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1. Introduction

The tremendous information processing capabilities of quantum mechanical sys-
tems may be attributed to the fact that the state af gnantum bit (qubit) system
is given by a unit vector in a"2dimensional complex vector space. This suggests
the possibility that classical information might be encoded and transmitted with
exponentially fewer qubits. Yet, according to a fundamental result in quantum in-
formation theory, Holevo's theorem [Holevo 1973], no more thatassical bits of
information can faithfully be transmitted by transferringiuantum bits from one
party to another. In view of this result, it is tempting to conclude that the exponen-
tially many degrees of freedom latent in the description of a quantum system must
necessarily stay hidden or inaccessible.

However, the situation is more subtle since the recipient ofntlgeibit quan-
tum state has a choice of measurement he or she can make to extract information
about their state. In general, these measurements do not commute. Thus making a
particular measurement will disturb the system, thereby destroying some or all the
information that would have been revealed by another possible measurement. This
opens up the possibility of quantumndom accessodes, which encode classical
bits into many fewer qubits, such that the recipient can choose which bit of classical
information he or she would like to extract out of the encoding. We might think
of this as a disposable quantum phone book, where the contents of an entire tele-
phone directory are compressed into a few quantum bits such that the recipient of
these qubits can, via a suitably chosen measurement, look wgragigtelephone
number of his or her choice. Such quantum codes, if possible, would serve as a
powerful primitive in quantum communication.

To formalize this, say we wish to enconeditsb, . . . , by, inton qubits fn>> n).
Then a guantum random access encoding with parametens p (or simply
anm +— n encoding) consists of an encoding map frédn1}™ to mixed states
with support inC?', together with a sequence wf possible measurements for the
recipient. The measurements are such that if the recipient choosés theasure-
ment and applies it to the encodinglaf- - - by, the result of the measuremenbjs
with probability at leasp.

The main point here is that since thedifferent possible measurements may
be noncommuting, the recipient cannot make rtheneasurements in succession
to recgver all the encoded bits with a good chance of success Thus the existence
of m> n guantum random access codes with>n and p > 5 1 does not nec-
essarily violate Holevo's bound. Furthermore, even tho@bh:an accommodate
only k mutually orthogonal unit vectors, it can accommodattelmost mutually
orthogonal unit vectors (i.e., vectors such that the inner product of any two has an
absolute value less than, s%() for somea > 1. Indeed, there is no a priori reason
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to rule out the existence of codes that repres€rmiassical bits im quantum bits
for some constard > 1.

We start by showmg that guantum encodings are more powerful than classi-
cal ones. We describeoa® 1 quantum encoding, and prove that there is 6 2L
cIaSS|caI encoding for ang > %. Our quantum encoding may be generalized to a
3081 encoding, as was shown by Chuang [1997], and to encodings of more bits
into one quantum bit.

The main result in this paper is that (despite the potential of quantum encoding
shown by the arguments and results presented above) guantum encoding does not
provide much compression. We prove that any n quantum encodlng satis-
fiesn > (1 — H(p)) m, where H(p) = —plogp — (1 — p)log(1 — p) is the
binary entropy functionThe main technique in the proof is the use of émeropy
coalescence lemmahich quantifies the increase in entropy when we take a convex
combination of mixed states. This lemma is obtained by viewing Holevo's theorem
from a new perspective.

We turn to upper bounds on compression next, and show that the lower bound
is asymptotically tight up to an additive logarithmic term, and can be achieved
even withclassicalencoding. For anyp > 1/2, we give a construction fan B
classical codes with = (1 — H(p)) m + O(logm). Thus, even though quantum
random access codes can be more succinct as compared to classical codes, they
may be only a logarithmic number of qubits shorter.

In many of the existing quantum computing implementations, the complexity of
implementing the system grows tremendously as the number of qubits increases.
Moreover, even discarding one qubit and replacing it by a new qubit initialized
to |0) (often called aclean qubit) while keeping the total number of qubits the
same might be difficult or impossible (as in NMR quantum computing [Nielsen
and Chuang 2000]). This has motivated a huge body of work on one-way quantum
finite automata (QFAs), which are devices that model computers with a small finite
memory. During the computation of a QFA, no clean qubits are allowed, and in
addition no intermediate measurements are allowed, except to decide whether to
accept or reject the input.

