Multi-teraflops Spin Dynamics Studies of the Magnetic
Structure of FeMn/Co Interfaces’

A. Canning,
NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,

B. Ujfalussy,
Department of Physics and Astronomy, University of Tennessee, Knozxville TN 37996,

T. C. Schulthess, X. -G. Zhang, W. A. Shelton, D. M. C. Nicholson, and G. M. Stocks,
Oak Ridge National Laboratory, Oak Ridge, TN 37831,

Yang Wang,
Pittsburgh Supercomputer Center, 4400 Fifth Avenue, Pittsburgh, PA 15213,

T. Dirks,
IBM, Bethesda, Maryland.

Abstract

We have used the power of massively parallel computers to perform first principles spin dynamics
(SD) simulations of the magnetic structure of Iron-Manganese/Cobalt (FeMn/Co) interfaces. These
large scale quantum mechanical simulations, involving 2016-atom super-cell models, reveal details of
the orientational configuration of the magnetic moments at the interface that are unobtainable by
any other means. Exchange bias, which involves the use of an antiferromagnetic (AFM) layer such as
FeMn to pin the orientation of the magnetic moment of a proximate ferromagnetic (FM) layer such
as Co, 1s of fundamental importance in magnetic multilayer storage and read head devices. Here the
equation of motion of first principles SD is used to perform relaxations of model magnetic structures
to the true ground (equilibrium) state. Our code is intrinsically parallel and has achieved a maximum
execution rate of 2.46 Teraflops on the IBM SP at the National Energy Research Scientific Computing
Center (NERSC).
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1 Introduction

We used the power of massively parallel processing (MPP) computers to implement first principles spin
dynamics and to study the magnetic structure of complex inhomogeneous systems. The method we have
used rests on three theoretical developments. The equation of motion of first principles Spin Dynamics
(SD) [1], [2] which is used to relax model magnetic structures to the ground state or equilibrium T=0K
configuration. Constrained density functional theory implemented within the Constrained Local Moment
(CLM) model [3], [4] for calculating the magnetic structure, energy, and constraining field associated
with the non-equilibrium, non-collinear, magnetic states that are required at each time step of a SD
simulation. The Locally Selfconsistent Multiple Scattering (LSMS) method for performing first principles,
non-collinear, constrained local moment, electronic structure calculations of a sufficiently large number
of atoms for us to be able to realistically simulate the magnetic structure of such complex systems. This
implementation of SD relaxation within the CLM-LSM code has allowed us to significantly extend the
work that won the Gordon Bell prize at SC98 [6] where we studied CLM states of Iron above the Curie
temperature.

We have used the new LSMS code to study the ground state magnetic structure of the technologically
interesting interface between a FegsMng s alloy and Co. These first principles quantum mechanical
calculations have uncovered details of the interface magnetic structure that cannot be obtained by any
other means - either experimentally or theoretically from spin model Hamiltonians. These calculations
are being performed in order to shed light on the technologically important phenomenon of exchange
bias which is an important ingredient in determining the utility of magnetic multi-layer Giant Magneto-
Resistance (GMR) read heads for the latest generation of disc drives. Exchange bias refers to the
asymmetric placement of the magnetic hysteresis loop that is induced when a ferromagnetic (F'M) material
such as Co is placed proximate to an antiferromagnetic (AFM) material such as equiatomic FeMn alloys.
While the mechanism responsible for exchange bias is unknown, it is believed that the magnetic structure
at the FM/AFM interface is a key ingredient. Of particular interest is the effect on the antiferromagnet
of its interaction with a strong ferromagnet such as Cobalt.

Our first principles studies are based on the large cell model of a FeMn/Co interface shown in figure 1.
The face centered cubic (fcc) solid solution alloy Feg s Mng 5 has long been of scientific interest in that it is
an example of a compositionally disordered fcc alloy that is, non-the-less, ordered antiferromagnetically.
The AFM ordering in this material is believed to be the so called ”3Q” state shown in figure 1. It is a
rare example of a peculiar AFM state in which the magnetic moments are non-collinear. In our model
interface structure the FeMn alloy is placed next to FM Co in which the magnetic moments are all aligned
in the same direction. The microscopic description of the magnetic structure of this interface was the
main goal of the current calculation.

