
"Self-Healing": Softening Precision to Avoid Brittleness
Position paper for WOSS '02: Workshop on Self-Healing Systems

Mary Shaw
Institute for Software Research, International

School of Computer Science
Carnegie Mellon University

+1-412-268-2589
http://www.cs.cmu.edu/~shaw/

mary.shaw@cs.cmu.edu

ABSTRACT
Modern practical computing systems are much more complex than
the simple programs on which we developed our models of
dependability. These dependability models depend on precise
specifications, but it is often impractical to obtain precise
specifications of practical software-intensive systems.
Furthermore, the criteria for acceptable behavior vary from time to
time and from one user to another. When development methods
are based on the classic models that assume precise specifications,
the resulting systems are often brittle -- they are vulnerable to
unexpected conditions and hard to tune to changing expectations.
Practical systems would be better served by development models
that recognize the variability and unpredictability of the
environment in which the systems are used. Such development
methods should pursue not the absolute criterion of correctness,
but rather the goal of fitness for the intended task, or sufficient
correctness. They should accommodate environmental
unpredictability not only by reactive mechanisms, but also by
design that produces resilience to environmental change, or
homeostasis. In many cases, this resilience may be achievable by
relaxing tolerances in the specifications, thereby enlarging the
envelope of acceptable operation.

Keywords
Self-healing systems, sufficient correctness, software homeostasis,
software utility theory.

1. PROGRAMS vs. PRACTICAL SYSTEMS
Much of software development methodology is rooted in classical
computer science, which addresses the problem of developing
correct, largely deterministic programs for well-specified
problems. The setting assumed for this sort of software
development includes well-specified components, causal domains
[2] with predictable causal relationships among causal
phenomena, and independence from external effects on the
computation. These programs often compute a result and stop, and

they usually take the objective of preventing failure.

Real systems, however, are much more complex. They are
utilitarian, focusing on fitness for purpose even when the problem
is not completely understood and the requirements change
unpredictably over time. They are built with under-specified
components for use in domains that are only biddable [2], lacking
predictable causality and subject to uncontrolled external
influences on the computation or the system in which it is
embedded. These systems are often embedded in physical
systems, run indefinitely, and must remediate problems instead of
preventing them. Table 1 summarizes these distinctions.

Maintaining the health of practical systems is correspondingly
more complex. First, preservation of health depends on knowing
what health is. Since the designer's understanding of both the
properties of the system and the users' requirements will be
incomplete and dynamic, "health" itself will be imprecisely
understood. Second, most of the reactive repair mechanisms
depend on the ability to detect unacceptable system behavior.
Since this will be defined imprecisely, the repair mechanisms
should, in part, operate independently of such detection.

Table 1. Characteristics of practical systems that make them
more complex than simple programs

Programs:
Complete Knowledge

Systems:
Approximate Knowledge

Goal of correctness or
perfection

Goal of adequacy or fitness for
purpose

Stable knowable
configuration

Dynamic components and
configuration

Components well specified Components poorly understood

Not subject to external
upset (causal domains, can
run open-loop)

Vulnerable to changes in
environment (biddable domains,
should run closed-loop)

Often execute and stop Run indefinitely

Prevent failures Remediate problems

When development methods based on assumptions about simple
programs are used on systems for which precise specifications and
control of the operating environment are unachievable, the
resulting systems are often brittle. This can be addressed to some
extent by adding layers of error detection and repair, provided the
"errors" can be precisely-enough defined. However, designing
tolerance for the uncertainties into the systems should yield more
manageable results. This position paper argues that we need to
consider new approaches to healing and adaptation that deal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WOSS '02, Nov 18-19, 2002, Charleston, SC, USA.
Copyright 2002 ACM 1-58113-609-9/02/0011…$5.00.

Proc of ACM SIGSOFT WOSS "02, South Carolina, 2002, pp. 111-114

directly with the uncertainties in requirements and in knowledge
about the underlying system components and operating
conditions. It suggests promising opportunities for research in this
area.

2. SUFFICIENT CORRECTNESS
Maintaining system health requires knowing what "health" is and
recognizing when the system needs to be healed. The first
problem is establishing the criterion for health, which depends on
the way the user is depending on the system. This criterion varies
from one user to another and from one situation to another. The
second problem is recognizing the difference between "healthy"
and "unhealthy" conditions. To avoid the brittleness that results
from depending on precise requirements and specifications, we
consider less precise alternatives.