We define generalized one-way quantum finite automata (GQFAS) that capture
the most general quantum computation that can be carried out with restricted mem-
ory and no extra clean qubits. In particular, the model allows arbitrary measurements
upon the state space of the automaton as long as the measurements can be carried out
without clean qubits. We believe our model accurately incorporates the capabilities
of today’s implementations of quantum computing.

In Kondacs and Watrous [1997] it was shown that not every language recognized
by a classical deterministic finite automaton (DFA) is recognized by a QFA. On the
other hand, there are languages that are recognized by QFAs with sizes exponentially
smaller than those of corresponding classical automata [Ambainis and Freivalds
1998]. It remained open whether for any language that can be recognized by a
one-way finite automaton both classically and quantum-mechanically, a classical
automaton can be efficiently simulated by a QFA with no extra clean qubits. We
answer this question in the negative.

We apply the entropy coalescence lemma in a computational setting to give a
lower bound on the size of (GQFAS). We prove that there is a sequence of languages
for which the minimal GQFA has exponentially more states than the minimal DFA.
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It may be surprising that despite their guantum power (and irreversible computation,

thanks to the intermediate measurements) GQFAs are exponentially less powerful
for certain languages than classical DFAs. This lower bound highlights the need

for clean qubits for efficient computation.

2. Preliminaries

2.1. QUANTUM SYSTEMS. Just as a bit (an element {@, 1}) is a fundamental
unitof classical information, a qubitis the fundamental unit of quantum information.
A qubit is described by a unit vector in the two-dimensional Hilbert sgizcé et
|0) and|1) be an orthonormal basis for this spade.general, the state of the qubit
is a linear superposition of the foren|0) + S |1). The state oh qubits is described
by a unit vector in the-fold tensor producf? ® C?® - - - ® C2. An orthonormal
basis for this space is now given by th&&ctors|x), wherex € {0, 1}". This is
often referred to as theomputational basisin general, the state of qubits is a
linear superposition of the"Zomputational basis states. Thus the description of
ann qubit system requires’Zomplex numbers. This is arguably the source of the
astounding information processing capabilities of quantum computers.

The information in a set of qubits may be “read out” imeasuringit in an
orthonormal basis, such as the computational basis. When a)staig |X) |s
measured in the computational basis, we get the outcowith probability |ay|?.

More generally, aon Neumanymeasurement on a Hilbert spdas defined by a

set of orthogonal projection operatdi }. When a statgp) is measured according

to this set of projection operators, we get outcameith probability || P |¢)]|%.
Moreover, the state of the qubits “collapses” to (i.e., beconiesp) / |P, [¢) I,

when the outcomeis observed. In order to retrieve information from an unknown
guantum statéyp), it is sometimes advantageous to augment the state with some
ancillary qubits, so that the combined state is Ngw ® {0} before measuring
them jointly according to a set of operat¢i } as above. This is the most general
form of quantum measurement, and is callgubaitive operator valued measure-
ment(POVM).

2.2. DENSITY MATRICES. In general, a quantum system may be imied
state—a probability distribution over superpositions. For example, such a mixed
state may result from the measurement plige state|¢).

Consider the mixed statgp;, |¢i)}, where the superpositiof;) occurs with
probability p;. The behavior of this mixed state is completely characterized by its
density matrixo = Y, pi |¢i)(¢i]. (The “bra” notation(¢| here is used to denote
the conjugate transpose of the superposition (column veg@hor)Thus |¢) (@]
denotes the@uter productof the vector with itself.) For example, under a unitary
transformationU, the mixed statd p;, |¢;)} evolves ag{p;, U |¢i)}, so that the
resulting density matrix i€JpU'. When measured according to the projection
operatorg P; }, the probabilityg; of getting outcomg isqj = ) ; pillP; o) 12 =
Tr(P; pPj), and the residual density matrix B pP;/q;. Thus, two mixed states
with the same density matrix have the same behavior under any physical operation.
We will therefore identify a mixed state with its density matrix.

1 This is Dirac’s ket notationp) is another way of denoting a vect@r
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The following properties of density matrices follow from the definition. For any
density matrixp,

(1) pis Hermitian, that isp = p';
(2) phasunittrace, thatis, Toj = > p(i,1) =1,
(3) pis positive semidefinite, that isy| p |v) > 0 for all |).

Thus, every density matrix ignitarily diagonalizableand has nonnegative real
eigenvalues that sum up to 1.

Recall that the amount of randomness (or the uncertainty) in a classical proba-
bility distribution may be quantified by itShannon entropyDoing the same for
a mixed state is tricky because all mixed states consistent with a given density
matrix are physically indistinguishable, and therefore contain the same amount of
“entropy.” Before we do this, we recall the classical definitions.

