
DESIGN OF RELATIONAL VIEWS

OVER NETWORK SCHEMAS

Carlo Zaniolo

Sperry Research Center, Sudbury, MA 01776

An algorithm is presented for designing
relational views over network schemas to :
(1) support general query and update capability,
(2) preserve the information content of the data
base and (3) provide independence from its physical
organization. The proposed solution is applicable
to many existing CCDASYL databases without data or
schema conversion. The particular declarations of
a CDDASYL schema which supply sources of logical
data definition are first identified. Then the
view design algorithm is derived on the basis of a
formal analysis of the semantic constraints
established by these declarations. A new form of
data structure diagram is also introduced to
visualize these constraints.

1. INTRczaltJcTIm
This paper presents a rigorous solution to the

problgn of designing relational views &ich support
general wery and update capabilities over network
schemas . Three objectives are of paramount concern
in our approach. They are:

1. information preservation
2. updatability
3. data independence.

Let us consider information preservation
first. This is needed for supporting general
purpose data manipulation capability. Indeed a
user must be capable of accessing through views all
the information of interest (within his
authorization domain). Thus the view must be
information-wise equivalent to the underlying
schema or that portion of interest.

Let us consider now the problem of specifying
updates through a view (these include insert delete
and modify operations). The simple data
organization displayed by a view is often very

Permission to copy without fee all or part of this
material is granted provided that the copies are
not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is
given that copying is by permission of the Assooia-
tion for Computing Machinery. To copy otherwise,
or to republish, requires a fee end/or specific
permission.

@ 1979 ACM 0-89791-001-X/ 79/0500-0179 $00.75

different from the physical organization of data.
This fact must be made totally transparent to a
user who regards his view as real data. ‘Ibe
property of a view to conform to real data behavior
is here-called updatability because updates supply
the critical test case for it. To assess *at the
behavior of a view should be, let us consider the
case of a user who is operating alone or has
temporarily locked out updates to his data by other
sources. Assume that this user first obtains a
snapshot of his view content, then tells the system
to carry out some updates and finally asks for a
second snapshot of his view content to verify that
the requested changes were made. What the user
sees are the two snapshots and the constraints
embodied in the view definition (e.g. keys of
relations). Based on these, the user expects the
system to perform as follows:

(a) Updates tiich respect the semantic
constraints embodied in the view are accepted and
carried to completion. However, updates tiich
violate those constraints are flagged erroneous and
rejected by the system.

(b) Updates accepted by the system produce the
expected result in terms of view content.
Therefore, the second snapshot differs from the
first only for those additions, deletions or
changes specified by the user.

The final topic in the list of objectives is
data independence. This is a very important and
pervasive concept in database systems. In this
paper we address what can be regarded as the
ultimate level of data independence: complete
visibility of external data and their structure
along with invisibility of internal data. Xxternal
data are those of interest in the wzzld outside of
the data processing department, such as entities
and attributes taken from the enterprise
environment (e.g. employees, their salaries, their
employment history). For the purpose of storing
and processing external data efficiently, reliably
and securely, the database system supplements it
with internal data, internal structures and
protocols. In ‘a CCDASYL system for instance,
external data appear as values of data items in
records. Internal data are supplemental data
required by the CCUWYL implementation. A view
which hides internal data adds to user convenience
and ensures that application programs written
against this view remain valid independent of the
underlying implementation.

179

http://crossmark.crossref.org/dialog/?doi=10.1145%2F582095.582126&domain=pdf&date_stamp=1979-05-30

2. BUILDING UPON EXISTING SCBEt&
Basically, there are two approaches to the

problem of defining relational viewa over CODASYL
schemas . me is the top-down approach: starting
from a relational view one designs a CODASYL schema
to support this view. The second is a bottom-up
approach; here one accepts the existing schema as
the source of data definition and designs a set of
relations which recasts this definition in terms of
the relational model. This second approach was
chosen here since it enables the addition of
relational facilities to existing systems without
converting the present databases or compromising
ongoing applications. In conformity with this
approach we will use the framwrk of the ‘73 DDL
[CODA 733 on which current DBMS’s are based. Thus
when we speak about aX%YL we implicitly refer to
the ‘73 J.O.D. However, much of what is said here
can be carried over to the ‘78 specifications [C(XIA
781. A CODASYL schema contains information about:

(a) external data and their structure
(b) physical organization of data
(c). processing and manipulation of data
(d) privacy of data.

A first source of external data definition in a
COMSYL schema is the description of record types
and of the data items making up these records. A
second source is the association between owner
record types and member record types established by
the various set types in the schema. The nature of
this association depends on whether this set was
declared as (insertion is) KARUAL or AWCMATIC and
(retention is) MANMlDRY or OPIICRIAL. A third
source is the declaration of certain data item
ccmbinations to be JNPLICATES NOT ALLWF,D (DNA) in
the location mode of a record. This establishes
that no two record occurrences can have the same
value for a CNA combination at any given time. A
fourth source is the tNA declaration for sets.
This establishes that no two member records in the
same occurrence of a DNA set have identical values
for the specified combinations of data items in the
member record.

