
PARTIAL EVALUATION AS A MEANS FOR INFERENCING DATA STRUCTURES IN AN

APPLICATIVE LANGUAGE: A THEORY AND IMPLEMENTATION IN THE CASE OF PROLOG

H. Jan Komorowski

Software Systems Research Center

Linktsping University

S-581 83 LinkUping, Sweden

ABSTRACT

An operational semantics of the Prolog programming

language is introduced. Mets-lV is used to specify the

semantics. One purpose of the work is to provide a

spec~fication of an implementation of a Prolog

interpreter. Another one is an application of this

specification to a formal description of program optimization

techniques based on the principle of partial evaluation.

Transformations which account for pruning, forward data

structure propagation and opening (which also provides

backward data structure propagation) are formally

introduced and proved to preserve meaning of programs.

The so defined transformations provide means to inference

data structures in an applicative language, The theoretical

investigation is then shortly related to research in

rule-based systems and logic,

An efficient well-integrated partial evaluation system is

available in Qlog - a Lisp programming environment for

Prolog.

1.0 INTRODUCTION

It is very likely that a large part of future programming will

be programming in increasingly higher level languages. In

such languages more attention will be paid to efficient

problem solving, whereas this efficiency need not reflect

the requirements of an efficient computation. In these

circumstances program transformation tools will play the

central role in making the efficiency realistic. It is also felt

that the tools should be interactive. One reason is that

they are to support the user in the immanently interactive

activities of programming. The other one is that due to the

complexity of some transformations the user’s support

might be indispensable in some points.

The growing interest in applicative languages programming

has also given much impulse to research concerned with

Prolog (which is a good example of an applicative and

rather high level programming language). At the same time

the perceived inefficiency in execution of many

applicative lan9ua9es has been an obstacle to their
wide-spread acceptance. Consequently, algorithms are

often coded for efficient execution at the expense of

clarity. This compromises the applicative style which is the

prime advantage of such languages.

We argue, that high-level program transformations can

relieve the programmer from concern for efficiency in many

cases. Several authors have considered the optimizing

transformations and their applications, while relatively little

attention has been paid to the so called partia/ewa/uation

transformations. Unfortunately, even if partial evaluation

seems to be a very powerful and useful tool it has not

been given any precise definition.

In this paper we investigate partial evaluation of Prolog

programs as a part of a theory of interactive, incremental

programming. The goal of this investigation is to provide

formally correct, interactive programming tools for program

transformation. Moreover, partial evaluation as introduced

in the paper is not only a means to improve program

efficiency but also a means for inferencing data structures

in an applicative language.

The rest of this paper is organized as follows. First, an

informal introduction of partial evaluation and a short

discussion of related research is presented. Second, after
the preliminaries which establish the conventions and

notation, an abstract Prolog machine is introduced. The

machine is then extended to account for partial evaluation

transformations. A partial evaluation system is implemented

in the Qlog system according to the specification. Finally, a

brief discussion of relations between logic, partial
evaluation and research in rule-based systems follows.

Permission to copy without fee all or part of this material k granted 2.0 PARTIAL EVALUATION: AN INTRODUCTION
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publksdon and its date appear, and notice k given that copying is by

An informal introduction to partial evcrluation is presented

permission of the Association for Computing Machinery. To copy
here and illustrated with a simple example.

otherwise, or to republish, requires a fee and/or specific permission.
The goal of partial evaluation is to transform programa into

more efficient ones. The improved efficiency is obtained at

the expense of the generality of the programs. The

@ 1982 ACM 0-89791-065-6/82/001/0255 $00.75 restrictions on generality are usually introduced by setting

255

http://crossmark.crossref.org/dialog/?doi=10.1145%2F582153.582181&domain=pdf&date_stamp=1982-01-25

some global parameters, or by deciding upon values of

certain formal arguments of the top-level procedure(s),

The partial evaluation transformations aim to exclude

checks shown to be unsuccessful, to open calls if the calls

can be proved non-recursive, and to do some other

improvements, all that with respect to the introduced

restrictions. In partial evacuation the target language is the

same as the source one. Thus, one can describe partial

evaluation as a case of a sophisticated source-to-source

compilation.

Much of the research in partial evaluation has been

concerned with processing of programs written in
weak-type languages. In such languages functions (or

procedures) are responsible for data type checking. The

prime attempt of partial evaluation is then a reduction in

the number of run-time checks, since the regular compilers

cannot reduce them.

