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An algorithm is presented for designing 
relational views over network schemas to : 
(1) support general query and update capability, 
(2) preserve the information content of the data 
base and (3) provide independence from its physical 
organization. The proposed solution is applicable 
to many existing CCDASYL databases without data or 
schema conversion. The particular declarations of 
a CDDASYL schema which supply sources of logical 
data definition are first identified. Then the 
view design algorithm is derived on the basis of a 
formal analysis of the semantic constraints 
established by these declarations. A new form of 
data structure diagram is also introduced to 
visualize these constraints. 

1. INTRczaltJcTIm 
This paper presents a rigorous solution to the 

problgn of designing relational views &ich support 
general wery and update capabilities over network 
schemas . Three objectives are of paramount concern 
in our approach. They are: 

1. information preservation 
2. updatability 
3. data independence. 

Let us consider information preservation 
first. This is needed for supporting general 
purpose data manipulation capability. Indeed a 
user must be capable of accessing through views all 
the information of interest (within his 
authorization domain). Thus the view must be 
information-wise equivalent to the underlying 
schema or that portion of interest. 

Let us consider now the problem of specifying 
updates through a view (these include insert delete 
and modify operations). The simple data 
organization displayed by a view is often very 
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different from the physical organization of data. 
This fact must be made totally transparent to a 
user who regards his view as real data. ‘Ibe 
property of a view to conform to real data behavior 
is here-called updatability because updates supply 
the critical test case for it. To assess *at the 
behavior of a view should be, let us consider the 
case of a user who is operating alone or has 
temporarily locked out updates to his data by other 
sources. Assume that this user first obtains a 
snapshot of his view content, then tells the system 
to carry out some updates and finally asks for a 
second snapshot of his view content to verify that 
the requested changes were made. What the user 
sees are the two snapshots and the constraints 
embodied in the view definition (e.g. keys of 
relations). Based on these, the user expects the 
system to perform as follows: 

(a) Updates tiich respect the semantic 
constraints embodied in the view are accepted and 
carried to completion. However, updates tiich 
violate those constraints are flagged erroneous and 
rejected by the system. 

(b) Updates accepted by the system produce the 
expected result in terms of view content. 
Therefore, the second snapshot differs from the 
first only for those additions, deletions or 
changes specified by the user. 

The final topic in the list of objectives is 
data independence. This is a very important and 
pervasive concept in database systems. In this 
paper we address what can be regarded as the 
ultimate level of data independence: complete 
visibility of external data and their structure 
along with invisibility of internal data. Xxternal 
data are those of interest in the wzzld outside of 
the data processing department, such as entities 
and attributes taken from the enterprise 
environment (e.g. employees, their salaries, their 
employment history). For the purpose of storing 
and processing external data efficiently, reliably 
and securely, the database system supplements it 
with internal data, internal structures and 
protocols. In ‘a CCDASYL system for instance, 
external data appear as values of data items in 
records. Internal data are supplemental data 
required by the CCUWYL implementation. A view 
which hides internal data adds to user convenience 
and ensures that application programs written 
against this view remain valid independent of the 
underlying implementation. 
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2. BUILDING UPON EXISTING SCBEt& 
Basically, there are two approaches to the 

problem of defining relational viewa over CODASYL 
schemas . me is the top-down approach: starting 
from a relational view one designs a CODASYL schema 
to support this view. The second is a bottom-up 
approach; here one accepts the existing schema as 
the source of data definition and designs a set of 
relations which recasts this definition in terms of 
the relational model. This second approach was 
chosen here since it enables the addition of 
relational facilities to existing systems without 
converting the present databases or compromising 
ongoing applications. In conformity with this 
approach we will use the framwrk of the ‘73 DDL 
[CODA 733 on which current DBMS’s are based. Thus 
when we speak about aX%YL we implicitly refer to 
the ‘73 J.O.D. However, much of what is said here 
can be carried over to the ‘78 specifications [C(XIA 
781. A CODASYL schema contains information about: 

(a) external data and their structure 
(b) physical organization of data 
(c). processing and manipulation of data 
(d) privacy of data. 

A first source of external data definition in a 
COMSYL schema is the description of record types 
and of the data items making up these records. A 
second source is the association between owner 
record types and member record types established by 
the various set types in the schema. The nature of 
this association depends on whether this set was 
declared as (insertion is) KARUAL or AWCMATIC and 
(retention is) MANMlDRY or OPIICRIAL. A third 
source is the declaration of certain data item 
ccmbinations to be JNPLICATES NOT ALLWF,D (DNA) in 
the location mode of a record. This establishes 
that no two record occurrences can have the same 
value for a CNA combination at any given time. A 
fourth source is the tNA declaration for sets. 
This establishes that no two member records in the 
same occurrence of a DNA set have identical values 
for the specified combinations of data items in the 
member record. 

In order to visualize these four sources of 
data definition we have augmented the well known 
data structure diagram to a form &ich we call the 
data structure Z-diagram. Figure 1 gives the 
Z-diagram for the data base discussed in [TAYL 761. 
Rectangular contours are used to represent record 
types; the record name appears next to the contour. 
The (elementary) data items are displayed inside 
the contour. Set types are represented by directed 
arcs from &.ner record types to member record 
types. If sets are AUICMATIC MANDATORY we use 
solid arcs, otherwise we use dashed arcs. Data 
item combinations which ‘are specified DNA in the 
location mode of a record are underlined inside the 
contour. For instance, this is the case for (PLN, 
PFN) of record PRES. A bar outside a contour 
denotes that all the sets incident to the bar are 
specified with the option LNA for the data item 
ccmbination spanned by the bar. For instance, AIM# 
was declared LNA for set AR. For simplicity some 
of the data items appearing in [TAYL 761 have been 
omitted and names have been abbreviated. The 
structural complexity of the original example, 
however, is faithfully captured by Figure ‘1. 