In order to visualize these four sources of
data definition we have augmented the well known
data structure diagram to a form &ich we call the
data structure Z-diagram. Figure 1 gives the
Z-diagram for the data base discussed in [TAYL 761.
Rectangular contours are used to represent record
types; the record name appears next to the contour.
The (elementary) data items are displayed inside
the contour. Set types are represented by directed
arcs from &.ner record types to member record
types. If sets are AUICMATIC MANDATORY we use
solid arcs, otherwise we use dashed arcs. Data
item combinations which ‘are specified DNA in the
location mode of a record are underlined inside the
contour. For instance, this is the case for (PLN,
PFN) of record PRES. A bar outside a contour
denotes that all the sets incident to the bar are
specified with the option LNA for the data item
ccmbination spanned by the bar. For instance, AIM#
was declared LNA for set AR. For simplicity some
of the data items appearing in [TAYL 761 have been
omitted and names have been abbreviated. The
structural complexity of the original example,
however, is faithfully captured by Figure ‘1.

ANULLIS ALukJED phrase can be attached to
certain INA set key declarations in the schemal.
Then the uniqueness requirement for the DNA
combination is waived when some data items in this
combination are null*. Although such declarations
have not been considered for our presidential
database schema it is clear how they could easily
be included in a Z-diagram. A simple solution, for
instance, is to use dashed bars for LNA
combinations where NULL IS ALLCWED and solid bars
for others*

Cur design algorithm is driven by the external
data definition contained in CODASYL schemas, as
captured by Z-diagrams. The objective of this
alqorithm is to make the information of type (a)
(external data and their structure) totally visible
in the view while hiding the schema information
which falls under types (b) and (c). Some privacy
information -type (d)- may also be attached to the
view; however a discussion of this subject is
outside the scope of this paper.

For the purpose of simplifying our discussion
the following assumptions are made:

1. Records do not contain SOURCE or RESULT data
items.

2. Singular sets are AUKMATIC MANDAlDRY.
3. Repeating groups do not occur.
4. Multimember sets do not occur.
5. No record has a DIRECT location mcde nor does

it contain data items of type WTA-BASE-EEY.

Later we indicate how the design algorithm can be
extended to remove these restrictions.

In our approach we start by modeling the CODASYL
database by a set of timevarying relations, which
capture content and structure of data via the
explicit use of data base keys. Then we apply a
succession of information preserving tranS
formations to factor out data base keys and derive
a set of relations in which only external data are
visible.

3. SYNoNYMsrRKTuRE
Every record occurrence in a CCNMSYL data base

is uniquely identified by its data base key value.
The set of data base key values for record type R
will be denoted CR and called the data base key of
R. A synonym of @R is a combination of data items
from R and its predecessors (i.e. an owner of R or
an owner of an owner and so on) which uniquely and
non-redundantly identifies the occurrences of R.
T’hus synonyms can be used as surrogates for data
base keys. Synonyms arLhdzned by the INA
declarations in the . For instance,
referring to Figure 1, we find that (PLN, PFN) is a

(1) This is the only instance in the COINSYL ‘73
DDL where a special treatment is prescribed for
null data item values. Thus these are the only
null values with tiich we need to concern ourselves
in our relational views.

(2) Under a consistent interpretation of paragraph
7, page 3.69, and paragraph 11, page 3.77, of [CODA
731.

180

Figure

SYSTEM ’ Li-’

1. PRESIDENTIAL DATA BASE

l--l
PRES PLN PFN PARTY COLLG

LINK

I-’
STATE SNAME CAP YAD

LEGEND

PRES: president’s record

PLN: president’s last name

PFN: president’s first name

PARTY: president’s party

COLLG: president’s college

ADM: administration record

ADM#: administration number
(relative to a given president)

INY: administration inauguration year

INM: administration kwguration month
IND: administration inauguration day

STATE: state record

SNAME: state name
CAP: state capital
YAD: year admitted (into the U.S.A.)

ELEC: election record

EYEAR: election year
WVOTES: election winner’s votes

CONGR: congress record

CNGR: congrass number
HD: housa democrats
HR: house republicans
SD: senate democrats
SR: sanata republicans

LINK: link record

EW: election won set
cs: . congress served set
ps: president sawed sat
NS: native son set
AH: administration headed set
AD: admittad during set

181

synonym of the data base key of PRES. In fact no
tm occurrences of PRES records can have the same
(PLN, PFN) value. Moreover, nothing in the schema
declaration prevents PRES records from having the
same FI.N value or PFN value. Also we find that
(PLN, PFN, ADM#) non-redundantly identifies
occurrences of AIM since (PLN, PFN) identifies the
occurrence of set AB while At?4# identifies the
occurrence of AIM within this set. This triplet
therefore is a synonym of @At&

The previous examples do not expose the kind
of ambiguity which occurs in connection with
schemas of the kind shown in Figure 2. The value
of the pair (E#, EDT) qualifies at most one ERR
record if set B is searched but could qualify more
than one DIR record if set SP is searched. Thus a
statement of the type “(El, EDT) is a synonym of
@EHR” would be ambiguous. - In order to remove this
ambiguity we augment the data items from an owner
record with the name of the set along which they
were migrated. The set name serves as a “role

Z’
” and is separated from the omer item by a

Thus we write,

(E#.W, EDT) is a synonym for @ERR,
(E#.SP, FDI) is not a synonym for @ERR.

The composition of an attribute A with a role name
S, denoted (A).S is defined as follows:

A.S if A does not contain a role name
(A).S =

f A otherwise .