Therefore, cme would ultimately like the transformations to

al.ltomate specializations of program data structures within

a particular restricted domain. However, instead of
providing type declarations in every procedure of the

program one would think of an overall data structures

propagation performed by e. partial evaluation system. The

last requirement is difficult to satisfy directly in a language

like Lisp [McCarthy 66] but seems to be rather plausible in

Prolog [Kowalski 74].

To illustrate the idea of partial evaluation and especially

the requirement of the data structure propagation let us

consider the following example of a genera! plus program.

It can add numbers, vectors of numbers and matricee. The

restricted application will be addition of integers, The

propagated data structures are written in lowercase. (For

the syntax of CJlog see the appendix.)

14_PP GEN-PLLIS

([GEN-PLLIS ,xl ,x2 ,REsI

(OPER-2 + ,xl ,x2 ,REs))

([OPER-2 :OP (:TYPE . :Al) (:TYPE . :A2) :RES]

(ACT :TYPE :OP :,41 :A2 :RES))

([ACT INTEGER + (:NI) (:N2) (If4TEf3i32 . ,RES)_j

(QIPLUS :Nl :N2 :RES))
([ACT f3EAL + (:NI) (:N2) (REAL. ,RES)]

(QFPLUS :Nl :N2 :RES))

([ACT vEcToR + ,vl :v2 (VECTOR .: RES)_J
(AIXWCTS:VI ,V2:WS))

([ADDVECTS NIL NIi_Wy

([ADDVECTS (:HV1 .:TV1) (: HV2. :TV2) (: HRES. :TRES)]

(OPER-2+:EIVl W2:ti FH3)

(ADDVEcTs:TVI ,TV2:TRES)I

([QIPLUS:I1 :12:RES]

(IS ,RES (IPLUS:II :12)))

([QFPLUS:I1 :12:REs]
(IS :FIES (FPLUS:II :12)))

And the call to the partial evaluator:

15_(GEN-PLtJS (INTEGER . :X) (INTEGER . :Y) :RESULT)

Pruning.,.

([QIPLUS:I1 :12:RES]

(IS :RES (IPLUS:I1 :12)))

([ACT INTEGER + (:NI) (:N2) (INTEGER .: RES)]

(QIPIJB:N1 :N.2:RES))
([oPER-2 :OP (: TYPE .:A1) (: TYPE .:A2) :1=5]

(ACT: TYPE: OP:A1 :A2:RES))

([GEN-PLUS:XI :X2:RES]

(opER-2+:XI :X2: RES))

Should I propagate data structures? ... Yes

([QIPLUS :x :y :res]

(IS :res (IPLUS:X:Y)))
([ACT INTEGER + (:x) (:y) (! NTEGER. :res)]

(CWWJS :x :Y :res))

([OPER-2 +(integer .:x) (integer .:y):result]

(ACT integer + :x :Y :result))

([GEN-PLUS (integer . :x) (integer . :y) :result]

(OPER-2 + (irlte9er. :x) (integer . :Y) :result))

More? ... Yes

FAILURE

Annotations

Interaction 75 : the top loop of the partial evaluator

accepts Qlog fo;ms as the interpreter does. We note that

the actual parameters are only partially specified. They

are known to be irrteger.s,

The material displayed below Pruning... is a stack of

procedure calls. The procedures are shown with their

respective bodies. The growing end Is the top of the stack.

The last (partially) evaluated call on the stack is the call

to Q/PLUS. The call to/S (the assignment in Prolog DEC1O

[Pereira 78]) cannot beeva!uated since the arguments of

IPLUS are variables. Such a call is /’suspended” and the

evaluation continues.

It is the last evakration. The system displays the sequence

of the calls and asks whether to propagate the data

structures. The propagated program is displayed in the

form of a steck. The propagated data structures are

written in lower case letters. For example, we can observe

that 0PEF@2 gets the representation of the :TYPE

variable set to integer. Also the type in call to lJCT

becomes jnfeger. However, the variable name :result is

not propagated beyond OPER-2, This propagation

transformation is a case of the forward data structure

propagation.

Since in this computation there is no more alternative

computaticm the evaluation is finished. The word FAILURE

informs about it.

There are possibilities for other partial evali.~ation

transformations “too. \We come back to this example in the

Sequei.

3.0 F4ELATED RESEARCH

Source-to-source transformations have been investigated

by a number of researches. However, partial evaluation has

not been yet formalized sufficiently. Almost all the
literature is concerned with either special cases of

transformations, or with informally described

implementations of partial evaluation systems. In fact,

256

partial evaluation is to a large extent a craft technique

existing in the folklore, especially in the weak-typed
Ianguage ccjmmunities like the Lisp one.