More specifically, our large cell model consists of 2016-atoms on an fcc lattice constructed, in such a
way that the z axis of the supercell was oriented along the (111) direction in the conventional fcc lattice
coordinate system. The resulting structure has been divided into layers perpendicular to the z direction,
out of which 6 layers were made up of Cobalt atoms and 15 layers were randomly populated with Fe or
Mn to form a FegsMng s alloy system. The orientation of the magnetization on the Co atoms was set
parallel to the interface (and set to lay along the x-axis) and according to the 3Q state on the Fe and Mn
atoms. Each layer consists of an 8x12 array of sites in the (111)-plane of the underlying fcc structure.
The lattice parameter of the fcc lattice is taken to be 6.86 Bohr Radii (atomic units). The above chemical
and orientational configuration is the initial state, from which the system is evolved to a different final
state, according to the equations of ab-initio spin-dynamics([1], [2]). The bottom three layers of Cobalt
were held fixed by a constraining field to better simulate the real interface. This means that only three
layers of Cobalt were allowed to relax their moment orientations.
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Figure 1: Visualization of the exchange-bias system initial state, viewed from the direction of the y-axis.
The arrows represent the orientation of the magnetic moments. The gold balls represent the Fe atoms,
the grey ones the Mn atoms, while the green and pink balls stand for the relaxed and unrelaxed Co
atoms. On the left, the 3Q antiferromagnetic ordering is schematically displayed within the conventional
fee structure.

In this work the major computational problem, that of performing first principles local density ap-
proximation (LDA) density functional theory (DFT) electronic structure calculations on large systems, is
solved using the LSMS method. The basic LSMS method is an O(N) LDA method that was specifically
designed for implementation on MPPs. In the present work the standard LDA task of self-consistently
determining the charge and magnetization densities is made more difficult by the need to also self-
consistently determine site dependent magnetic fields that serve to constrain the local magnetic moments
to a prescribed set of directions. This is then further compounded by the necessity of doing this for many
orientational configurations of the magnetic moments as the system is evolved towards its ground state
through repeated application of the equation of motion of SD.

2 Methods and Algorithms

2.1 Methods
2.1.1 Local Density Approximation

Using DFT is now the accepted way of performing first principles electronic structure and total energy
calculations for condensed matter [7]. DFT is an exact theory of the ground state, the LDA converts it
into a practical computational scheme. DFT-LDA replaces the solution of the many particle Schrédinger
equation by the solution of a set of single particle self-consistent field (SCF') equations. The complex many
body exchange and correlation effects are included through an effective exchange correlation potential.



In DFT the central quantity of interest is the charge density p(r) (and, additionally, in LS(pin)DA the
magnetization density m(r)). For a fixed external potential (e.g. that resulting from a set of nuclei)
DFT-LDA returns the ground state p(r) (and m(r)). For non-spin-polarized systems the SCF equations
take the form:

{ %V2—Veff—|—€}G(I‘,I'/;G)I(S(I'—I'/) (1)
p(r) = 7TQ dr/ de G(r,r;e)f(e—p) (2)
p(r)) OF,.

Veps=Vew t e /dr | T p(r) (3)

The SCF algorithm proceeds as follows: an input guess p"(r) of the electronic charge is used in eq. 3
to construct an initial guess of the effective electron-ion potential V,;¢(r) appearing in the Schrédinger
equation (eq. 1). The single particle Schrédinger equation is then solved to obtain the single particle
wave functions or, as indicated in eq. 1 and as is appropriate to the multiple scattering Green’s function
methods used in this paper, the single particle Green’s function, G/(r,r;€). Next, the output charge
density p°%(r) is obtained from eq. 2. Finally, a new p*(r) is constructed by mixing the original p™(r)
with p?*(r) according to some (linear or non-linear) mixing algorithm. This procedure is then iterated
until p"(r) and p°“!(r) agree to a prescribed small tolerance. Once a SCF solution is found the total
energy is obtained from:

Lot [P] = Epond — /drp(r)veff(r) + Ecoutomb [IO] + Epe [IO] (4)

Clearly, LDA is a first principles, parameter free, theory of matter in that the only inputs are the atomic
numbers of the constituent elements.

2.1.2 The LSMS Method for Non-Collinear Magnetism

Standard reciprocal space (k-space) electronic structure methods for solving the LDA single particle
Schrédinger equation (eq. 1) ultimately scale as the third power of the number of atoms, N, in the unit
cell. This is due to the need to diagonalize, invert, or orthogonalize a matrix whose size is proportional
to N. For the very large cells that are required for implementing SD this scaling is prohibitive. The
LSMS method [5] avoids this O(N3) scaling by using real space multiple scattering theory to obtain the
Green’s function (eq. 1) and hence the electronic charge (eq. 2) and magnetization densities. In the
LSMS method the atoms comprising the crystal are treated as disjoint electron scatterers. The multiple
scattering equations are solved for each atom by ignoring multiple scattering processes outside a local
interaction zone (LIZ) centered on each atom (see figure 2).