This rule avoids the cascading of role names. If
x=&l, A2, . ..* Ap) is a set of attributes then X.S
= ((Al).s, (A2).S, (Ap).S). Also if X and Y
are tw sets of attributes, for convenience we may
write X,Y to denote X U Y. Also, we write X,A to
denote X U{A) . Thus we have that

((PLN, PFN).AB, AW) = (PLN.AB, PFN.AR, ADl#)

is a synonym of @ACM. Also this combination
migrated down AD and combined with YAD will be
represented as:

EMP

EHR j-1

(PLN.AH, pFN.AH, Am#).AD, YAD) =
= (PLN.Al-I, PFN.AB, AIM#.AD, YAD)

Note that as long as items from each record type
along the migration path are included, the role
names uniquely identify the migration path. In
figure 3 we give an algorithm for deriving
synonyms.

SYNCWM UERIVATION ALGORITRM

1. [FIRST LEVEL SYNONYMS] The data item
combination X is a synonym for @A iff
(a) X is INA in the location mode of A, or in a

singular set having A as member.
(b) no proper subset of X has property (a).

If the DNA on X for the singular set has
the phrase NULL IS ALLCWED attached, then X
is a pseudo-synonym, otherwise it is a
proper synonym.

2. ~ELIMINATICN OF RE- mA DECLARATIONS]
Remove the DiA specification for each item
combination X declared lWA for a set S if
either of the following is true:
(a) There exists a Y CX which is specified DNA

for the set S,
(b) The data base key of the member record of S

has a first level synonym Z CX.

3. [LWER LEVEL SYNCrWiSl (X.S, Y) is a synonym
for @B if the following tm conditions are both
satisfied:
(a), The set S with owner A and member B has Y

declared INA and X is a synonym of @A
(b) The role name S does not already appear in

X (This condition pertains to schema
cycles) .

(KS, Y) is a pseudo-synonym when Y is a
pseudo-synonym or when S is not AUlDlATIC
MANDATORY or when a NULL IS ALLOWED phrase is
attached to the DNA declaration. In every
other case it is a proper synonym.

Figure 3. The Synonym Derivation Algorithm

‘Ihe algorithm separates synonyms into two distinct
classes: proper synonyms and pseudo-synonyms.

Legend

EMP: employee record
E#: employee number
EN: employee name

EHR: employee history record
EDT: effective date
ASG: asjignment

.I
HS: history set
SP: supervisor set

Figure 2. Employees, their previous assiqnnents and their supervisors at each
assignment .

182

SYNONYMS

(SNAME)

(PLN,PFN) -

@STATE

(PLN.AH, PFN.AH, ADM
I
I

I
(PLN.AH, PFN.AH, ADM#.AD,YAD) LOSTATE

Figure 4. The synonym structure of the Presidential Oatabase Schema

Synonyms

(Et+) I @Em?
I

i / I
\ SB/ I / \ / Ad (E#.SB, PK) A @EMP

Figure 5. The ultimate hierarchy - For each employee his
number (El), his name (NAME) and all his sub-
ordinates (set SB). Each subordinate is ranked
in a pecking order (PK) where there are no ties.

183

Pseudo-synonyms are those which have been
contributed by set INA declarations where the I%JLL
IS ALLOWED phrase is attached or where the set is
not AvrcMATIC MANDAmY; the remaining synonyms are
called proper. The algorithm consists of three
steps. The first step is concerned with the
definition of first level synonyms. The second
step eliminates redundant INA declarations from
non-singular sets. The third step recursively
defines the lower level synonyms. We also assume
that no inconsistency occurs in the declaration of
NULL [NtXl ALLOWED for keys of set types. Thus if
a combination X is specified NULL NOT ALLOWED in
some set declaration then no subset of X is
specified NULL ALLUVED somewhere else in the
schema.

With reference to step 3 of the algorithm we say
that X is a direct predecessor of (X.S, Y). Then a
predecessor is defined as a direct predecessor or a
predecessor of a direct predecessor. Figure 4
illustrates the hierarchial representation which we
use to depict the synonym structure of a schema.
Banging from a cormnon root wa find the first level
synonyms. At the lower level we find their
successors. Sol id lines lead down to proper
synonyms; dashed lines lead down to pseudosynonyms.
Condition (b) of step 3 avoids endless composition
of synonyms which would otherwise occur in schemas
with direct cycles such as the one of figure 5
(This schema actually uses an extension to CCDASYL
73 included in coI)AsyL 78. It is used here since
it supplies a simple and clear example of the
effect of LNA in schemas with cycles). In this
schema (El), (E#.SB, PK) , (E#.SB, PK.SB, FK) ,. . .
all supply valid synonyms for @EMP. However only
the first tm need to be consideredsince the view
design algorithm never uses synonyms which employs
the same set more than once in the migration path.

4. THE RELATIONAL ANALUG
We begin by modeling a CCDASYL database by a
relational analog. This consists of a set of
relations where both data items and database keys
of records are visible. For each record type A in
the schema the relational analog contains a
relation (named after the record):

A (@A,Al,A2 ,..., Ap,@Bl.Sl,@B2.S2 ,..., @Bn.Sn) (4.1)

where: @A denotes data base keys of record-type A,

a a, Ap (@O) denote the data items
of record-type A,

Sl, 52, Sn(n>0) denote the non-singular
sets of which record-type A is a member,

Bl, B2, Bn denote the record-types
owning these sets,

@Bl, @B2, @Bn denote the data base keys
of these owners.

Since record-types A, Bl, B2, Bn need not be
distinct the set name has been appended as role
name to the data base keys of the o\.ner records.
Naming anbiguities are thus avoided.