2.3. QASSICAL ENTROPY AND MUTUAL INFORMATION. The Shannon en-
tropy §X) of a classical random variabl¥ that takes values in some finite
set with probabilitypy is defined as

S(X) = =) pxlog px.

Themutual information (X : Y) of a pair of random variableX, Y is defined by

[(X:Y)=S(X) + Y) — S(XY),

whereXY denotes the joint random variable with margindlendY. It quantifies
the amount of correlation between the random varialesdY .

Fano’s inequality asserts that¥fcan predictX well, thenX andY have large
mutual information. We use a simple form of Fano’s inequality, referring only to
Boolean variableX andY.

FACT 2.1 (FANO’SINEQUALITY). Let X be auniformly distributed boolean ran-
dom variable, and let Y be a boolean random variable such BrdX = Y) = p.
Then I(X:Y)>1—H(p).

For other properties of these concepts we refer the reader to a standard text (such
as Cover and Thomas [1991]) on information theory.

2.4. \bNNEUMANN ENTROPY. Consider the mixed staté = {pi, |¢i)}, where
the superpositiofy; ) occurs with probabilityp;. Since the constituent statis)
of the mixture are not perfectly distinguishable in general, we cannot define the
entropy of this mixture to be the Shannon entropymfl. Another way to see this
is that this mixture is equivalent to any other mixture with the same density matrix,
and so should have the same entropy as that mixture. Indeed, a special such equiv-
alent mixture can be obtained by diagonalizing the density matrix—the constituent
states of this mixture are orthogonal, and therefore perfectly distinguishable. Now,
the entropy of the density matrix can be defined to be the Shannon entropy of
these probabilities.

To formalize this, recall that every density matyixs unitarily diagonalizable:

p =Y AWl
j
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and has nonnegative real eigenvalugs- 0 that sum up to 1, and the correspond-
ing eigenvectorsy ;) are all orthonormal. Theon Neumann entropy(g) of the
density matrixp is then defined aS§(p) = — >, 1 log ;. In other wordsS(p) is
the Shannon entropy of the distribution induced by the eigenvalugsanf the
corresponding eigenvectors.

We summarize some basic properties of von Neumann entropy below. For a com-
prehensive introduction to this concept and its properties, see, for instance, Preskill
[1998] and Wehrl [1978].

If the constituent states of a mixture lie in a Hilbert spatehen the correspond-
ing density matrix is said to hav@ipportin H. A density matrix with support in
a Hilbert space of dimensioth, hasd eigenvalues, and hence the entropy of any
such distribution is at most laty l.e.,

FACT 2.2. If pis a density matrix with support in a Hilbert space of dimen-
sion d, therD < §(p) < logd.

Quantum mechanics requires that the evolution of the state of an isolated system
be unitary, and therefore reversible. This implies that information cannot be erased
and entropy is invariant under unitary operations:

FacT 2.3. Forany density matriy and unitary operator U, 8&Jp U ") = (p).

This is easy to see since the eigenvalues of the resulting nuix' are the same
as those op.

In the classical world observing a value does not disturb its state, and as a re-
sult measurements (or observations) do not change entropy. In the quantum world,
however, measurements usually disturb the system, introducing new uncertain-
ties. Thus, the entropy increases. Consider for example a system of one qubit that
is with probability 1 in the pure stat%(m) +11)), and thus has 0 entropy. Suppose
we measure itin th®) , |1) basis. We get each result with equal probability, and the
resulting mixed state of the qubit, disregarding the outcome of the measurement,
is {(3.10)). (3, I1))} which has entropy 1.

FACT 2.4. Let p be the density matrix of a mixed state in a Hilbert spate
and let the set of orthogonal projectiofB; } define a von Neumann measurement
inH. If p = Zj P; pP; is the density matrix resulting from a measurement of
the mixed state with respect to these projections (disregarding the measurement
outcome), then ') > S(p).

A proof of this fact may be found in Peres [1995], Chapter 9, pp. 262—-263.

3. Holevo’s Theorem and the Entropy Coalescence Lemma

Consider two parties Alice and Bob communicating over a quantum channel, where
Alice wishes to transmit some classical information, given by a random vaggble

to Bob by encoding it into some number of qubits and sending these qubits to Bob.
Holevo’s theorem [Holevo 1973] bounds the amount of information Bob can extract
from the quantum encoding.