ANULLIS ALukJED phrase can be attached to 
certain INA set key declarations in the schemal. 
Then the uniqueness requirement for the DNA 
combination is waived when some data items in this 
combination are null*. Although such declarations 
have not been considered for our presidential 
database schema it is clear how they could easily 
be included in a Z-diagram. A simple solution, for 
instance, is to use dashed bars for LNA 
combinations where NULL IS ALLCWED and solid bars 
for others* 

Cur design algorithm is driven by the external 
data definition contained in CODASYL schemas, as 
captured by Z-diagrams. The objective of this 
alqorithm is to make the information of type (a) 
(external data and their structure) totally visible 
in the view while hiding the schema information 
which falls under types (b) and (c). Some privacy 
information -type (d)- may also be attached to the 
view; however a discussion of this subject is 
outside the scope of this paper. 

For the purpose of simplifying our discussion 
the following assumptions are made: 

1. Records do not contain SOURCE or RESULT data 
items. 

2. Singular sets are AUKMATIC MANDAlDRY. 
3. Repeating groups do not occur. 
4. Multimember sets do not occur. 
5. No record has a DIRECT location mcde nor does 

it contain data items of type WTA-BASE-EEY. 

Later we indicate how the design algorithm can be 
extended to remove these restrictions. 

In our approach we start by modeling the CODASYL 
database by a set of timevarying relations, which 
capture content and structure of data via the 
explicit use of data base keys. Then we apply a 
succession of information preserving tranS 
formations to factor out data base keys and derive 
a set of relations in which only external data are 
visible. 

3. SYNoNYMsrRKTuRE 
Every record occurrence in a CCNMSYL data base 

is uniquely identified by its data base key value. 
The set of data base key values for record type R 
will be denoted CR and called the data base key of 
R. A synonym of @R is a combination of data items 
from R and its predecessors (i.e. an owner of R or 
an owner of an owner and so on) which uniquely and 
non-redundantly identifies the occurrences of R. 
T’hus synonyms can be used as surrogates for data 
base keys. Synonyms arLhdzned by the INA 
declarations in the . For instance, 
referring to Figure 1, we find that (PLN, PFN) is a 

(1) This is the only instance in the COINSYL ‘73 
DDL where a special treatment is prescribed for 
null data item values. Thus these are the only 
null values with tiich we need to concern ourselves 
in our relational views. 

(2) Under a consistent interpretation of paragraph 
7, page 3.69, and paragraph 11, page 3.77, of [CODA 
731. 

180 



Figure 

SYSTEM ’ Li-’ 

1. PRESIDENTIAL DATA BASE 

l--l 
PRES PLN PFN PARTY COLLG 

LINK 

I-’ 
STATE SNAME CAP YAD 

LEGEND 

PRES: president’s record 

PLN: president’s last name 

PFN: president’s first name 

PARTY: president’s party 

COLLG: president’s college 

ADM: administration record 

ADM#: administration number 
(relative to a given president) 

INY: administration inauguration year 

INM: administration kwguration month 
IND: administration inauguration day 

STATE: state record 

SNAME: state name 
CAP: state capital 
YAD: year admitted (into the U.S.A.) 

ELEC: election record 

EYEAR: election year 
WVOTES: election winner’s votes 

CONGR: congress record 

CNGR: congrass number 
HD: housa democrats 
HR: house republicans 
SD: senate democrats 
SR: sanata republicans 

LINK: link record 

EW: election won set 
cs: . congress served set 
ps: president sawed sat 
NS: native son set 
AH: administration headed set 
AD: admittad during set 
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synonym of the data base key of PRES. In fact no 
tm occurrences of PRES records can have the same 
(PLN, PFN) value. Moreover, nothing in the schema 
declaration prevents PRES records from having the 
same FI.N value or PFN value. Also we find that 
(PLN, PFN, ADM#) non-redundantly identifies 
occurrences of AIM since (PLN, PFN) identifies the 
occurrence of set AB while At?4# identifies the 
occurrence of AIM within this set. This triplet 
therefore is a synonym of @At& 

The previous examples do not expose the kind 
of ambiguity which occurs in connection with 
schemas of the kind shown in Figure 2. The value 
of the pair (E#, EDT) qualifies at most one ERR 
record if set B is searched but could qualify more 
than one DIR record if set SP is searched. Thus a 
statement of the type “(El, EDT) is a synonym of 
@EHR” would be ambiguous. - In order to remove this 
ambiguity we augment the data items from an owner 
record with the name of the set along which they 
were migrated. The set name serves as a “role 

Z’ 
” and is separated from the omer item by a 

Thus we write, 

(E#.W, EDT) is a synonym for @ERR, 
(E#.SP, FDI) is not a synonym for @ERR. 

The composition of an attribute A with a role name 
S, denoted (A).S is defined as follows: 

A.S if A does not contain a role name 
(A).S = 

f A otherwise . 