The relational analog for the examples of figure 1,
2, and 5 are given in figures 6, 7 and 8,
respectively (the meaning of the underlinings and

PRES Q?pREs, PLN, PFN, PAwpy, COLII;, @STATE) m-v

Am @gj, ACM*, INY, m, IND, @PRES)

STATE (@SPATE, SNAME, CAP, YAD, @ACM) ------ - .-..-..ww..--
X X X x -

ELEC (@ELEC, EYEAR, WvUTES, @PRES) --a-- -

LINK (@LINK, @PRES, @CCNGR) -----

CCNGR (@a@, C’NGR#, HD, BR, SD, SR) ..,.“...---

Figure 6. The relational analog for the
presidential data base.

I mP (@EM’, E#, EN) --..,.

\ EHR (@EBR EDT ABC, @EMP.BS, @EMP.sP) .w”,,~ -I

Figure 7. The relational analog for the
example of figure 2.

mEJ (@I& g& -, p @EMP.sB)
x x x ““‘2”’

Figure 8. The relational analog for the
example of figure 5.

the rows of “x” and “-‘I will be given later). The
timevarying content of relation A (see (4.1)) is
defined as follows. There is a tuple t for each
occurrence r of record A in the data base. The @A
value of t is the data base key value of r. The
a, A% . . . , Ap values of t are the values of the
corresponding data items in r. For each 0 5 i5 n
the t-value of attribute @Bi.Si is the database key
value of the Si-owner if one exists, the null value
otherwise. Figure 9 gives the Z-diagram and sample
content for a simple data base. Figure 10 gives
the relational analog and corresponding content.
Positive integers have been used to represent data
base key values. In figure 10 a null value is
displayed by a dash “-“. A tuple or a subtuple of
a relation is fully defined when it contains no
null value.

The time-varying contents of relations in our
analog obey some time-independent constraints
dictated by the data base schema declarations. The
concept of (candidate) key for a relation supplies
a useful construct to express these constraints
[CCDD 72, DATE 771. An attribute combination X of
a relation A is said to be a candidate key for A
when the following two conditions are satisfied:

1. Uniqueness: no two tuples in A have the same
fully defined X-value.

2. Minimality: No proper subset of X has this
property.

Note that the unigueness requirement is waived for
a tuple in which the value of one or more key
attributes has a null value. This policy reflects
the constraints generated by schema DNA options for
sets which are not AUlQlATIC MANDA’IQRY or where the
NULL IS ALLCWED phrase is attached. For instance

184

--

in figure 9 the set S is INA on F. Thus (@Rl.S, F)
is a &ndidate key for R8; no two tuples of R2 can
have the samevalue for both@Rl.S and Fwhen _--.- -.~
neither is null. However, when @Rl.S is null (the
Rl-owner is missing) two or more tuples could share
the same F-value. Also two or more tuples can
share the same @Rl.Svalue if F is null. Thus the
previous definition of candidate keys ensures total
consistency between the treatment of null values
modeling a missing owner in MANUAL or OPTICNAL sets
and the treatment of null values occuring in INA
set keys where NULL IS ALLOWED is specified. We
represent both kind of null values with the same
distinguished symbol "-". Since such null values
are allowed only for certain attributes in our
relation, one must specify them as part of the
integrity constraints of the relational analog.

A combination X of attributes of a relation R is an
allowable null pattern for R if R can contain
tuples where all and only the X-attributes have
nullvalues [ZANI 771. An allowable null pattern X
is a minimal null pattern for R if no subset of X
is also an allowable null pattern. We only
consider relations &here every null pattern is

Rl[C\'Ol

'\ s

either minimal or a union of minimal patterns.
Thus we give only the minimal null patterns, the
other patterns being
these.

inmediately inferrable from
In relation A of (4.1) there is a minimal

null pattern @Bi.Si for each set which is MANUAL
and/or OPTICNAL. There is also a minimal null
pattern for every attribute in a CNA combination
vhere the NULL IS ALL(MSD ohrase is attached. Thus
@ApI iS a minimal null pattern for relation-STATE
of figure 6 and @EMP.SB is a minimal null pattern
for EMP in figure 8. Then there are tm minimal
patterns, @Rl and F for R2 in figure 10. The other
relations in our examples have no null patterns.
As seen in these figures minimal null patterns are
described by rows where "x" stands for any non-null
value and "-I for the null values. The null
patterns for our relational analog reduces to a
single attribute. This is not true for the
relational views which we consider later.

Candidate keys will be called proper if their value
always fully defined (i.e. they do not

&ersect any null pattern); they will be called
pseudekeys otherwise. Directly from our
definition of keys we have that the relational

cl dl

Figure 9. The Z-diagram and sample content for a CODASYL data base

Relational Analog: Rl &Es .,c.: 0) R2 (@R2* E* .!.?..!.K.$)
X xx -

x x- x

Sample Content: Rl (@Rl, C, D)

1 cl dl

2 c2 dl

R2 (@R2, E, F, @Rl.S)

3 el fl 1

4 e2 f2 1

5 e3 f2 -

F;gure 10: The relational analog and its content for the exampld of Figure 9.

185

analog contain three types of keys, each defined by
the following rules:

(a) @A is a proper key for relation A,

(b) every attribute combination of a relation A
which is a proper synonym or a pseudo-synonym
for @A is, respectively, a proper key or a
pseudo-key .for A.