The idea of partial evaluation can be already found in

Kleene’s S-m-n theorem [Kieene 52]. An informal version

of this theorem is often applied as a definition of partial

evaluation. In the context of a language with functions one

usual! yformulates it as follows.

Suppose that Fisafunct’ion with the parameters xl, X2,

<. If the values of some of theparameters areknown, say

‘1 = all ...! ‘k = ak! where ai are constant values, a

specialized version F’ of F can be generated such that:

F’(xk+l, Xn) = F(al, a~, xk+,, Xn)

for all values of xi, j ❑ k+l, n.

The definition, although reflects some of the intuitions

concerned with partial evaluation, has several drawbacks.

For example, it unnecessarily limits the known parameters

to be constants.

Partial evaluation in connection with programming is first

explicitly mentioned by Futamura [Futamura 71]. He also

recognizes the relation between interpretation and

compilation by means of partial evaluation. An early

overview of partial evaluation applications can be found in

[Beckman 76]. Other references to source-to-source

transformations in general can be found in [Arsac 79],

[Burstall 78], [Cheatham 79], [Kieburtz 81],

[Loveman 77], [Standish 76].

A partial evaluation approach to program generation which

uses Lisp and logic can be found in the work of A

Haraldsson and E Sand@wall on the PCDB system

[Haraldsson 74], [Sandewall 71]. In this work partial

evaluation was a tool used to generate procedures for

interpreter of a pattern match language. A compilation of

programs written in the pattern match language to the

regular Lisp is done by means of partial evaluation.

Ostrovsky uses the same idea to generate a specialized

parser from a general one and a given syntax.

In conclusion, although the partial evaluation research is

quite active there is not any widely accepted formal

definition of partial evaluation. This is also the reason why

it has been necessary to begin with an informal
introc!tlction of partial evaluation. Consequently, we

propoee in this paper a definition of partial evaluation in

Prolog with an aim to establish it.

4.0 A SPECIFICATION OF A PROLOG MACHINE

The method of the description chosen here is influenced by

the Vienna Development Method [Bjorner and Jones 78],

although it ia not followed literally. In particular, we pattern

our meta-language on Mets-lV. The reason for choosing

this meta-ianguage is twofold. First, it is a language

designed to support formal definitions of high-level

languages. Second, Mets-lV has been exclusively used to

define iIIWeratiVe languages (eg. A1gol-60 [Henhapl 78]) in
‘the spirit of the denotaticmal semantics [Gordon 79], [Stoy

77]. Therefore we would like to experiment and use

Mets-lV in a definition of a purely applicative language in a

operational style.

4.1 Cumwntimas

TO get star-ted we set up a certain notation. If D1 and C)2

denote sets (in the sequel the word domain is rather

used), then:

D, D2 denotes the Cartesian product

maintaining a first order Predicate Calculus Data Base. The D, + D2 denotes the set of all total functions from
procedures were compiled into Lisp from the axioms stored D] to D2
in the data base. Much of that experience has then been

incorporated in the Redfun system [Haraldsson 77, 80]. D1 @ D2 denotes continuous finite-domain functions

Some theoretical investigation has been done by Ershov

and his group [Ershov 77, 80]. They call partial evaluation

mixed computation. An important characterization

introduced by the group is the split of computation into a

suspended and an executable part. They have also tried to

set up a theoretical framework for partial evaluation.

However, in that work mixed computation is not based on a

semantics of a language and many formal considerations

are somewhat fuzzy. It is also unclear how a mixed
evfi!uation slystem could be implemented for languages of
the typ@ cons; dQr@d by tl?em, There is, however one

interesting work by [Ershov and Itkin 77] where partial

evaluation is investigated for a small language with

assignments, conditionals and goto’s. For that language an

operational definition is given which is then extended to

account for a partial evaluator. Such an approach is similar

to that taken in this paper. However, Prolog compared to

that language is much a richer language since it has

procedures.

Among larger applications of partial evaluation are works
by P Emanuelson [Emanuelson 80] and B Ostrovsky

[Ostrovsky 80]. Emanuelson implemented in Lisp an

D, - 11~ denotes the set of a!l partial functions

from D, to D2

D; denotes the set of all (possibly empty)

strings in D,

D; denotes the set D< - .5

D, + D2 denotes the disjoint union

Some common operations on ~trings of objects are defin@d:

Afirst. .xlxn = XI

tail. xi...xn 4 x2...xn

We usually write 2 for the empty sequence, except for the

traditional logic programming ❑ used to denote the empty

c!ause and tile end of proofs.