The potential throughout the whole space is reconstructed in the standard way by solving Poisson’s
equation (eq. 3) for a crystal electron density made up of a sum of the single site densities. For the
LSMS method, the LIZ size is the central convergence control parameter. For face and body centered
cubic (fec and bec) transition metals LIZ sizes of a few (~ 3 — 7) neighboring atom shells are sufficient
to obtain convergence of the charge and magnetization densities. Using a Cray T3E, quite precise O(N)
scaling of the basic LSMS method has been demonstrated previously for up to 1024 atoms (nodes) [6].

The details of the LSMS method have been described in the literature [5]. The extension to cover
the case of non-collinear moment arrangements is discussed in references [3] and [4]. Here let us simply
quote the two most salient formulae necessary to understand the basic algorithm. The first is the Green’s
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Figure 2: Left Schematic of a parallel SCF algorithm. We envision a basic unit cell consisting of N-atoms
labeled 1,..., N which is periodically reproduced as indicated. About each atom, for example the 7",
we define a local interaction zone consisting of M-atoms including itself, for example labeled <, j, k.1, m.
Right Schematic of the implementation LSMS algorithm on a massively parallel computer.

function for the atom at the center of the LIZ, QAM({e}Z’; r; €), which is given by
Gu(felirie) = > Zp(rie) [Ey({e}ioli Zi(rie)

LL!

> Zp(rie)Ji(rie), (5)
L

The second is the scattering path matrix, 7p,({e};;€), which describes the multiple scattering effects
within the LIZ. It is given by the inverse of the KKR matrix, M, through

A1

o (6)
[i‘l - g] | 7)

[~
(

M

In the last equation t is the t-matrix which describes the scattering from a single site and G is the
structure constant matrix which describes the propagation of electrons from site to site. The above
are matrices in site (i), angular momentum (L) and spin (denoted by ") indices. This gives a linear
dimension of M X L x 2, where M is the number of atoms in the LIZ (87 in the present work), L is a
combined angular and azimuthal quantum number (16 for atoms near the center of the LIZ and 9 for
the more distant ones), and the factor of 2 arises from the spin index. Not surprisingly, inversion of the
KKR matrix (eq. 6) to obtain the scattering path matrix is the most time consuming task in the LSMS
method.

2.1.3 Algorithm of ab initio spin dynamics.

A general orientational configuration of atomic magnetic moments {e;} such as is encountered during
an individual time step of spin-dynamics, is not a ground state of LSDA. In order to properly describe



the energetics of a general configuration it is necessary to introduce a constraint which maintains the
orientational configuration. The purpose of the constraining fields is to force the local magnetization,
M;, to point along the prescribed local direction e;. Note that at each site the constraining field (Ecom)
is transverse to the magnetization. The constraining field is not known a priori, and has to be calculated
by some additional algorithm. The details of the theory and the constrained local moment (CLM) model
are contained in reference [4]. The CLM state may be considered as a time freeze during the evolution
of the system from a general initial state to a final state. This final state may be the ground state, as
most often is, or another non-equilibrium state. We apply a simple model to describe the time-evolution
process of the system between such CLM states: if the timestep is very small, the magnetic moments
can be considered as classical moments of constant size. The relaxation of such moments to the ground
state is then described by a Landau-Lifshitz like equation of motion of the form

d
%ei = oe; X (ei X Beff) (8)
Eeff = _Econs-

This simple first order differential equation needs to be solved for each moment. This gives the orienta-
tional configuration for the new timestep. A new constrained LDA calculation is then performed. This
is repeated until a ground state is obtained in which Beons = 0.

2.2 Parallel Challenges

By making an atom (or atoms) to node (or CPU in the case of a machine that has multiple CPU’s
per node) equivalence the LSMS is highly scalable on MPPs since each node can be assigned the work
involved in setting up and inverting the KKR matrix eq. (6) for the atom(s) to which it is assigned.
Inversion of the KKR matrix is the most time consuming step in the LSMS method. It typically takes
over 80% of the total run time and is implemented in terms of complex matrix-matrix multiplies using
the highly optimized BLAS routine CGEMM.