(c) if X is a INA declaration for the non-singular
set S with owner B (step 2 of the synonym
derivation algorithm has removed redundant LNA
declarations), then (@B.S,X) is a candidate key
for A. This is a proper key if S is AWJDMATIC
MANDATORY and the NULL IS ALLCWKD phrase is not
present. Otherwise this is a peudo-key.

Note how the keys for the analogs in figures 6, 7,
8 and 10 obey these rules. As usual keys are
displayed by suitable underlining of the attributes
comprising the key: distinct keys are denoted by
different style of underlining.

The content of our relational analog obeys an
important constraint which we call the foreign key
constraint. A foreign key for a relation R is
simply an attribute combination of R which is a key
for another relation. Now, candidate keys can be
regarded as unique identifiers of real world
objects . In a system such as our relational analog
where no tm relations share the same candidate key
one can view each relation’s role as defining and
describing the objects for which the candidate key
of the relation serves as unique identifier. Thus
foreign key values become references to objects
described and defined in other relations. Null
foreign key values can be used to model undefined
references. Yet when a reference to a unique
object is made through a fully defined foreign key
value one expects this object to be defined and
described in a relation with such a key. Formally
therefore:

Foreign Key Constraint: If a candidate key X of
relation Rl is also an attribute combination of
relation R2 then every X-value aparing in R2 must
also appear in Rl (i.e. the X-projection of R2
must be a subset of the X-projection of Rl).

The foreign key constraint was first advocated in
[SMITH 771 for the purpose of making the relational
data model suitable for data base abstraction and
aggregation. Our relational analog, where foreign
keys of relation A are simply data base keys of
owners of A, uses this constraint.

5. ‘IliE DESIGN ALGORITHM
Our design algorithm prforms a two-step
transformation on the relational analog. We refer
to the relational analog described in the last
section as the r-O-analog, to the one obtained at
the end of step 1 as the rl-analog and to the one
at the end of step 2 as the r2-analog. Tne view
design algorithm is given in figure 11. Associated
with the transformation of attribute sets of our
relations there is a corresponding transformation
on (1) the content of these relations and (2) the
keys and the minimal null patterns of these
relations. Thus if t denotes a tuple of A before
the replacement of @B by its synonym X and t’ a
tuple of A after this replacement, t’ is equal to t

186

VIM DESIGN AIGORITHM

Step 1: [top-down synonym substitution]. If a
relation A contains an owner data base key @B.S,
and relation B contains a proper synonym of @B, say
X, then in relation A replace the attribute @B.S by
the attribute(s) X.S. Repeat this operation until
no more. such replacement can take place.

Step 2: For each relation A project out the
attribute @A.

Figure 11: The algorithm which transforms the
relational analog into the final view.

in every attribute except the attributes in X.S.
The X.S-value of t’ is simply the X-value of the
tuple of B with a @B-value egual to the @B.S-value
of t if this is not null; otherwise every X.S-value
of t’ is null. Moreover if (@B.S,Y) is a key of A
before the transformation then (X.S,Y) is a key of
A after the transformation. If @B.S was a minimal
null pattern before the transformatioh then X.S is
a minimal null pattern after the transformation
(either all or none of the X.S-values can be null
at once).

Because of the one-to-one correspondence between
the X-values and the @B values these
transformations are clearly correct and invertible.
Thus there exists a one-to-one correspondence
between the rO-analog and the rl’analog. Note that
this correspondence may be lost if data base keys
are replaced by their p;eudosynonyms. Also note
that the rules (a),(b) and (c) to compte the
candidate keys of relations remain valid after each
replacement step has taken place. ‘Ihus they hold
for the rl-analog as well as for the rO-analog.

Now observe that step 1 ensure’s that synonyms are
always used in a top down fashion in the synonym
tree. A synonym of @A is used only after it has
become a proper key for A; thus all its
predecessors have become keys for their respective
relations. As shown in [ZANI 791 this is essential
to preserve the foreign key constraints. Clearly
if a data base key of some owner record has more
than one synonym there may exist more than one
rl-analog for any given schema.

Let us now assume that there exists a proper
synonym for the data base key of each owner record
in the schema (more about this assumption will be
said later). Then the only data base key appearing
in a relation A is @A. The second step of the
design algorithm simply removes this attribute.
The content of A in the d-analog is therefore the
projection of the content of A in the rl-analog. X
is a minimal null pattern in the new A relation if
and only if it was a minimal null pattern in the
old A. A proper key or a pseudo-key for the old A,
except @A of course, becomes a proper key or a
pseudo-key’of the new A. If the old A ‘had IY) key
except @A then the whole attribute set of the new A
becomes its key. tie r2-analogs for our examples
are given in figures 12, 13, 14 and 15. Role names
were dropped when no ambiguity occured.

6. RELATIONAL VIEWS
The r2-analog supplies our basic relational view.

I
PRES (PLN, PFN, PARTY, COLLG, SNAME)

ADM (PLN, PFN, ADM#, INY, INM, IND)

STATE (x, CAP, YAD, PLN, PFN, ADM#) I.....

\

X x.x - - -.

ELEC (m, WVOTES, PLN, PFN) c

LINK (PLN, PFN, CNGR#)

CONGR (CNGR#, HD, HR, SD, SR)

Figure 12. The final view for the Presidential
Data Base of figure 1.

t ’

EMP (3, EN

(EHR (E#.HS, EDT, ASG, E#.SP)

Figure 13. The final view for the schema of
figure 2.

EMP (E#-, NAME, PK, E#.SB)
x x'x -

Figure 14. The final view for the schema of
figure 5.