This rule avoids the cascading of role names. If 
x=&l, A2, . ..* Ap) is a set of attributes then X.S 
= ((Al).s, (A2).S, . . . . (Ap).S). Also if X and Y 
are tw sets of attributes, for convenience we may 
write X,Y to denote X U Y. Also, we write X,A to 
denote X U{A) . Thus we have that 

((PLN, PFN).AB, AW) = (PLN.AB, PFN.AR, ADl#) 

is a synonym of @ACM. Also this combination 
migrated down AD and combined with YAD will be 
represented as: 

EMP 

EHR j-1 

(PLN.AH, pFN.AH, Am#).AD, YAD) = 
= (PLN.Al-I, PFN.AB, AIM#.AD, YAD) 

Note that as long as items from each record type 
along the migration path are included, the role 
names uniquely identify the migration path. In 
figure 3 we give an algorithm for deriving 
synonyms. 

SYNCWM UERIVATION ALGORITRM 

1. [FIRST LEVEL SYNONYMS] The data item 
combination X is a synonym for @A iff 
(a) X is INA in the location mode of A, or in a 

singular set having A as member. 
(b) no proper subset of X has property (a). 

If the DNA on X for the singular set has 
the phrase NULL IS ALLCWED attached, then X 
is a pseudo-synonym, otherwise it is a 
proper synonym. 

2. ~ELIMINATICN OF RE- mA DECLARATIONS] 
Remove the DiA specification for each item 
combination X declared lWA for a set S if 
either of the following is true: 
(a) There exists a Y CX which is specified DNA 

for the set S, 
(b) The data base key of the member record of S 

has a first level synonym Z CX. 

3. [LWER LEVEL SYNCrWiSl (X.S, Y) is a synonym 
for @B if the following tm conditions are both 
satisfied: 
(a), The set S with owner A and member B has Y 

declared INA and X is a synonym of @A 
(b) The role name S does not already appear in 

X (This condition pertains to schema 
cycles) . 

(KS, Y) is a pseudo-synonym when Y is a 
pseudo-synonym or when S is not AUlDlATIC 
MANDATORY or when a NULL IS ALLOWED phrase is 
attached to the DNA declaration. In every 
other case it is a proper synonym. 

Figure 3. The Synonym Derivation Algorithm 

‘Ihe algorithm separates synonyms into two distinct 
classes: proper synonyms and pseudo-synonyms. 

Legend 

EMP: employee record 
E#: employee number 
EN: employee name 

EHR: employee history record 
EDT: effective date 
ASG: asjignment 

.I 
HS: history set 
SP: supervisor set 

Figure 2. Employees, their previous assiqnnents and their supervisors at each 
assignment . 
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SYNONYMS 

(SNAME) 

(PLN,PFN) - 

@STATE 

(PLN.AH, PFN.AH, ADM 
I 
I 

I 
(PLN.AH, PFN.AH, ADM#.AD,YAD) LOSTATE 

Figure 4. The synonym structure of the Presidential Oatabase Schema 

Synonyms 

(Et+) I @Em? 
I 

i / I 
\ SB/ I / \ / Ad (E#.SB, PK) A @EMP 

Figure 5. The ultimate hierarchy - For each employee his 
number (El), his name (NAME) and all his sub- 
ordinates (set SB). Each subordinate is ranked 
in a pecking order (PK) where there are no ties. 
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Pseudo-synonyms are those which have been 
contributed by set INA declarations where the I%JLL 
IS ALLOWED phrase is attached or where the set is 
not AvrcMATIC MANDAmY; the remaining synonyms are 
called proper. The algorithm consists of three 
steps. The first step is concerned with the 
definition of first level synonyms. The second 
step eliminates redundant INA declarations from 
non-singular sets. The third step recursively 
defines the lower level synonyms. We also assume 
that no inconsistency occurs in the declaration of 
NULL [NtXl ALLOWED for keys of set types. Thus if 
a combination X is specified NULL NOT ALLOWED in 
some set declaration then no subset of X is 
specified NULL ALLUVED somewhere else in the 
schema. 

With reference to step 3 of the algorithm we say 
that X is a direct predecessor of (X.S, Y). Then a 
predecessor is defined as a direct predecessor or a 
predecessor of a direct predecessor. Figure 4 
illustrates the hierarchial representation which we 
use to depict the synonym structure of a schema. 
Banging from a cormnon root wa find the first level 
synonyms. At the lower level we find their 
successors. Sol id lines lead down to proper 
synonyms; dashed lines lead down to pseudosynonyms. 
Condition (b) of step 3 avoids endless composition 
of synonyms which would otherwise occur in schemas 
with direct cycles such as the one of figure 5 
(This schema actually uses an extension to CCDASYL 
73 included in coI)AsyL 78. It is used here since 
it supplies a simple and clear example of the 
effect of LNA in schemas with cycles). In this 
schema (El), (E#.SB, PK) , (E#.SB, PK.SB, FK) ,. . . 
all supply valid synonyms for @EMP. However only 
the first tm need to be consideredsince the view 
design algorithm never uses synonyms which employs 
the same set more than once in the migration path. 