THEOREM 3.1 (HOLEVO). Let x+— p, be any quantum encoding of bit strings
into density matrices. Let X be a random variable with a distribution given
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byPr(X =x) = px, and letp = ), pxpy be the state corresponding to the encod-
ing of the random variable X. If Y is any random variable obtained by performing
a measurement on the encoding, then

(X 1Y) < S(p)— D pxS(oy):

Viewing Holevo’s theorem from a different perspective is the key to the lower-
bound results in this paper. We consider the scenario where a mixisiabtained
as the convex combination of two mixturgg, p; of equal entropy. When can we
say that the combination results in a mixture of higher entropy? This is the content of
theentropy coalescence lemrhalow. This lemma can quite easily be generalized
to the case wherp is obtained from a more general mixture of density matrices.

LEMMA 3.2. Letpyandp, be two density matrices, and let= %(po + py) be
a uniformly random mixture of these matricelis a measurement with outcoe
or 1 such that making the measurementgyyields the bit b with probability at
least p, then

S(o) = 3[S(p0) + S(pp)] + (1~ H(p).

PROOF  We view p,, as an encoding of the bit If X is an unbiased random
variable over0, 1}, thenp represents the encoding Kt LetY be the outcome of
the measurement of this encoding accordin@t®y the hypothesis of the lemma,
Pr(Y = X) > p. Thus, by Fano’s inequality—Fact 2.1:

1(X:Y) > 1—H(p).
Also, by Holevo's Theorem 3.1:

(X Y) = S(p) — 5 [S(po) + Slp)]

RearrangingS(p) > %[S(po) + S(p1)] + (1 — H(p)) as desired.

4. Random Access Encodings
We first define random access encodings.

Definition 4.1. Am +> n guantum random access encoding is a function
f:{0, 1J™ x R — C? (hereR is the set of random choices in the encoding) such
that for every I<i <m, there is a measuremef that returns 0 or 1 and has the
property that

Vb € {0, 1™ Pr(Oi [f(b,r)) =bi) = p.

We call f the encoding function, ar@; the decoding function. We say the encoding
is classical iff is a mapping intd0, 1}".

4.1. A QUANTUM ENCODING WITH NO CLASSICAL COUNTERPART.  We begin
by constructing a random access encoding of two classical bits into one qubit.
This encoding was first used by Bennett et al. [1982] in the context of quantum
cryptography and was independently rediscovered by the authors of this paper in
the context of coding.
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[x = 1]

fLy M 10

FiG. 1. A two-into-one quantum encoding with probability of succed3.85.

LEMMA 4.1. Thereis a2 t3 1 guantum encoding.

_PROOE Let |ug) = 10), |uy) =11), and |vo) = 5(I1) + 0)), o) =
ﬁ(|1) — |0)). Define f (X, xz),_ the e_ncodlng c_)f _the stringy X, to be|ux1_) + [Vx,)
normalized, unlesx;x, =01, in which case it is- |ug) + |v1) normalized. The
four vectorsf (0, 0), ..., f(1, 1) appear in Figure 1.

The decoding functions are defined as follows: for the firskhitwe measure
the message qubit according to thbasis and associapey) with x; =0 andjuy)
with x; = 1. Similarly, for the second bit, we measure according tosthasis, and
associatevg) with xo =0 and|vy) with x, = 1. See Figure 1.

For all four code words, and for any= 1, 2, the angle between the code word and
the correct subspacesiy8. Hence the success probability is t@s/'8)~ 0.85. [

This example was further refined into a B 1 quantum encoding by
Chuang [1997].
The next lemma shows that such classical codes are not possible.

LEMMA 4.2. No2+5 1 classical encoding exists for any-p %

PROOF. Let there be a classical 1 encoding for some. Let f : {0, 1} x
R — {0, 1} be the corresponding probabilistic encoding function ¥nd{0, 1} x
R — {0, 1} the probabilistic decoding functions.

We first give a geometric characterization of the decoding functions. ¥ au+
pends only on the encoding, which is either 0 or 1. Define the pirftor j =0, 1)
in the unit square [01]? as P! =(a{, a}), wherea! = Pr/(Vi(j,r')=1). The
point P characterizes the decoding functions when the encoding is (R acklar-
acterizes the decoding functions when the encoding is 1. For exafple(1, 1)
means that given the encoding 1, the decoding functions rgiuenl andy, =1
with certainty, andP® = (0, 1/4) means that given the encoding 0, the decoding
functions returry; = 1 with probability zero ang, = 1 with probability /4.
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i

y =01 P oy=1i
Poc/

y=00 y=10

FiG. 2. A geometric characterization of the probabilistic decoding functions of Lemma 4.2.