Keeping angular momenta up to l,,,q, (typically 4 = 3) the dimension of the matrix that is inverted
is 2 X (lpas + 1)2 x M, where M is the number of atoms in the LIZ and the factor of 2 comes from the
spin-index. Calculation of the charge and magnetization densities requires that each node invert this
matrix for a set of energies along a contour in the complex energy plane of sufflicient density to converge
the necessary energy integrations. If M is smaller than the number of atoms in the system, N, this is
clearly advantageous compared to conventional reciprocal space methods since these involve the inversion
of a matrix of dimension 2 X ({4, + 1)* X N at a sufficient number of k-points (a few for large systems
to a few hundred for small systems) to converge necessary Brillouin zone integrals. The details of how
the LSMS algorithm maps onto a parallel machine is shown in figure 2 (left) and explained in detail in
the literature[5].

Necessary message passing involves passing of single site t-matrices for the sites/nodes in a given
atom’s LIZ, as well as global information regarding the total charge in the system, charge transfer and
potential multipole moments. A typical run spends more than 80% of the time in BLAS3 routines
and only a few percent in communications. This is a direct result of the complete rethinking of the
electronic structure problem in terms of a parallel algorithm. This allows the algorithm to scale up to very
large numbers of processors with the percentage of time spent in communications staying approximately
constant when the number of processors increases with the number of atoms.



2.3 Special Optimization Issues: Fast Algorithms for Matrix Inversion

In the LSMS method each node calculates the scattering path matrix for its own atom(s). Hence, only
the L x L (L = 2(lpaz+ 1)%) upper left block of the inverse is required, which represents the local atom’s
contribution to the scattering path matrix. A significant enhancement in computational performance can
be achieved by taking advantage of this fact. Furthermore, the design of the inversion algorithms can be
largely based on BLAS level 3 matrix-matrix multiply routines to ensure optimal performance.

The size of the KKR matrix in the LSMS approach for an LIZ size of M atoms, is ¢) = M L, where
L = 2(lpax + 1)2 for each atom. Here for simplicity we assume that all atoms in the LIZ are calculated
to the same l,,c. The standard approach for the dense matrix inversion would be to apply the LU
factorization of the whole matrix, which takes %Q?’ operations (one operation is one multiply and one
add), or %Q3 floating point operations, plus the forward and backward substitution for the first L columns,
which take Q%L operations or 2Q?L floating point operations, for a total of

2 2
Qz(gQ +2L) = §M3L3 +2M*1? (9)

floating point operations.

Recognizing that not the entire first L columns of the inverse are needed, we searched for a more
efficient algorithm that could greatly reduce the total number of floating point operations for the calcu-
lation. The approach that we take is a variant of Strassen’s [10] technique due to X.-G. Zhang [9]. If we
partition a matrix of dimension @ into blocks of ()1 and @2, @1 + Q)2 = @, in the form,

(g‘ g), (10)

then the top L x L diagonal block of the inverse of this matrix is also the top L x L diagonal block of
the inverse of the following matrix,

A'=A-BD'C. (11)

Thus we performed a transformation that reduced the problem from ¢ x ¢ to ¢)1 X 1. The number of
operations (one multiply and one add) involved in this transformation is obviously %Q% + Q301 +Q203,
which is smaller for smaller values of (). However, ()9 cannot be too small, otherwise the performance
of the computer can degrade considerably due to cache misses. A reasonable choice is ()2 = L where L
is typically 32 for our calculations. Thus we apply Eq. (11) recursively, until the size of the resulting A’
is L x L, at which time a simple inversion yields the desired upper L x L diagonal block of the inverse
of the KKR matrix. The total number of floating point operations is,

2 Z { LP + L*[(M — m)L] + L[(M — m)LP} = §M3L3 —2M?LP 4+ 2M 13, (12)

The leading term of this result is the same as the standard LU algorithm, Eq. (9). However, the
difference in the lower order terms of M can significantly reduce the number of operations for small M.
Furthermore, since the new algorithm spends a very small fraction of the operations in inversion, (%M’L3
floating point operations), the majority of the operations are in matrix-matrix multiplies, it is much more
easily optimized than the standard LU algorithm. For example, for a typical calculation where I = 32
and M =~ 36, we find that the new algorithm is about a factor of three faster than the standard LU on a
wide range of platforms although the speedups are less significant for larger values of M.