The identical substitution is denoted by id.

A, v, ❑>, -, ❑ are used for logical conjunction, disjunction,

implication, negation and equivalence, respectively.

The symbols 3, V are used for the quantifiers.

257

The following function notations are used:

f. x stands for f(x)

b - V,, V~ stands for if b then vi else vz

cases v: stands for case statement;

VI - et if Vn is complementary to VI, Vn.l then it

... can be written T.

Vn + en

A stands for concatenation

[d’/d] stands for a simultaneous substitution

For the purpose of local definitions the let notation is

introduced:

let x ❑ ... in e(x) ! (Xx. e(x)) (...)

Instead of writing f : DI . .. Iln.l + Dn its curried version is

used and denoted with the same name:

f: D1-+..<-+Dn

Objects are described by an abstract syntax. Abstract

syntax classes are defined as follows:

Name { = I :: } Rule

BY convention the first character of Name is in upper

case. The choice between = ancl :: and the form of Rule

dictate the kind of objects which are to be associated

with Warne. if one defines strings of objects then = is

used. For defining tuPles (or trees) :: is apPlied. For a

detailed description see the manual of Mets-lV [Jones 78].

While dealing with sets it is assumed that a predicate

which tests for membership in a particular class of objects

is implicitly defined for each Name. Thus

is-tllame. t = t c Name

It is necessary to have a means of combining instances of

trees into new trees and to be able to recognize and

decom,oose them. Trees are built by constwc~or functior$s.

These functions have the property of uniqueness. The

names of constructor functions are always formed by the

prefix rnk- and the name of the relevant abstract syntax

rule.

In the below definitions short explanations to the mnemonic

abbreviations are written in italics.

4.2 syntactic Domains

x: Ide

t: Ter = Ide I Lit

A: Lit :: Ide I Tel’

H: Head = Lit

B: Body ❑ Lit”

c: Cla :: Head Body
P: Pro ❑ Clan

ider2?ifir?r

w rem

literal

head of a clause

bwy of a clause

clause or procedure
program

4.3 Semantic Domains

conf Conf :: Pro Body Subs conf igwation

dir Direct ❑ backward I forward direction

Stk Stack = Con~

Stt State :: Stack Direct

4.4 Functions

2. unif

3. subster :

4. subsbody :

5. subscla

6. name

7, is-clef : Lit +

8. is-uni : Lit ~

Subs

Lit

Ter

Body

Cla

Lit

Pro

Pro

.

-+

+

+

+

-)

-)

Lit -?

Ter

Body

Cla

Ide

Conf +

Conf +

Ter

substitution

Subs + {nil}

unification

subs. on terms

subs. on bodies

subs. on clauses

literal’s name

{break, failmatch}

{failmatch}

9. apm : Pro + State + State

Abstract Prolog Machine

4.5 Definitions of the Functions

1.

2.

3.

4.

5.

Note. In fact every e is a total function defined on /de,

but since D(e) ❑ {x : f3. x x x} is always finite, 9

is defined as a function on D(8). Consequently the

identical substitution is a fui]ction defined on the

empty domain.

Urrif is defined in [Robinson 65]. Its result is a

substitution which, when performed on the arguments,

makes them equal. In its implementation it is essential

that the names of variables (which are defined in the

concrete syntax) are renamed prior to unification. It is

true that is-subs(unif(A, H)) ❑ is-subs(unif(H, A)). but it

is not true that unif(A, H) = uni’f(H, A) for any litercds A

and H. For the purpose of the theorems’ proofs it is

assumed that if an identifier in A is unified with an

identifier in H then A’s identifier is substituted for H’s.

subster. El. t ~

is-lde. t + e. t,

let mk-Lit(x, tt) = t in mk-Lit(x, subster. f3, tt)

subsbody. t3. B ~

B=n -+ E,

subster. 9. (first. B) ’’suhsbody. 0. (tail. B)

subscla. r3. mk-Cla(H, B) ~
mk-Cla(subster. 9. H, subsbody. Et. B)

Note. In order to make the definitions less loaded with

symbols the names of the substitution functions are

omitted in the sequel. For example, it is written 9. B rather

than subsbody. EI. B

6. name. mk-Lit(x, tt) ~ x

258

7. is-clef. A. P ~

.1 P=E + break,

.2 let mk-Cla(H, B) = first. P in

.3 name. H ❑ name. A + is-uni. A. P,

is-clef. A. (tail. P)

Annotations

.1 if the program P is empty then break. It means that

there is no definition for A in P. This case is significant

in the definition of apm if the direction is forward.