Now fix the decoding function¥;, V. They define two pointsP0 and Pl in
[0, 1]? and the line connecting them:

P(@)=(1-q)P°+qP".

We divide [Q 1]° to four quadrants, and we associate each quadrant with its cor-
ner (x1, Xo) € {0, 1}2 (see Figure 2). The connecting lif{q) cannot strictly pass
through all four quadrants. To see that, let us assume without loss of generality that
the pointP(3) is at or above the cente (3). If the line is monotone increasing,
then the line must miss the bottom right quadrant, while if it is monotone decreas-
ing, it must miss the left bottom quadrant. If the line misses the quadrant associated
with (X1, X2), we say the decoding functions misg,(xy).

We now look at the encoding. We know the decoding functions miss some
(X1, X2) and without loss of generality let us say that they mis9J1Given the
input x = (1, 0), the encoder can choose (based pavhether to encode as 0
or 1. Let us say that he or she encoaeas 1 with probabilitygy. Let us denote
by P* = (a1(x), az(x)) the point witha (x) = Pr (Vi (f (X, r),r’)). Then,

= (1-a)P°+ P! = P(a).

In particular it lies on the line connectir@® and P and therefore it is not in the
interior of the bottom right quadrant. Thus, eitlag(x) is at most1 or ax(x) is at
Ieast1 It follows that either the first bitX; = 1) or the second bit, = 0) is
decoded correctly with probability < 3 1 [

5. The Asymptotic of Random Access Codes
5.1. THELOWERBOUND. We now prove alower bound on the number of qubits
required for quantum random access codes.

THEOREM 5.1. Let% < p <1. Any quantum (and hence any classicalb—%n
encoding satisfies r (1 — H(p)) m.

PROOF Let p, denote the density matrix corresponding to the encoding of
the m-bit string x, and letp be the density matrix corresponding to pickirg
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uniformly from {0, 1}™ and encoding it. Then,
1
= om Z Px-
X
Furthermore, for any < {0, 1K, Where O<k <m,let

:mk Z Pzy

ze{0,1}™

be the mixture corresponding to pickinguniformly from all strings in{0, 1}™
with postfixy and encoding it. We prove by downward inductionkathatS(p,) >

(1—H(p))(m—Kk).

Base case Assumek=mandy € {0, 1}™. We need to prove th&(p,) > 0.
Indeed, the von Neumann entropy of any mixed state is nonnegative.

Induction step Suppose the claimis true fer-1. We havep, = 2(p0y+p1y).
By hypothesis,

S(opy) = (1 - H(p)(M—k—1),

for b=0, 1. Moreover,py,, is a mixture arising for encoding strings within the
(m—K)th bit. In partlcular the measuremefi,  when applied to the density
matrix py,, returnsb with probability at leasp. Thus, by the entropy coalescence
lemma (Lemma 3.2), we get

Slpy) = %(S(my) + S(pyy)) + (1= H(p) = (1 - H(p)(m —Kk).

In particular, fork =0 we get thatS(p) > (1 — H(p)) m. On the other hand,
p is defined over a Hilbert space of dimensidh(as the encoding uses onty
gubits) and Fact 2.2 implies th&p) < n. Together we see that> (1— H(p)) m
as desired. [

5.2. A MATCHING UPPERBOUND. We now present a (nonconstructive) clas-
sical encoding scheme that asymptotically matches the lower bound derived in
the previous section.

THEOREM 5.2. For any p>% there is a classical m> n encoding with
n=(1—H(p)m+ O(Iogm).

PrROOF If p>1— 1 H(p)< '°g”n“]+2 and there is a trivial encoding—the
identity map. So we turn to the case whegree 1 — =

We use a cod& C {0, 1}™ such that, for every( € {0,1}™ thereisay € S
within Hamming distance (& p— m) m. Itis known (see, e.g., Cohen et al. [1997],
Theorem 12.1.2) that there is such a c&lealled acovering codeof size