(Rl (C, D)

R2 (Es F, Cl
x - x

x x -

Figure 15. The final view for the schema of
figure 9.

Relations in these views cut across record
boundaries to capture logically related data items.
In general a view relation A has as attributes the
data items from record A plus data items migrated
dam from its predecessors (owner, owners of
owners, etc.); the design algorithm selects the
data items to be migrated on. the basis hl~
declarations in the schema. For instance in the
STATE relation of figure 12 we find SNAME, CAP and
!&D from the STATE record, plus (PIN, PFN) from the
president record and AcM# from the administration
record. The presence of ,a STATE record without a
AU4 owner is denoted by null values for PLB, PFR,
ACM%.

These relations supply the user with a congenial
interface to support high-level relational data
manipulation languages (DMLs) such as SEQUEL or
Query by Exzanple [DATE 771. Since access paths and
physical organization of data is invisible in the
view, responsibility for efficient execution is
taken over by the system. IML optimization
routines will take into account the characteristics
of the requested transactions and the organization
of the underlying database (including the
clustering of records in pages, the presence of
indexes, the availability of owner pointers and
prior pointers in records and other features
specified by schema declarations ignored in our
Z-diagrams), to dynamically select access paths and
perform aggregate operations to ensure efficient
processing. Further discussion of the LML
optimization problem is outside the scope of this
paper.

Relational languages have the closure property
tiich ensures that the result of queries on
relations is still a relation. Thus a query
statement can be.interpreted as the definition of a
view. This enables a relational DML user to derive
other views from the basic ones generated by our
design algorithm. Also the user may want to
include in his relations some data items in the
schema whose value was specified to be the RESULT
of some data base procedure. There is no
guarantee, however, that these other views will
support update requests correctly [DAYA 781. A I
simple exsnple will help to illustrate some of the
problems in this area. Say for instance that our
view over the schema of figure 9 consists of a
single relation R12. Such a view could have been
constructed directly from the netmrk schema as
described in [ZANI 771. Alternatively, the basic
relational view of figure 15 could have been
derived first, then Rl2 constructed from this using
an or-join; this second amroach is also described
in [ZANI 771. In either case the content of Rl2 is
filled as per figure 16. Rl.2 contains a tuple for
for each occurrence of R2; the E and F value of
this tuple are taken from this ‘record occurrence,
the C and D values are taken from its omer record;
they are null if such an owner does not exist.
Also R12 contains a tuple such as (-, -, c2, dl),
for each memberless owner in Rl.2. Thus RI2
preserves the information content of the underlying
database but it is not updatable. The keys for Rl2
are E and (F, C) . These fail to specify that Rl2
also obeys the constraint that every two tuples
having the same C-value must also have the same
D-value. Now say that the insertion of a new tuple

d3) is requested. Although such a
~~es:“‘d~~~ not violate the constraints embodied

187

in the view (i.e. those expre&ed by the keys and
the allowable null patterns of Rl2), serious
problems occur if one tries to carry it out. If no
previous record with a C-value of cl exists then
one can simply add a new record Rl with content
(cl, d3), then add a new record R2 with content
(e4, f4) and finally let the former own the latter
in an occurrence of S. However, since an Rl
occurrence with a C-value equal to cl already
exists, such a policy would result in an error
message for the violation of a W condition on C.
As an alternative one could try to see if a RI.
occurrence with a C-value of cl already exists and

M2 (E, F, C, D)
el fl cl dl
e2 f2 cl dl
e3 f2 - -
- - c2dl

Figure 16. A non-updatable view relation.

then let it be the owner of a new R2 occurrence
with content (e4, f4). The result of this policy
upon the view would be the addition of ‘the tuple
(e4, f4, cl, dl) instead of the requested (e4, f4,
cl, d3). For this last tuple to appear in Rl2 the
content of the Rl record with a C-value of cl must
be updated to (cl, d3) and this must become the
owner of the R2 record with content (e4, f4).
This, however, .would have the effect of changing
the first tm tuples in the old view (figure 16)
from a D-value of dl into a D value of d3. In
sunmary the seemingly correct user request will
either be rejected or it will produce unexpected
results. In order to predict and/or understand .the
update behavior of this view the user must look at
the underlying schema and possibly understand the
internal behavior of the view support subsystem.
Such a view would fail to insulate the user from
the complexity of the underlying system.

Clearly the previous problems could be cured by
employing more powerful and complex primitives to
define logical constraints (e.g. allowing the
specification of functional dependencies other than
those implied by keys). But this approach leads to
more complex and less friendly views. A much
better solution, instead, is to use the view of
figure 15, This is free of the previous update
problems since the keys of these relations clearly
indicate that there is at most one C-value
associated with any given D-value. Indeed the view
design algorithm ensures that all the integrity
constraints defined by the Z-diagram are fully
captured by the allowable null patterns and the
keys of the relations. According to these
constraints, moreover, when all tuples are fully
defined then the view relations are in Fourth
Normal Form [FAGI 771 (a definition of Fourth
Normal Form in the presence of null values is not
available). Moreover it is always possible to
translate any correct update on these views into an
equivalent sequence of CML cormsands executable
against a CCBOL or a PL/I subschema. Algorithms
for single tuple CML translation have been obtained
and tested on a COLWYL DBMS. A more detailed
discussion on this topic exceeds the scope of this
pap-.