3 Software Configuration

The Spin Dynamics (SD) version of the LSMS code is written in FORTRANO90 and is approximately
45,000 lines. The SD-LSMS code is derived from the CLM-LSMS code that won the 1998 Gordon Bell.
The CLM-LSMS code for performing first principles constrained local moment (CLM) calculations is
subsumed with the spin dynamics loop of the present code. The essential point being that the current
generation of machines is sufficiently powerful to allow integration of the SD equation of motion over
many time steps. In the present case SD time stepping is utilized to allow ’annealing’ of an initial model
configuration into the ground state. The CLM model is used to calculate the magnetic moments, energy,
and constraining fields for the current orientational configuration. The SD equation of motion is then
used to evolve the orientational configuration using the negative of the constraining field as the driving
field.

In the current code message passing, which was previously distributed throughout the code and
activated using a precompiler, according to the message passing interface being used - originally NX and
PVM - is implemented through an interface of our own design. The specifics of message passing are
relegated to a FORTRAN90 message-passing module and are implemented in both MPI and PVM. The
consequence is that use of a precompiler is confined to the message-passing module and the rest of the
source code does not depend on the message passing library used. Both the MPI and PVM versions of
the code are used depending on the platform being used. Typically, PVM is used on work-station clusters
and MPT is used on Cray T3E, IBM-SP, and Compaq MPP machines.

4 Results

4.1 Performance

In addition to performing the specific science calculations reported in the next sub-section, we performed
a number of calculations on large cell models of disordered FeMn alloys design to study the performance
of the SP3 within a real application context. These were part of a separate project to study the ground
state magnetic structure and total energy of face centered cubic (fcc) disordered solid solution FeMn
alloys.

The first calculations of this type were done on a 184-node IBM RS/6000 SP3 (Eagle) operated
by the Center for Computational Sciences (CCS) at Oak Ridge National Laboratory (ORNL). Each
?Winterhawk-11” node has four 375 MHz Power3-II processors and 2GB of memory. The peak compu-
tational power of this machine is over 1 TeralFLOPS in the compute partition of 176 nodes. We initially
performed 32-atom per unit cell simulations of FeMn on 32 nodes using a 43-atom LIZ and using spin
dynamics to relax the local moments in order to determine the true magnetic state. To perform the larger
scale simulations the LSMS code was ported to Falcon which is a 64-node Compaq AlphaServer SC also
located in CCS. Falcon has four 667 MHz Alpha EV67 processors and 2GB of memory per node and 2 TB
of Fiber Channel disk attached, with an estimated computational power of 342 GFLOPS. Simulations
were performed on 256-atom per unit cell configurations using an 87-atom LIZ and using spin dynamics
to relax the local moments in order to determine the true magnetic state.

The specific performance runs documented here were for large cell models of FeMn alloys made up
of NxNxN repeats of the underlying face centered cubic (fcc) lattice with the 3Q) alignment of magnetic
moments. Since the fcc cell contains 4-atoms, cells having N=1,2.3,4,5.6,7, and 8 correspond to system
sizes of 32, 108, 256, 500, 864, 1372, and 2048-atoms respectively. In addition a calculation for a 4x8x17
system corresponding to 2176 atoms was performed to obtain performance figures for the full 136-node
compute partition of the NERSC IBM-SP3. The NERSC IBM-SP has a total of 158 Nighthawk IT SMP



nodes, each with 16, 375 MHz Power34 processor and a peak speed of 3.26 Tflops for the 136-node
compute partition. The performance runs comprised of 10 self-consistent field (SCF) iterations towards
convergence of the CLM state of one SD-time step. This is sufficient to amortize the start-up and shut-
down (or check pointing) cost of the code and is representative of how the code is used in a scientific
simulation. The start-up and shut-down time increases slowly with system size but still only accounts
for &~ 60 seconds of a =~ 4000 second run.

The LIZ was held fixed at 7 near-neighbor (nn) shells (87-sites) and /4, = 3 was used for the first
two nn-shell and [,,,,, = 2 for the rest which results in a KKR matrix dimension of 876 x2. This LIZ size
is sufficient to reliably resolve the ground state configuration.