4. THE RELATIONAL ANALUG 
We begin by modeling a CCDASYL database by a 
relational analog. This consists of a set of 
relations where both data items and database keys 
of records are visible. For each record type A in 
the schema the relational analog contains a 
relation (named after the record): 

A (@A,Al,A2 ,..., Ap,@Bl.Sl,@B2.S2 ,..., @Bn.Sn) (4.1) 

where: @A denotes data base keys of record-type A, 

a a, . . . . Ap (@O) denote the data items 
of record-type A, 

Sl, 52, . . . . Sn(n>0) denote the non-singular 
sets of which record-type A is a member, 

Bl, B2, . . . . Bn denote the record-types 
owning these sets, 

@Bl, @B2, . . . . @Bn denote the data base keys 
of these owners. 

Since record-types A, Bl, B2, . . . . Bn need not be 
distinct the set name has been appended as role 
name to the data base keys of the o\.ner records. 
Naming anbiguities are thus avoided. 

The relational analog for the examples of figure 1, 
2, and 5 are given in figures 6, 7 and 8, 
respectively (the meaning of the underlinings and 

PRES Q?pREs, PLN, PFN, PAwpy, COLII;, @STATE) m-v 

Am @gj, ACM*, INY, m, IND, @PRES) 

STATE (@SPATE, SNAME, CAP, YAD, @ACM) ------ - .-..-..ww..-- 
X X X x - 

ELEC (@ELEC, EYEAR, WvUTES, @PRES) --a-- - 

LINK (@LINK, @PRES, @CCNGR) ----- 

CCNGR (@a@, C’NGR#, HD, BR, SD, SR) ..,.“...--- 

Figure 6. The relational analog for the 
presidential data base. 

I mP (@EM’, E#, EN) --..,. 

\ EHR (@EBR EDT ABC, @EMP.BS, @EMP.sP) .w”,,~ -I 

Figure 7. The relational analog for the 
example of figure 2. 

mEJ (@I& g& -, p @EMP.sB) 
x x x ““‘2”’ 

Figure 8. The relational analog for the 
example of figure 5. 

the rows of “x” and “-‘I will be given later). The 
timevarying content of relation A (see (4.1)) is 
defined as follows. There is a tuple t for each 
occurrence r of record A in the data base. The @A 
value of t is the data base key value of r. The 
a, A% . . . , Ap values of t are the values of the 
corresponding data items in r. For each 0 5 i5 n 
the t-value of attribute @Bi.Si is the database key 
value of the Si-owner if one exists, the null value 
otherwise. Figure 9 gives the Z-diagram and sample 
content for a simple data base. Figure 10 gives 
the relational analog and corresponding content. 
Positive integers have been used to represent data 
base key values. In figure 10 a null value is 
displayed by a dash “-“. A tuple or a subtuple of 
a relation is fully defined when it contains no 
null value. 

The time-varying contents of relations in our 
analog obey some time-independent constraints 
dictated by the data base schema declarations. The 
concept of (candidate) key for a relation supplies 
a useful construct to express these constraints 
[CCDD 72, DATE 771. An attribute combination X of 
a relation A is said to be a candidate key for A 
when the following two conditions are satisfied: 

1. Uniqueness: no two tuples in A have the same 
fully defined X-value. 

2. Minimality: No proper subset of X has this 
property. 

Note that the unigueness requirement is waived for 
a tuple in which the value of one or more key 
attributes has a null value. This policy reflects 
the constraints generated by schema DNA options for 
sets which are not AUlQlATIC MANDA’IQRY or where the 
NULL IS ALLCWED phrase is attached. For instance 
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-- 

in figure 9 the set S is INA on F. Thus (@Rl.S, F) 
is a &ndidate key for R8; no two tuples of R2 can 
have the samevalue for both@Rl.S and Fwhen _--.- -.~ 
neither is null. However, when @Rl.S is null ( the 
Rl-owner is missing) two or more tuples could share 
the same F-value. Also two or more tuples can 
share the same @Rl.Svalue if F is null. Thus the 
previous definition of candidate keys ensures total 
consistency between the treatment of null values 
modeling a missing owner in MANUAL or OPTICNAL sets 
and the treatment of null values occuring in INA 
set keys where NULL IS ALLOWED is specified. We 
represent both kind of null values with the same 
distinguished symbol "-". Since such null values 
are allowed only for certain attributes in our 
relation, one must specify them as part of the 
integrity constraints of the relational analog. 

A combination X of attributes of a relation R is an 
allowable null pattern for R if R can contain 
tuples where all and only the X-attributes have 
nullvalues [ZANI 771. An allowable null pattern X 
is a minimal null pattern for R if no subset of X 
is also an allowable null pattern. We only 
consider relations &here every null pattern is 

Rl[C\'Ol 

'\ s 

either minimal or a union of minimal patterns. 
Thus we give only the minimal null patterns, the 
other patterns being 
these. 

inmediately inferrable from 
In relation A of (4.1) there is a minimal 

null pattern @Bi.Si for each set which is MANUAL 
and/or OPTICNAL. There is also a minimal null 
pattern for every attribute in a CNA combination 
vhere the NULL IS ALL(MSD ohrase is attached. Thus 
@ApI iS a minimal null pattern for relation-STATE 
of figure 6 and @EMP.SB is a minimal null pattern 
for EMP in figure 8. Then there are tm minimal 
patterns, @Rl and F for R2 in figure 10. The other 
relations in our examples have no null patterns. 
As seen in these figures minimal null patterns are 
described by rows where "x" stands for any non-null 
value and "-I for the null values. The null 
patterns for our relational analog reduces to a 
single attribute. This is not true for the 
relational views which we consider later. 