2.1 What is "health"? Eliciting requirements
Classical models require a full static requirement, but this is
impractical for most systems because users are often unable to
articulate their needs, because the distinction between "healthy"
and "broken" is often indistinct, and because even soft
explications of the requirement change over time. An alternative
to attempting to elicit precise requirements is to elicit an envelope
of acceptable behavior that reflects the concerns and priorities of
the user. Butler has shown how to apply multi-attribute decision
theory to this problem for security risk analysis [1].

Satisfying the requirement, however precisely it may be stated,
depends on many properties of a system. In addition to
correctness, these properties include performance, dependability,
fidelity, and others. Our knowledge of these properties is
inevitably incomplete, because the set of properties is open-ended
and the cost of obtaining specifications for all possible properties
is too high. As a result, we need to be able to reason from our
current partial knowledge -- the credentials at hand -- and to
update our conclusions as new knowledge becomes available [5].

Further, the user's preference among these properties is often a
complex function of the quality with respect to each property.
Poladian is applying utility theory to striking reasonable balances
among properties, within resource constraints, for mobile systems
[3]. Mobile systems are resource-constrained, and different users
have different preferences (utilities) for different capabilities at
different times. The applications that can provide these
applications differ in their relative consumption of the available
resources, but it appears reasonable to model the resource use as
linear in some measure of problem size. This leads to a linear
programming formulation of the constraints and objective.

2.2 When does illness set in? Spotting trouble
Traditional models of self-healing or self-repair make explicit
distinctions between normal states and broken or degraded states.
However, given the difficulties in establishing a precise
specification of "health" -- and indeed the gradual transition
between perceived health and perceived unhealth -- we need a
new approach to recognizing when a system is in need of healing.

An alternative view [4] is that explicit distinctions between
normal and non-normal states are artificial and serve more to
support a state-based model than to capture actual system
behavior. In this view, there are gradual transitions between
desirable and undesirable conditions, and the important thing to

specify is the gradient between them. Figure 1 suggests this
situation: there are regions in which the behavior is clearly
acceptable or unacceptable, separated by a fuzzy zone of marginal
behavior.

Figure 1. Degradation and failure in real systems

Normal

Degraded

Broken

���

This view captures two aspects of practical systems that are
missing from state-based models. First, there are gradients of
desirability within the zones of normal and broken behavior.
Second, the same mechanisms that move the system from
"broken" back to "normal" can also serve to improve performance
within the normal region (or to make things less broken in the
broken region). In addition, it saves the specification effort
required to precisely delineate the difference between the states.

This view handles adaptation to changing needs and changing
resources in the same way as it handles healing when too much
capacity is lost.

2.3 Maintaining health -- being good enough
An appropriate view is that for many practical systems, health
corresponds to reasonable assurance that the system will work
well enough for its intended purpose, or

Sufficient correctness: The degree to which a system must be
dependable in order to serve the purpose its user intends, and
to do so well enough to satisfy the current needs and
expectations of those users.

That is, self-healing systems should pursue the objective of being
good enough for the task at hand. Since systems may be used for
different purposes, it is not reasonable to expect a single global
standard of health. This definition recognizes the common case of
imprecise requirements and the differences among utility
functions for different uses of the system.

3. HOMEOSTASIS
Most approaches to self-healing require explicit specification of
the conditions that trigger healing responses. They uses these
specifications to establish the "setpoints" for feedback
mechanisms that compare system behavior to the setpoints, then
adjust system parameters to drive the system toward the setpoints.
Making these adjustments requires the ability to predict the effect
of the adjustment on the system.

In practice, however, the distinction between health and unhealth
is often gradual. An alternative is to design for ongoing
background activities that tend to drive the system up a gradient
of good health, independent of whether or not the system is
healthy.

3.1 Homeostasis vs. feedback
Homeostasis is the mechanism through which a system acts to
maintain a stable internal environment despite external variations.
Bernard first stated the concept in the 19th century, and Cannon
coined the term itself in 1932. Homeostatic systems react to
change, not to explicit transition into undesired states. So the
pupil of your eye expands and contracts in response to light

through variations in normal light levels. At an ecological level,
the predator/prey relation between, say, foxes and rabbits operates
homeostatically to control the populations of those species.

Simon, discussing system design, distinguishes the internal
environment (the one we're designing) from the external
environment (the one our system exists in). He says [7], p.149

Few of the adaptive systems that have been forged by evolution or
shaped by man depend on prediction as their main means for coping
with the future. Two complementary mechanisms for dealing with
changes in the external environment are often far more effective than
prediction: homeostatic mechanisms that make the system relatively
insensitive to the environment and retrospective feedback adjustment
to the environment's variation.