In implementing delete and update requests a choice

188

can be made between tm policies &rich are
discussed next. Assume for instance that deletion
of a tuple from relation SFA’IE in figure 12 is
reguested. If the name of this STATE is referenced
by some tuple of PRES then one can either disallow
the request (rejection) or delete all such tuples
from PRES (propagation). If propagation is chosen
then deletions from PRES may in turn propagate to
relations LINK, EIEC, AIM; however a deletion on
AIM does not propagate to SI’ATE since null values
are allowed for its foreign key (PLN, PFN, ADMX).
As discussed in [SEW 781 a proper choice between
rejection and propagation can only be based on the
semantics of the case at hand in relation to the
enterprise environment. For the presidential data
base, for instance, a propagation policy is
probably meaningless. For the example of figure 13
instead it could mean that when an employee leaves
the company his employee-record is also discarded.
Iiowever, a rejection strategy reduces the risk of
jeopardizing the integrity of the system and also
ensures that deletion and insertion are inverse
operations as in the usual relational framework.
The propagation policy is, in fact, not generally
applicable to insertion. For instance assume that
the insertion in ELEC of a new president name with
the year in which he was elected is requested. If
no PRES record with such a name is available one
could consider creating a new one, but two problems
would occur. The first is that every remaining
data item in the record muld have to be null, and
such an option might not be available. The second
problem is that we need to find an omer for this
record in NS. Since all we know about this
president is his name, there is no reasonable way
to choose an owner in NS (i.e. hi,s native state).

The foreign key constraint limits the choice of
fully updatable subviews that one can construct by
subsetting the given set of relations in the
r2-analog. If a subview contains along with
relation A all the relations corresponding to
owners of record A then every constraint
restricting addition of new tuples to A is captured
by this subview. Likewise, if all relations which
correspond to menbers of A in AUFONATIC, MANDAl’ORY
sets are also part of the subview then every
constraint which may limit the deletion of tuples
from A, under the rejection policy, is captured by
the subview. Bowever these member relations need
not be included if a propagation policy is
followed. Similar rules can be derived for
operations which modify tuples in relations.

7. DISCUSSICN

In this section we review the assumptions &ich
limit the generality of the previous approach and
propose extensions to overcome them.

Firstly let us reassess the perfOnMnCe of our
views in terms of information ,preservation. As
described in the introduction the only information
of interest is external data. Now a relation A in
the &analog titally preserves the information
associated with each record type of the schema.
Moreover it identifies the owners of each
occurrence of the A-record, for each set in which
this record serves as a member. Thus the
composition of the various set occurrences is also
preserved by the rO-analog. However, a progranmer
through the CCBOL subschema can also determine the

order of the member records in a set occurrence.
If the set was declared SDRTED by the defined INA
keys then the order can be derived from the content
of the member records. If the order is declared
IMMATERIAL or by DATA-BASE-KEY no external
significance can be attached to the order of the
members in the set. In other cases (e.g. those
denoted by the key words FIRST, LAST, NEXT, PRIOR)
the order reflects the processing history of the
set. Thus it could be used to convey external
information not inferrable from other data
explicitly stored .in the data base (e.g.,. the
temporal sequence in which invoices were received
where no .timestamp for these invoices is recorded).
It is hard to believe that under these premises
such information can be regarded as reliable and
that there is a stringent need to preserve it in
the view. Bowever, if the designer decides that
this is the case, then he can use the solution
discussed later in this section.

The first step in the view-design algorithm is
clearly information preserving since it is
reversible. After the second step, however, the
values of data base keys are lost. Since we have
excluded DIRECT records we can safely assume that
the data-base-key values are of no direct interest
to external users; thus no information is lost.
Notice, however, that more than the value of data
base keys may be lost where for some record A no
proper synonym exists for @A. Indeed any two
tuples of A in the rl-analog tiich are identical
except in the @A value will collapse into one tuple
in the d-analog. This is the case of our relation
LINK which fails to distinguish between multiple
occurrences of a LINK record with identical PRES
and CCNGR omer records. (Xlce again it takes the
designer’s judgment to decide whether these
duplicate LINK records are or are not supposed to
be in the actual data base. If no duplicate
records are expected in the data base since the
current applications imp1 icitly respect this
constraint, then tw3 courses of action are
possible. The first is to leave the schema as it
is and ensure that the relational EM.. support
routines enforce this constraint. The second
alternative is to include this .constraint explictly
in the schema. For records such as LINK, where the
synonym data items are drawn from more than one
owner record, one needs to use SOURCE items. Thus,
for example,’ CNGR# from CCNGR can be added as
SOURCE item to the LINK record and set CS can be
specified DNA on this data item (or conversely
(PIN, PFN) can be included ,in LINK and a DNA on it
can be specified for set PS) . Thus SOURCE data
items, although not included in many present system
implementations, would greatly enhance the data
definition power of CODASYL schemas and make them
more amenable to support multiple views. This was
noted and used in [JOHN 78) to derive an
architecture whicn ensures commonality for
relational and network CDL and DML. Note that if
VIRTUAL SOURCE items are used, no conversion muld
be reguired for present data bases.

The approach proposed in this paper is robust as it
can be extended to remove simplifications and
limitations which were previously introduced. Let
us, for exanple, assume that the designer wants to
preserve information regarding the order of manber
records in occurrences of set S. Say that A is a
member of S and B is its owner. Then relation A of

the r+analog Will contain the attribute 0.s along
with B.S, where B denotes the owner of S and 0.s
denotes the position of an A-record among its
cohorts in a occurrence of S, unless S is SORTED on
a DUPLICATES ALLOWED combination X, in which case
0.S denotes the position of the A-record relative
to its set occurrence cohorts sharing the same
X-value . In the first case, then, S will be
assumed LNA on 0.S; in the second case S will be
assumed LNA on (X,O.S).

