ing Kerberos V5 and the GSS-API (IAKERB), IETF. www.ietf.org; http:/search.ietf.org/internet-
drafts/draft-ietf-cat-iakerb-06.txt.

TASCHLER, S. 1997. Datakey CIP 3.0 Whitepaper. www.datakey.com; http:/www.datakey.com/
cardpage/cip3_whitepaper.htm.

Tung, B., Ryurov, T., NEuMmaN, C., Tsupik, G., SOMMERFIELD, W., MEDVINSKY, A., aND Hur, M.
1998. Public key cryptography for cross-realm authentication in Kerberos. www.internic.net;
http://www.internic.net/internet-drafts/draft-ietf-cat-derberos-pk-cross-03.txt.

Tung, B., NEumaN, C., Hur, M., MEDVINSKY, A., MEDVINSKY, S., WRAY, J., AND TROSTLE, J. 2001. Pub-
lic key cryptography for initial authentication in Kerberos. www.ietf.org, http:/www.ietf.org/
internet-drafts/draft-ietf-cat-kerberos-pk-init-12.txt.

War 2000a. Wireless application protocol TLS profile and tunneling specification.
www.wapforum.org, http://www1l.wapforum.org/tech/documents/WAP-219-TLS-20010411-a.pdf.

War 2000b. Wireless application protocol wireless transport layer security specification,
wireless application forum, Ltd. 2000. www.wapforum.org, http:/wwwl.wapforum.org/tech/
documents/WAP-261-WTLS-20010406-a.pdf.

XYLOMENOS, G., AND Poryzos, G. C. 1999. Internet protocol performance over networks with wire-
less links. IEEE Netw. 13, 4, 55—63.

ZENEL, B. 1999. A general purpose proxy filtering mechanism applied to the mobile environment.
Wireless Netw. 5, 391-409.

ZoRKADIS, V. 1994. Security versus performance requirements in data communications systems.
D. Gollman, ed. In Proceedings of Computer Security—ESORICS 94 (Brighton, UK., Nov.) 19-30.

Received July 2001; revised January 2002 and June 2002; accepted June 2002

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