Thus a stock of inventories permits a factory to operate without
concern for very short-run fluctuations in product orders. Energy
storage in the tissues of a predator enables it to cope with
uncertainties in the availability of prey. A modest excess of capacity
in electric generating plants avoids the need for precise estimation of
peak loads. Homeostatic mechanisms are especially useful for
handling short-range fluctuations in the environment, hence for
making short-range prediction unnecessary.

Feedback mechanisms, on the other hand, by continually responding
to discrepancies between a system's actual and desired states, adapt it
to long-range fluctuations in the environment without forecasting. In
whatever directions the environment changes, the feedback
adjustment tracks it, with of course some delay.

Here Simon emphasizes homeostatic mechanisms that allow
fluctuations without explicit response. The broader definition of
homeostasis includes mechanisms that react to change without
reference to a distinction between "good" and "bad" states.

3.2 Homeostasis for software
Homeostasis for software systems arises from mechanisms that
continually improve system health (revised from [6]).

Homeostasis is the propensity of a system to automatically
resist change from its normal, or desired, or equilibrium state
when the external environment exerts forces to drive it from
that state. Software homeostasis as a software system
property refers to the capacity for the system to maintain its
normal operating state, or the best available approximation
to that state, as a result of its normal operation. This
operation should both maintain good normal operation and
implicitly repair abnormalities, or deviations from expected
behavior.

Common examples of homeostasis in software systems include
background garbage collection (which heals the free space pool
whether or not space is low) and Internet packet routing (which,
by virtue of its normal policy of finding good routing by
dynamically selecting the most promising route for each packet,
also routes around network problems).

These are, respectively, examples of ongoing background
maintenance and dynamic selection of a required resource. As
Simon notes, homeostasis can also result from maintaining excess
capacity: an elementary result from queuing theory states that for
a common class of systems, as the average time between arrivals
in a queue for service approaches the average service time, the
queue length tends to infinity. System slack and safety factors are
similar examples.

This approach to self-healing has two advantages over reactive
and feedback models. First, the mechanisms operate over a wide
range of performance, improving performance independent of
health status. Second, it does not require the effort of developing
precise specifications of the distinctions between internal states,
freeing that effort for other aspects of design.

4. MAJOR POINTS
A given system may be used in different ways with different
requirements for correctness or quality. As a result, the criteria for
system health depend on the task at hand.

Unfortunately, most users are inarticulate about their criteria for
correctness, performance, dependability, and other system
qualities. Decision theory offers guidance for improving the
quality of requirements, and utility theory offers a means of
expressing multiple and nonlinear preferences.

The need for self-healing arises because the system may be
subject to unpredictable external forces or because the system is
too complex to predict its internal behaviors precisely. It is often
possible to design resilience to this uncertainty into normal
operation.

Heavy dependence on precise specifications, including
optimizations that wring slack out of the system, are likely to
make a system brittle and subject to failure when unexpected
conditions arise.

Homeostatic mechanisms offer a complementary approach to
reactive and feedback mechanisms for self-healing, especially for
dealing with short-term fluctuations in conditions.

5. ACKNOWLEDGMENTS
This research is supported by the National Science Foundation under
Grant ITR-0086003, by the Sloan Software Industry Center at Carnegie
Mellon, and by the High Dependability Computing Program from NASA
Ames cooperative agreement NCC-2-1298.

6. REFERENCES
[1] Shawn A. Butler. Security Attribute Evaluation Method. A Cost-

Benefit Approach. Proc ICSE 2002 - Int'l Conf on Software
Engineering.

[2] Michael Jackson. Problem Frames. Addison-Wesley 2001.

[3] Vahe Poladian, David Garlan, and Mary Shaw. Software Selection
and Configuration in Mobile Environments: A Utility-Based
Approach. Proc EDSER-4 - Workshop on Economics-Driven
Software Engineering Research, 2002.

[4] Orna Raz and Mary Shaw. An Approach to Preserving Sufficient
Correctness in Open Resource Coalitions. Proc IWSSD-10 - Int'l
Workshop on Software Specification and Design, 2000.

[5] Mary Shaw. Truth vs Knowledge: The Difference Between What a
Component Does and What We Know It Does. Proc IWSSD-8 - Int'l
Workshop on Software Specification and Design, 1996.

[6] Mary Shaw. Sufficient Correctness and Homeostasis in Open
Resource Coalitions. Proc. ISAW-4 - Int'l Software Architecture
Workshop, June 2000.

[7] Herbert Simon. Sciences of the Artificial. MIT Press, 1996.