S| < 2@-H(P+gE)m+2logm _ H(1—H(p)m+4logm

For explicit constructions of covering codes, we refer the reader to Cohen et al.
[1997]. (The explicit constructions, however, do not achieve the bound we seek.)
Let S(x) denote the code word in the covering cdglas above closest ta One
possibility is to encode a string by S(x). This would give us an encoding of the
right size. Further, for every, atleast p+ %) m out of them bits would be correct.
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This means that the probability (over all bifsthat x; = S(x); is at leastp + %
However, for our encoding we need this probability to be at |gafstr everybit,
not just on average over all bits. So we introduce the following modification:

Letr be anm-bit string, andr be a permutation ofl, ..., m}. For a stringx
{0, J™, let(x) denote the String, (1)Xx(2) - - - X (m)-

Consider the encoding, , defined byS,  (x) = 7 ~%(S(zw (X +r))) +r. We show
that if = andr are chosen uniformly at random, then for angnd any index, the
probability that théth bit in the encoding is different from is at most - p— L.
First, note that ifi is also chosen uniformly at random, then this probabrﬂity is
bounded by + p— r—}] So all we need to do is to show that this probability is
independent of.

If = andr are uniformly random, then(x + r) is uniformly random as well.
Furthermore, for a fixe¢ = 7 (x + r), there is exactly one corresponding to any
permutation that givesy =z (X + r). Hence, if we condition oty = (X +r),
all = (and, hence, atlr—%(i)) are equally likely. This means that the probability
that x; # S (x);i (or, equivalently, thatr (X + r),-15) # (S(r (X + 1))-1)) for
randomyr andr is just the probability ofy; # S(y); for randomy and j. This is
independent off (andx).

Finally, we show that there is a small set of permutation-string pairs such that
the desired property continues to hold if we chosse uniformly at random from
this set, rather than the entire space of permutations and strings. We employ the
probabilistic method to prove the existence of such a small set of permutation-
string pairs.

Let ¢ =m?, and let the stringsy, ..., r, € {0, 1}™ and permutationsy, . ..,
be chosen independently and uniformly at random. ¥ix {0, 1}™ andi €
{1,...,m}. Let Xj be 1ifx # S, (X)i and O otherwise. TheEf:l X; is
a sum of¢ independent Bernoulli random variables, the mean of which is at
most (1— p — =) ¢. Note that} Zle X; is the probability of encoding thih bit
of x erroneously when the permutation-string pair is chosen uniformly at random
from the sef{ (i1, r1), ... (¢, r¢)}. By the Chernoff bound, the probabilit}/ that the
sume:l X;jisatleast(t p— %) ¢ +m? (i.e., thatthe error probfslbilit%/zjzl X
mentioned above is at least-1p) is bounded by €™/¢ = e=2™_ Now, the union
bound implies that the probability that thia bit of X is encoded erroneously with
probability more than 1 p for any xori is at mostm2™e~2™ < 1. Thus, there is
a combination of strings,, . .., r, and permutationsy, ..., , with the property
we seek. We fix such a set b6ftrings and permutations.

We can now define our random access code as follows: To encode select
j €{1,..., ¢} uniformly at random and compute=S;, ;,(x). This is the en-
coding of x. To decode theth bit, we just takey;. For this scheme, we need
log(?|S]) < log£+1log|S| = (1— H(p)) m+ 7 logm bits. This completes the proof
of the theorem. [

6. One-Way Quantum Finite Automata

In this section, we define generalized one-way quantum finite automata, and use
the techniques developed above to prove size lower bounds on GQFAs. We first
introduce the model.
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6.1. THE ABSTRACT MODEL. A one-way quantum finite automaton is a the-
oretical model for a quantum computer with finite work space. QFAs were first
considered by Moore and Crutchfield [2000] and Kondacs and Watrous [1997].
These models do not allow intermediate measurements, except to decide whether
to accept or reject the input. The model we describe below allows the full range of
operations permitted by the laws of quantum physics, subject to a space constraint.
In particular, we allow anyrthogonal(or von Neumann) measurement as a valid
intermediate computational step. Our model may be seen as afinite memory version
of the mixed-state quantum computers defined in Aharonov et al. [1998]. We have
to take care to formulate the model to properly account for all the qubits that are
used in the computation. Thus any clean qubits must be accounted for explicitly in
the finite memory of the automaton. For example, performing a general “positive
operator valued measurement” on the state of the automaton would require a joint
measurement of the state with a fresh set of ancilla qubits. Once these ancillary
qubits are explicitly included in the accounting, the same effect can be achieved by
a von Neumann measurement.