Candidate keys will be called proper if their value 
always fully defined (i.e. they do not 

&ersect any null pattern); they will be called 
pseudekeys otherwise. Directly from our 
definition of keys we have that the relational 

cl dl 

Figure 9. The Z-diagram and sample content for a CODASYL data base 

Relational Analog: Rl &Es .,c.: 0) R2 (@R2* E* .!.?..!.K.$) 
X xx - 

x x- x 

Sample Content: Rl (@Rl, C, D) 

1 cl dl 

2 c2 dl 

R2 (@R2, E, F, @Rl.S) 

3 el fl 1 

4 e2 f2 1 

5 e3 f2 - 

F;gure 10: The relational analog and its content for the exampld of Figure 9. 
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analog contain three types of keys, each defined by 
the following rules: 

(a) @A is a proper key for relation A, 

(b) every attribute combination of a relation A 
which is a proper synonym or a pseudo-synonym 
for @A is, respectively, a proper key or a 
pseudo-key .for A. 

(c) if X is a INA declaration for the non-singular 
set S with owner B ( step 2 of the synonym 
derivation algorithm has removed redundant LNA 
declarations), then (@B.S,X) is a candidate key 
for A. This is a proper key if S is AWJDMATIC 
MANDATORY and the NULL IS ALLCWKD phrase is not 
present. Otherwise this is a peudo-key. 

Note how the keys for the analogs in figures 6, 7, 
8 and 10 obey these rules. As usual keys are 
displayed by suitable underlining of the attributes 
comprising the key: distinct keys are denoted by 
different style of underlining. 

The content of our relational analog obeys an 
important constraint which we call the foreign key 
constraint. A foreign key for a relation R is 
simply an attribute combination of R which is a key 
for another relation. Now, candidate keys can be 
regarded as unique identifiers of real world 
objects . In a system such as our relational analog 
where no tm relations share the same candidate key 
one can view each relation’s role as defining and 
describing the objects for which the candidate key 
of the relation serves as unique identifier. Thus 
foreign key values become references to objects 
described and defined in other relations. Null 
foreign key values can be used to model undefined 
references. Yet when a reference to a unique 
object is made through a fully defined foreign key 
value one expects this object to be defined and 
described in a relation with such a key. Formally 
therefore: 

Foreign Key Constraint: If a candidate key X of 
relation Rl is also an attribute combination of 
relation R2 then every X-value aparing in R2 must 
also appear in Rl (i.e. the X-projection of R2 
must be a subset of the X-projection of Rl). 

The foreign key constraint was first advocated in 
[SMITH 771 for the purpose of making the relational 
data model suitable for data base abstraction and 
aggregation. Our relational analog, where foreign 
keys of relation A are simply data base keys of 
owners of A, uses this constraint. 

5. ‘IliE DESIGN ALGORITHM 
Our design algorithm prforms a two-step 
transformation on the relational analog. We refer 
to the relational analog described in the last 
section as the r-O-analog, to the one obtained at 
the end of step 1 as the rl-analog and to the one 
at the end of step 2 as the r2-analog. Tne view 
design algorithm is given in figure 11. Associated 
with the transformation of attribute sets of our 
relations there is a corresponding transformation 
on (1) the content of these relations and (2) the 
keys and the minimal null patterns of these 
relations. Thus if t denotes a tuple of A before 
the replacement of @B by its synonym X and t’ a 
tuple of A after this replacement, t’ is equal to t 
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VIM DESIGN AIGORITHM 

Step 1: [top-down synonym substitution]. If a 
relation A contains an owner data base key @B.S, 
and relation B contains a proper synonym of @B, say 
X, then in relation A replace the attribute @B.S by 
the attribute(s) X.S. Repeat this operation until 
no more. such replacement can take place. 

Step 2: For each relation A project out the 
attribute @A. 

Figure 11: The algorithm which transforms the 
relational analog into the final view. 

in every attribute except the attributes in X.S. 
The X.S-value of t’ is simply the X-value of the 
tuple of B with a @B-value egual to the @B.S-value 
of t if this is not null; otherwise every X.S-value 
of t’ is null. Moreover if (@B.S,Y) is a key of A 
before the transformation then (X.S,Y) is a key of 
A after the transformation. If @B.S was a minimal 
null pattern before the transformatioh then X.S is 
a minimal null pattern after the transformation 
(either all or none of the X.S-values can be null 
at once). 

Because of the one-to-one correspondence between 
the X-values and the @B values these 
transformations are clearly correct and invertible. 
Thus there exists a one-to-one correspondence 
between the rO-analog and the rl’analog. Note that 
this correspondence may be lost if data base keys 
are replaced by their p;eudosynonyms. Also note 
that the rules (a),(b) and (c) to compte the 
candidate keys of relations remain valid after each 
replacement step has taken place. ‘Ihus they hold 
for the rl-analog as well as for the rO-analog. 

Now observe that step 1 ensure’s that synonyms are 
always used in a top down fashion in the synonym 
tree. A synonym of @A is used only after it has 
become a proper key for A; thus all its 
predecessors have become keys for their respective 
relations. As shown in [ZANI 791 this is essential 
to preserve the foreign key constraints. Clearly 
if a data base key of some owner record has more 
than one synonym there may exist more than one 
rl-analog for any given schema. 