Repeated applications of this technigue can be used
to ensure that a proper synonym exists for each
record in the schema (for records whose location
mode is CALC using data item combination Y with
CUPLICATES ALLWED (Y,O) can also be used as the
synonym; 0 denotes the position of the record in
the talc chain). The conditions which limit the
applicability of step 2 of the design algorithm are
thus removed. The proposed solution reflects the
current usage of data where a record which cannot
be uniguely identified by value will be identified
by the order in which it appears in the processing
sequence. After adding the various 0-CO~UIU-IS in
the rO-analog the view design’ algorithm can be
applied without any modification. Since the
various O-columns are now part of the final view
the user is exposed to some implementation
dependent information. Thus there is a potential
loss of data independence. Moreover when these
relations are updated the 0-calm behave as
contiguous sequences of nunbers (e.g. deletion of
a row may cause an automatic decrease of the
O-values of the following rows). Thus syntactic
constructs must be included to differentiate the
O-columns from the others. In brief these views
lack some of the qualities posessed by the views
described in the previous section. Nevertheless
they are ‘simpler than network subschemas and they
can support high level relational DML. Thus they
can be used to model recalcitrant portions of
existing schemas when a modification of these
schemas is not acceptable. Extensions to remove
assumptions 1 through 5 of section 2 are also
available. For brevity we will not discuss them
here as they are documented in [ZANI 781 and
[GOLD 791.

8. ~~KXIJSION

In this paper we have presented a viable solution
to the problem of designing relational views over
netmrk schemas to support general query and update
CML. This capability brings significant benefits
to a CCDASYL DBMS in the area of data independence,
high level CML and ease of use. The approach taken
is totally evolutionary in as much as it does not
require conversion of present data bases or
translation of current application programs. This i
view design approach has been applied to a nmnber
of existing data bases with encouraging results
[GOLD 791.

An improved understanding of the role of the
various CODASYL declarations in defining the
logical structure of external data has also
followed from this work. The designer can benefit
by improving his logical schema design (if nothing
else by eliminating redundant INA declarations
which only slow DML execution).

This research brings the relational and the network

189

mbdel one step closer. It’ also indicates how
CCZXSXL can evolve into a system tiich effectively
supports multimode1 external schemas; this topic is
‘treated more extensively in [ZANI 791. Finally
this work confirms the important role, recognized
by previous authors, that null values and foreign
key constraints can play in data base relations.

cm 73

CODA 78

CcDD 72
ACKNOLEJXMEWS

‘I would like to aknowledge the important
contribution of Jay Goldman who, among other
things, has proposed the simplified design approach
used in this paper. I am also grateful to Murray
Edelberg for constant encouragment, penetrating
discussions and nlPnerous improvements. Finally I
would like to thank Dan Connelly for many
consultations and discussions on CODASYL DBMS’s.

190

IlwE 77

IAm 78

FAG1 77

GOLD 79

JOHN 78

SEVC 78

SMIT 77

PANI 7-7

mNI 78

zANI* 79

REFERENCES

“CCDASYL Data Description Levwe
Journal of Developnent, June 1973,” NBS
Handbook 113.

YDASYL 78 Data Description Language
Journal of Developnent, January 1978,”
Information Systems, Vol. 3, No. 4,
1978.

codd, E. F. “Further Normalization of
the Data base Relational Model,” Database
Systems, Courant CcmIUter Science Series,
Vol. 6, Prentice Hall, New York, 1972.

Date, C. J. “An Introduction to Data
Base Systems,” Addison-Wesley, 2nd Ed.,
New York 1977.

Dayal, U. and P. Bernstein, “On the
Updatability of Relational Views,” Very
Large Data Base Conference, Sept.
13-15, 1978, West Berlin, Germany.

Fagin, R. “Multivalued Dependencies and
New Normal Form for Relational
Databases,” ACM Trans. on Data&se
Systems, Vol. 2 ,No. 3, Sept. 77.

Goldman, J. “Automated Generation of
Relational Schemas for CGDASYL
Databases,” spew Research Center
Research Paper SCRC-RR-79-13, March 79
(subnitted to VIDB ‘79).

Johnson H. R., Larson J. A. and J. D.
Lawrence, “A Common Data Base
Architecture,” IEEE Workshop on Data
Management and Storage Hierarchies, Sept.
6-8 1978, Lake Arrowhead, California.

Sevcik, K. C. and A. L. Futardo
“Complete and Compatible Sets of update
Operations,” Proceedings of the ICMCD 78
Conference on DBMS, June 29-30 1978,
Milan, Italy.

Smith J.M. and C.P. Smith DDatabase
Abstractions: Aggregation,” CACM Vo1.20,
no.6, June 1977.

zaniolo, C. “Relational Views in Data
Base Systems: Support for Queries,”
caWSAC77, November 8-11, 1977, Chicago,
Illinois.

Zaniolo, C. “Relational Views over a
Network Schema,” Sperry Research Center
Report, SCRC-RR-78-37, July 1978.

Zaniolo, C. “Multimode1 External Schemas
for ccmsn Data Base Management
systems,” IFIP TC-2 Working Conference on
Data Base Architecture June 26-29, 1979,
Venice, Italy (North Holland).