In abstract terms, we may define a GQFA as follows: A GQFA has a finite set of
basis state®), which consists of three parts: accepting states, rejecting states, and
nonhalting states. The sets of accepting, rejecting and nonhalting basis states are
denoted byQacc, Qrej, andQnon, respectively. One of the stateg, is distinguished
as the starting state.

Inputs to a GQFA are words over a finite alphabetWe shall also use the
symbols ‘¢’ and “$” that do not belong t& to denote the left and the right end
marker, respectively. The sEt= X U {¢, $} denotes the working alphabet of the
GQFA. For each symbat € I', a GQFA has a corresponding “superoperaldy”
that is given by a composition of a finite sequence of unitary transformations and
von Neumann measurements on the sgiz¢eA GQFA is thus defined by describ-
ing Q, Qacc, Qrej» Qnon, Go, X, and, forallo € I'.

At any time, the state of a GQFA can be described by a density matrix with
support inCQ. The computation starts in the statg) (qo|. Then transformations
corresponding to the left end markgy the letters of the input word and the
right end marker $ are applied in succession to the state of the automaton, unless a
transformation results in the acceptance or rejection of the input. A transformation
corresponding to a symbel € T consists of two steps:

(1) First,U, is applied top, the current state of the automaton, to obtain the new
statep’.

(2) Then,p’ is measured with respect to the operatfPscc, Prej, Pnon}, Where
the P, are orthogonal projections on the spades defined as follows:
Bacc =span{|d) | g € Qacc}, Erej=span{|d) | g € Qrej}, andEnon =span
{l9) | 9 € Qnon}- The probability of observing € {acc, rej, non} is equal
to Tr(P, p'). If we observeacc (or rej), the input is accepted (or rejected). Oth-
erwise, the computation continues (with the stat&, o’ Pnon/Tr(Pnonp’)), and
the next transformation, if any, is applied.

We regard these two steps together as reading the symbol

A GQFA M is said toaccept(or recogniz¢ a languagé. with probability p > %
if it accepts every word i with probability at leasp, and rejects every word not
in L with probability at leasp.
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e oo Am+1 } accept states
e o o ’
@ 0,1 } reject states

Fic. 3. A DFA that accepts the language,={wO0 | w € {0, 1}*, [w| < m}.

A reversible finite automatofiRFA) is a GQFA such that, for any € T" andq €
Q. U, 1g){al =|d'){(q’| for some distinc)’ € Q. In other words, the operatdf,
is a permutation over the basis states.

The sizeof a finite automaton is defined as the number of (basis) states in it.
The “space used by the automaton” refers to the number of (qu)bits required to
represent an arbitrary automaton state.

6.2. GQFAFOR CHECKING EVENNESS

THEOREM 6.1. Let Ly, ={wO0|w € {0, 1}*, |w| < m}, m > 1, define a family
of regular languages. Then,

(1) Ln is recognized by a one-way deterministic automaton of siga)O
(2) Lm is recognized by a one-way quantum finite automaton, and

(3) any generalized one-way quantum automaton recognizjpgith some con-
stant probability greater thas has2%™ states.

Theorem 6.1 compares classical and quantum automata for checking if a given
input is a small even number (an even number less tHaR)2The proof of the
first two parts of Theorem 6.1 is easy. Figure 3 shows a DFA with{23 states
for the languagé.,,. Also, since eact., is a finite language, there is a one-way
reversible finite automaton (as defined in Section 6.1), and hence a one-way QFA
that accepts it. What then remains to be shown is the lower bound on the size of a
one-way GQFA accepting the language.

Define anr-restricted one-way GQFA for a languagke as a one-way GQFA
that recognizes the language with probability- % and which halts with nonzero
probability before seeing the right end marker oafter it has read letters of
the input. We first show a lower bound on the sizenofestricted GQFAs that
accept. .

Let M be anym-restricted GQFA acceptinlg,, with constant probabilityp > %
Note that the evolution oM on reading a random input bit corresponds ex-
actly to that of the situation in Lemma 3.2, where we get a probabilistic mix-
ture of two distinguishable quantum states. So, at the end of reading the en-
tire m-bit input string, the state oM can be shown to have entropy of at least
(1— H(p)) m. However, this entropy is bounded by I0Q| by Fact 2.2, wher&)
is the set of basis states bf. This gives us the claimed bound, as explained in
detail below.

Let p, be the density matrix of the GQP¥M after thekth symbol of a uniformly
randomme-bit input has been read @ k < m).
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Cam 6.2. S(p,) > (1 — H(p))k.

PROOF. We prove the claim by induction.