Let us now assume that there exists a proper 
synonym for the data base key of each owner record 
in the schema (more about this assumption will be 
said later). Then the only data base key appearing 
in a relation A is @A. The second step of the 
design algorithm simply removes this attribute. 
The content of A in the d-analog is therefore the 
projection of the content of A in the rl-analog. X 
is a minimal null pattern in the new A relation if 
and only if it was a minimal null pattern in the 
old A. A proper key or a pseudo-key for the old A, 
except @A of course, becomes a proper key or a 
pseudo-key’of the new A. If the old A ‘had IY) key 
except @A then the whole attribute set of the new A 
becomes its key. tie r2-analogs for our examples 
are given in figures 12, 13, 14 and 15. Role names 
were dropped when no ambiguity occured. 

6. RELATIONAL VIEWS 
The r2-analog supplies our basic relational view. 



I 
PRES (PLN, PFN, PARTY, COLLG, SNAME) 

ADM (PLN, PFN, ADM#, INY, INM, IND) 

STATE (x, CAP, YAD, PLN, PFN, ADM#) . . . . . . . . . . . I..... . . . . . . . . . . . . . . . . . . . 

\ 

X x.x - - -. 

ELEC (m, WVOTES, PLN, PFN) c 

LINK (PLN, PFN, CNGR#) 

CONGR (CNGR#, HD, HR, SD, SR) 

Figure 12. The final view for the Presidential 
Data Base of figure 1. 

t ’ 

EMP (3, EN 

( EHR (E#.HS, EDT, ASG, E#.SP) 

Figure 13. The final view for the schema of 
figure 2. 

EMP (E#-, NAME, PK, E#.SB) . . . . . . . . . . . . . . . . . . . 
x x'x - 

Figure 14. The final view for the schema of 
figure 5. 

( Rl (C, D) 

R2 (Es F, Cl . . . . . . . . . 
x - x 

x x - 

Figure 15. The final view for the schema of 
figure 9. 

Relations in these views cut across record 
boundaries to capture logically related data items. 
In general a view relation A has as attributes the 
data items from record A plus data items migrated 
dam from its predecessors (owner, owners of 
owners, etc.); the design algorithm selects the 
data items to be migrated on. the basis hl~ 
declarations in the schema. For instance in the 
STATE relation of figure 12 we find SNAME, CAP and 
!&D from the STATE record, plus (PIN, PFN) from the 
president record and AcM# from the administration 
record. The presence of ,a STATE record without a 
AU4 owner is denoted by null values for PLB, PFR, 
ACM%. 

These relations supply the user with a congenial 
interface to support high-level relational data 
manipulation languages (DMLs) such as SEQUEL or 
Query by Exzanple [DATE 771. Since access paths and 
physical organization of data is invisible in the 
view, responsibility for efficient execution is 
taken over by the system. IML optimization 
routines will take into account the characteristics 
of the requested transactions and the organization 
of the underlying database ( including the 
clustering of records in pages, the presence of 
indexes, the availability of owner pointers and 
prior pointers in records and other features 
specified by schema declarations ignored in our 
Z-diagrams), to dynamically select access paths and 
perform aggregate operations to ensure efficient 
processing. Further discussion of the LML 
optimization problem is outside the scope of this 
paper. 

Relational languages have the closure property 
tiich ensures that the result of queries on 
relations is still a relation. Thus a query 
statement can be.interpreted as the definition of a 
view. This enables a relational DML user to derive 
other views from the basic ones generated by our 
design algorithm. Also the user may want to 
include in his relations some data items in the 
schema whose value was specified to be the RESULT 
of some data base procedure. There is no 
guarantee, however, that these other views will 
support update requests correctly [DAYA 781. A I 
simple exsnple will help to illustrate some of the 
problems in this area. Say for instance that our 
view over the schema of figure 9 consists of a 
single relation R12. Such a view could have been 
constructed directly from the netmrk schema as 
described in [ZANI 771. Alternatively, the basic 
relational view of figure 15 could have been 
derived first, then Rl2 constructed from this using 
an or-join; this second amroach is also described 
in [ZANI 771. In either case the content of Rl2 is 
filled as per figure 16. Rl.2 contains a tuple for 
for each occurrence of R2; the E and F value of 
this tuple are taken from this ‘record occurrence, 
the C and D values are taken from its omer record; 
they are null if such an owner does not exist. 
Also R12 contains a tuple such as (-, -, c2, dl), 
for each memberless owner in Rl.2. Thus RI2 
preserves the information content of the underlying 
database but it is not updatable. The keys for Rl2 
are E and (F, C) . These fail to specify that Rl2 
also obeys the constraint that every two tuples 
having the same C-value must also have the same 
D-value. Now say that the insertion of a new tuple 

d3) is requested. Although such a 
~~es:“‘d~~~ not violate the constraints embodied 
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in the view (i.e. those expre&ed by the keys and 
the allowable null patterns of Rl2), serious 
problems occur if one tries to carry it out. If no 
previous record with a C-value of cl exists then 
one can simply add a new record Rl with content 
(cl, d3), then add a new record R2 with content 
(e4, f4) and finally let the former own the latter 
in an occurrence of S. However, since an Rl 
occurrence with a C-value equal to cl already 
exists, such a policy would result in an error 
message for the violation of a W condition on C. 
As an alternative one could try to see if a RI. 
occurrence with a C-value of cl already exists and 

M2 ( E, F, C, D) 
el fl cl dl 
e2 f2 cl dl 
e3 f2 - - 
- - c2dl 

Figure 16. A non-updatable view relation. 