In order to establish the operations count, the N=2 (32-atom) system was run on 32 processors of
the Cray T3E900 at NERSC, using the performance analysis tool PAT. The IBM-SP does not have a
generally available parallel hardware performance monitor. The atom to processor mapping of the SD-
LSMS code results in each node executing (approximately) the same number of operations independent
of system size. Analysis of the PAT results showed a very small node to node variation in the instruction
count (less than 0.1%). Thus, to estimate the SP3 performance, we used the T3E flop count averaged
over the 32-processors as the per processor flop count for the IBM SP3 runs. For the 10-iteration run the
average flop count on the T3E was 4.672 x 10° flop /processor(atom ) including all start-up and shut-down
operations. In the LSMS algorithm as the number of atoms in the supercell increases the number of
operations per atom stays constant so it is simple to calculate the flop count for any system size. Internal
timings embedded within the code were used to obtain execution times on the IBM SP3.

o e L e e o L B e e
r R 4
r SP3 Scaling .
r ’
r ’ ]
2.5 [ | === Execution Spead ’ -
ro ldeal Sealing . 4

Execution Speed (Teraflops)

Y R U B
a 500 1000 1500 2000 2500

System Size (Number of Processors)

Figure 3: Execution rate of SD-LSMS code. The measured execution rates are shown as open circles and
the solid line is a guide to the eye. The ideal linear scaling line (dashed line) is based on straight-line
extrapolation of the 32-atom (processor) results. The performance runs were carried out during normal
production cycles with an unknown mix of other jobs running of the machine

The measured execution rates are shown in figure 3 and are compared with ideal linear scale up from
the 32-processor timings. For the largest system (2176-processors) the code ran at 2.46 Teraflops. For
the 2016-atom production runs used to study the FeMn/Co interfaces the code was running in excess
of 2.25 Teraflops. The high flop speeds are obtained in part by using the IBM native BLAS3 (matrix-
matrix multiply) routines which run close to the peak performance of the Power3 chip for sufficiently



large matrices. For very large systems a slight deviation from ideal linear scaling is observed. In each
SCF loop the KKR-matrix is inverted on a mesh of 31 energies in the complex energy plane needed
to perform an energy integration. The time to perform an inverse is essentially constant, independent
of system size. However, the time to perform a SCF loop gradually increases from & 380 sec. for the
32-atom system to = 430 sec. for the 2176-atom system. Thus, the additional time results from the time
required to construct the KKR-matrix. Since the size of the matrix is again constant, independent of
system size, the major difference between these runs is the total number of messages being passed during
the set up process. Therefore the time increase can be ascribed to the increasing cost of message passing
of the single site t-matrices during the set up of the KKR matrix as the number of atoms/processors
increases (see figure 2).

4.2 Magnetic Structure of FeMn/Co Interfaces
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Figure 4: (Upper) Section of the FeMn/Co interface showing the initial configuration of the magnetic
moments. The visualization shows the Co layer and four FeMn layers closest to the interface. The Co
layer is initialized in a F'm state and the FeMn layers are initialized in the 3Q) structure. (Lower) Section
of the FeMn/Co interface showing the final configuration of the magnetic moments for the same five
layers as shown for the initial configuration.

The main science results of this paper are for the ground state magnetic structure of the FeMn/Co
interface shown in figure 1 and discussed in the introduction.

In figure 4-lower we show a section of the final (ground state) interface magnetic structure. For
comparison we show in figure 4-upper the same layers in the initial moment configuration (extracted
from figure 1). Clearly, major changes have occurred in the FeMn-alloy layers. The magnetic moments
have rotated and evolved from the 3Q-structure into a new magnetic structure. This evolution results
from the interaction of the FeMn-layer with the Co. During the simulation the orientation of the magnetic
moments of the lowest three layers of Co (see figure 1) was held fixed while all other Co and FeMn layers
were free to rotate according to SD. Evolution of the structure involves a CLM calculation at each time
step. For the initial configuration the local constraining fields, needed to hold the magnetic moments

10



in the prescribed configuration, are large. This is indicative of the fact that the initial state (shown in
figure 1) is far from the equilibrium state. In the final state the constraining fields are reduced by several
orders of magnitude and the total energy is lower in energy by some 2 mRy/atom, indicating evolution
towards the ground state configuration.

Here, it is not our purpose to make a detailed analysis of the results of this calculation. We simply
note that the FeMn layers are no longer in the 3Q structure (even allowing for a possible global rotation
of the 3Q structure). In addition there is a 'random’ component to the orientation of the Fe and Mn
magnetic moments about some predominant directions. There has also been a small rotation of the
moments in the uppermost Co layer relative to their original position. Analysis of the details of the
magnetic structure, which appears to be very rich and could not have been predicted without the full
machinery of first principles SD and the use of the massively parallel resources, is proceeding and when
complete will be published elsewhere.
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