Fork =0, we haveS(p,) > 0. Now assume th&(p,_;) > (1 — H(p))(k — 1).
After the kth random input symbol is read, and the unitary transformdtpris
applied, the state dfl becomegp, = %(uopk_l + Urpy_1)-

By the definition ofM, if we now get to see the right end marker, we can learn the
value of the last bib: there is a local measuremefitthat yieldsb with probability
at leastp > 3. So by Lemma 3.2, we have

S0 = 5(SUopio) + Sthp ) + (1~ H(D). e

But the entropy of a mixed state is preserved by unitary transformations, and may
not decrease when subjected to a von Neumann measurement (Facts 2.3 and 2.4),
SO S(Uppy_1) = pr_1) = (1 — H(p))(k — 1). Inequality &) now gives us the
claimed bound. [J

It only remains to show that the lower bound on the size of restricted GQFAs
obtained above implies alower bound on the size of arbitrary GQFAs accépting
We do this by showing that we can convarty one-way GQFA to am-restricted
one-way GQFA which is onlyO(r) times as large as the original GQFA. It fol-
lows that the 2™ lower bound on number of states wfrestricted GQFAs rec-
ognizing L, continues to hold for arbitrary GQFAs far,,, exactly as stated in
Theorem 6.1.

The idea behind the construction of a restricted GQFA, given an arbitrary GQFA,
is as follows: We carry the halting parts of the state of the original automaton as
“distinguished” nonhalting parts of the state of the new automaton till at teast
more symbols of the input have been read since the halting part was generated, or
until the right end marker is encountered. We then map the distinguished parts of
the state to accepting or rejecting subspaces appropriately.

LEMMA 6.3. Let M beaone-way GQFA with S states recognizing alanguage L
with probability p. Then there is an r-restricted one-way GQFA With O(r S)
states that recognizes L with probability p.

PrROOF Let M be a GQFA withQ as the set of basis statd@,.. as the set
of accepting stategQ,j as the set of rejecting states, amgdas the starting state.
Let M’ be the automaton with basis state set

QU(Qacc x{0,1,...,r +1} x {acc, non})
U(Qrej x {0, 1,...,1r + 1} x {rej, non}).

Let QaccU(Qace X {0,1,...,r +1} x {acc}) be its set of accepting states, let
QrejU(Qrej x {0, 1, ..., r + 1} x {rej}) be the set of rejecting states, anddgte
the starting state.

The superoperators for the new GQRK are constructed as follows. Consider
a superoperatadd, in M. We first extend it to the state spaceMf by tensoring it
with identity. Next, we compose it with a unitary operator that acts as the identity
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onCQ and has the following additional transitionsyit£ $:

[9)1q,0,non) if ge&QaccU Qre
lq,i +1,nony if i<r
Ig,i,non)— 3 |g,i +1,acc) if e Qac and i=r
g,i +1rej) if geQr and i=r

If the symbolo = $, then the unitary operator we use in the composition acts as the
identity on the spac€®, and has the following additional transitions:

lg,i,acc) if ge Qe and i<r

Iq"’non>'_>{|q,i,rej) if qeQr and i<r

This gives us the superoperator for the symbah the new GQFAM'.
Itis not difficult to verify thatM’ is anr -restricted one-way QFA (of siz8(r S))
accepting the same languageMsand with the same probability[]

7. Later Work

Our bounds were slightly generalized (to the case of interactive communication
with prior entanglement) in Nayak [1999a]. Buhrman and de Wolf [2001] observed
that our results imply a®(m) lower bound for the single-round communication
complexity of determining whether two subsets{df. .., m} are disjoint. There

is anO(,/m logm) qubit protocol withO(,/m) rounds of communication for this
problem [Buhrman et al. 1998], so we see that greater interaction leads to a decrease
in the communication required to solve certain problems.

As noted in Nayak [1999a], our results imply a stronger dependence of commu-
nication complexity on the number of rounds. Suppose there are two players Alice
and Bob. Alice holds am bit stringx € {0, 1}™ and Bob hold$ € {1, ..., m}. Bob
would like to know the value. If we allow two rounds of interaction, Bob can
send to Alice, who can respond with the valig and the overall communication
costis logfn) + 1. On the other hand, if the players are limited to sending one mes-
sage, then our result shows ti§ztm) qubits of communication are necessary. This
was further extended in Klauck et al. [2001], showing an exponential separation
between quantum communication complexity witandk + 1 rounds of message
exchange, for any constakt
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