then let it be the owner of a new R2 occurrence 
with content (e4, f4). The result of this policy 
upon the view would be the addition of ‘the tuple 
(e4, f4, cl, dl) instead of the requested (e4, f4, 
cl, d3). For this last tuple to appear in Rl2 the 
content of the Rl record with a C-value of cl must 
be updated to (cl, d3) and this must become the 
owner of the R2 record with content (e4, f4). 
This, however, .would have the effect of changing 
the first tm tuples in the old view (figure 16) 
from a D-value of dl into a D value of d3. In 
sunmary the seemingly correct user request will 
either be rejected or it will produce unexpected 
results. In order to predict and/or understand .the 
update behavior of this view the user must look at 
the underlying schema and possibly understand the 
internal behavior of the view support subsystem. 
Such a view would fail to insulate the user from 
the complexity of the underlying system. 

Clearly the previous problems could be cured by 
employing more powerful and complex primitives to 
define logical constraints (e.g. allowing the 
specification of functional dependencies other than 
those implied by keys). But this approach leads to 
more complex and less friendly views. A much 
better solution, instead, is to use the view of 
figure 15, This is free of the previous update 
problems since the keys of these relations clearly 
indicate that there is at most one C-value 
associated with any given D-value. Indeed the view 
design algorithm ensures that all the integrity 
constraints defined by the Z-diagram are fully 
captured by the allowable null patterns and the 
keys of the relations. According to these 
constraints, moreover, when all tuples are fully 
defined then the view relations are in Fourth 
Normal Form [FAGI 771 (a definition of Fourth 
Normal Form in the presence of null values is not 
available). Moreover it is always possible to 
translate any correct update on these views into an 
equivalent sequence of CML cormsands executable 
against a CCBOL or a PL/I subschema. Algorithms 
for single tuple CML translation have been obtained 
and tested on a COLWYL DBMS. A more detailed 
discussion on this topic exceeds the scope of this 
pap-. 

In implementing delete and update requests a choice 
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can be made between tm policies &rich are 
discussed next. Assume for instance that deletion 
of a tuple from relation SFA’IE in figure 12 is 
reguested. If the name of this STATE is referenced 
by some tuple of PRES then one can either disallow 
the request (rejection) or delete all such tuples 
from PRES (propagation). If propagation is chosen 
then deletions from PRES may in turn propagate to 
relations LINK, EIEC, AIM; however a deletion on 
AIM does not propagate to SI’ATE since null values 
are allowed for its foreign key (PLN, PFN, ADMX). 
As discussed in [SEW 781 a proper choice between 
rejection and propagation can only be based on the 
semantics of the case at hand in relation to the 
enterprise environment. For the presidential data 
base, for instance, a propagation policy is 
probably meaningless. For the example of figure 13 
instead it could mean that when an employee leaves 
the company his employee-record is also discarded. 
Iiowever, a rejection strategy reduces the risk of 
jeopardizing the integrity of the system and also 
ensures that deletion and insertion are inverse 
operations as in the usual relational framework. 
The propagation policy is, in fact, not generally 
applicable to insertion. For instance assume that 
the insertion in ELEC of a new president name with 
the year in which he was elected is requested. If 
no PRES record with such a name is available one 
could consider creating a new one, but two problems 
would occur. The first is that every remaining 
data item in the record muld have to be null, and 
such an option might not be available. The second 
problem is that we need to find an omer for this 
record in NS. Since all we know about this 
president is his name, there is no reasonable way 
to choose an owner in NS (i.e. hi,s native state). 

The foreign key constraint limits the choice of 
fully updatable subviews that one can construct by 
subsetting the given set of relations in the 
r2-analog. If a subview contains along with 
relation A all the relations corresponding to 
owners of record A then every constraint 
restricting addition of new tuples to A is captured 
by this subview. Likewise, if all relations which 
correspond to menbers of A in AUFONATIC, MANDAl’ORY 
sets are also part of the subview then every 
constraint which may limit the deletion of tuples 
from A, under the rejection policy, is captured by 
the subview. Bowever these member relations need 
not be included if a propagation policy is 
followed. Similar rules can be derived for 
operations which modify tuples in relations. 

7. DISCUSSICN 

In this section we review the assumptions &ich 
limit the generality of the previous approach and 
propose extensions to overcome them. 

Firstly let us reassess the perfOnMnCe of our 
views in terms of information ,preservation. As 
described in the introduction the only information 
of interest is external data. Now a relation A in 
the &analog titally preserves the information 
associated with each record type of the schema. 
Moreover it identifies the owners of each 
occurrence of the A-record, for each set in which 
this record serves as a member. Thus the 
composition of the various set occurrences is also 
preserved by the rO-analog. However, a progranmer 
through the CCBOL subschema can also determine the 



order of the member records in a set occurrence. 
If the set was declared SDRTED by the defined INA 
keys then the order can be derived from the content 
of the member records. If the order is declared 
IMMATERIAL or by DATA-BASE-KEY no external 
significance can be attached to the order of the 
members in the set. In other cases (e.g. those 
denoted by the key words FIRST, LAST, NEXT, PRIOR) 
the order reflects the processing history of the 
set. Thus it could be used to convey external 
information not inferrable from other data 
explicitly stored .in the data base (e.g.,. the 
temporal sequence in which invoices were received 
where no .timestamp for these invoices is recorded). 
It is hard to believe that under these premises 
such information can be regarded as reliable and 
that there is a stringent need to preserve it in 
the view. Bowever, if the designer decides that 
this is the case, then he can use the solution 
discussed later in this section. 

The first step in the view-design algorithm is 
clearly information preserving since it is 
reversible. After the second step, however, the 
values of data base keys are lost. Since we have 
excluded DIRECT records we can safely assume that 
the data-base-key values are of no direct interest 
to external users; thus no information is lost. 
Notice, however, that more than the value of data 
base keys may be lost where for some record A no 
proper synonym exists for @A. Indeed any two 
tuples of A in the rl-analog tiich are identical 
except in the @A value will collapse into one tuple 
in the d-analog. This is the case of our relation 
LINK which fails to distinguish between multiple 
occurrences of a LINK record with identical PRES 
and CCNGR omer records. (Xlce again it takes the 
designer’s judgment to decide whether these 
duplicate LINK records are or are not supposed to 
be in the actual data base. If no duplicate 
records are expected in the data base since the 
current applications imp1 icitly respect this 
constraint, then tw3 courses of action are 
possible. The first is to leave the schema as it 
is and ensure that the relational EM.. support 
routines enforce this constraint. The second 
alternative is to include this .constraint explictly 
in the schema. For records such as LINK, where the 
synonym data items are drawn from more than one 
owner record, one needs to use SOURCE items. Thus, 
for example,’ CNGR# from CCNGR can be added as 
SOURCE item to the LINK record and set CS can be 
specified DNA on this data item (or conversely 
(PIN, PFN) can be included ,in LINK and a DNA on it 
can be specified for set PS) . Thus SOURCE data 
items, although not included in many present system 
implementations, would greatly enhance the data 
definition power of CODASYL schemas and make them 
more amenable to support multiple views. This was 
noted and used in [JOHN 78) to derive an 
architecture whicn ensures commonality for 
relational and network CDL and DML. Note that if 
VIRTUAL SOURCE items are used, no conversion muld 
be reguired for present data bases. 

The approach proposed in this paper is robust as it 
can be extended to remove simplifications and 
limitations which were previously introduced. Let 
us, for exanple, assume that the designer wants to 
preserve information regarding the order of manber 
records in occurrences of set S. Say that A is a 
member of S and B is its owner. Then relation A of 

the r+analog Will contain the attribute 0.s along 
with B.S, where B denotes the owner of S and 0.s 
denotes the position of an A-record among its 
cohorts in a occurrence of S, unless S is SORTED on 
a DUPLICATES ALLOWED combination X, in which case 
0.S denotes the position of the A-record relative 
to its set occurrence cohorts sharing the same 
X-value . In the first case, then, S will be 
assumed LNA on 0.S; in the second case S will be 
assumed LNA on (X,O.S). 

Repeated applications of this technigue can be used 
to ensure that a proper synonym exists for each 
record in the schema (for records whose location 
mode is CALC using data item combination Y with 
CUPLICATES ALLWED (Y,O) can also be used as the 
synonym; 0 denotes the position of the record in 
the talc chain). The conditions which limit the 
applicability of step 2 of the design algorithm are 
thus removed. The proposed solution reflects the 
current usage of data where a record which cannot 
be uniguely identified by value will be identified 
by the order in which it appears in the processing 
sequence. After adding the various 0-CO~UIU-IS in 
the rO-analog the view design’ algorithm can be 
applied without any modification. Since the 
various O-columns are now part of the final view 
the user is exposed to some implementation 
dependent information. Thus there is a potential 
loss of data independence. Moreover when these 
relations are updated the 0-calm behave as 
contiguous sequences of nunbers (e.g. deletion of 
a row may cause an automatic decrease of the 
O-values of the following rows). Thus syntactic 
constructs must be included to differentiate the 
O-columns from the others. In brief these views 
lack some of the qualities posessed by the views 
described in the previous section. Nevertheless 
they are ‘simpler than network subschemas and they 
can support high level relational DML. Thus they 
can be used to model recalcitrant portions of 
existing schemas when a modification of these 
schemas is not acceptable. Extensions to remove 
assumptions 1 through 5 of section 2 are also 
available. For brevity we will not discuss them 
here as they are documented in [ZANI 781 and 
[GOLD 791. 

8. ~~KXIJSION 

In this paper we have presented a viable solution 
to the problem of designing relational views over 
netmrk schemas to support general query and update 
CML. This capability brings significant benefits 
to a CCDASYL DBMS in the area of data independence, 
high level CML and ease of use. The approach taken 
is totally evolutionary in as much as it does not 
require conversion of present data bases or 
translation of current application programs. This i 
view design approach has been applied to a nmnber 
of existing data bases with encouraging results 
[GOLD 791. 

An improved understanding of the role of the 
various CODASYL declarations in defining the 
logical structure of external data has also 
followed from this work. The designer can benefit 
by improving his logical schema design (if nothing 
else by eliminating redundant INA declarations 
which only slow DML execution). 

This research brings the relational and the network 
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mbdel one step closer. It’ also indicates how 
CCZXSXL can evolve into a system tiich effectively 
supports multimode1 external schemas; this topic is 
‘treated more extensively in [ZANI 791. Finally 
this work confirms the important role, recognized 
by previous authors, that null values and foreign 
key constraints can play in data base relations. 
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