.2 else, select the first c/ause in the program P and

.3 if the head H has the same name as A then call is-urri

else, check if there is a definition for A in the tail of P.

8. is-uni. A. P ~

.1 P=E + failmatch,

.2 let mk-Cla(H, B) ❑ first. P in

.3 name. H = name. A +

.4 (let A ❑ unif. A. H in

.5 is-subs. A + mk-Conf(tail. P, B, A),

is-uni. A. (tail. P)),

.6 is-uni. A. (tail. P)

Annotations

.1

.2

.3

.4

.5

.

.6

if the program is empty then fai/mafch. This branch is

reached only if there are definitions for A (at least one)

but none of them unifies with A.

else, select the first clause in the program P and

if the respective names are equal then

let A be the result of the call to unif and

if A is a substitution, that is the unification of H and A

exists, then make a configuration which contains: the

not yet used rest of the program (cf .10 and .16 in the

definition of apm), the body B of the selected clause,

and the (irx;rement) unification substitution A;

otherwise call is-uni for A and for the tail of P.

else, call is-uni for A and for the tail of P.

9. apm. P. mk-State(stk, dir) ~

.1

.2

.3

.4

,5

.6

.7

.8

.9

,10

.11

.12

.13

.14

.15

.16

let mk-Corif(P1, 61, ErI) = first. stk in

casas dir:

forward +

(Bl ❑ H ~ mk-State(tail. stk, backward),

cases is-clef. (first. Bl). P:

break + undefined

failmalch -+

mk-SWrte(tail. sW, backward)

rnk-Conf(P’, B’, A) +

mk-State(rrrk-Conf (P, A. (B’AtaiL 61), A. 91)”

mk-Conf(P’, B], 91)AtaiL stk, forward))

backward +

eases is-clef. (first. &). Pl:

mk-Conf(P’, B’, A) +

mk-state(mk-Conf (P, A. (B’Atail. B,), A. el)A

mk-Conf(P’, ~, 91)’’tail. stk, forward)

T + mk-State(taiLstk, backward)

Annotations

.1

.2

.3

.4

.5

.6

.7

.8

.9

.10

.11

.12

.13

.14,

The top configuration of the stack is selected

If the direction is

forward, that is the last step was successful, then

If the body is empty then pop the top element of the

stack and make a new state with the backward

direction. This is the case we are most interested in.

The definition of semantics given in the sequel refers

to it, and especially to the current substitution 01,

otherwise, call is-clef (selection and unification) for

the first element of the body. The selection is to be

made from the global program P. If the value is:

break, then apm is undefined. This must be so, if the

calls to the undefined procedures are to be catched.

faihrratclr, then POP the top element of the stack and
make a new state with the backward direction. The

unification was unsuccessful and a backtrack occurs.

a configuration then

make a new state such that two configurations are

concatenated to the tail of the steck. The top

configuration’s elements are: the global program P, the

A substituted concatenation of a new body B’ with the

tai/ of the previous body ~, and the substitution A

added to e.

The top but one configuration is unchanged except

that the previous program PI is replaced by P’. It is

done to memorize the rest of the program not yet

used by is-clef. This program is to be used if due to a

failure a next choice must be made. The direction is

forward, which tells us that the step was successful.

backward, that is the previo~s step was a failure,

then

call is-clef. Now the selection is to be made from the

local program PI stored on the stack. It memorizes the

rest of the program as left by the previous cal~ to

is-clef (compare with the comment on .1 0). If the

value return by the (current) call to is-clef is:

a configuration, then

.15 perform as in .9 and .10

.16 otherwise POP the top element of the stack and make

a new state with the backward direction. We can see

that since the machine is in the backward direction

(cf .11) the break and failmatch values returned by

is-det cause the same action because there is either

no more claluse to select (but there was some) or

none of the selected ones can be unified.

A few comments on the way apm is defined may be useful

here.

We have chosen to have a program P as a parameter since

it makes it easy to extend the definition to account for
side-effect procedures which change programs (eg

assertions). It is also convenient to have this parameter

explicit when the semantic function (defined in the sequel)

is applied to different programs.

A .aupa~fieial analyei~ of tha d&inition of apm may l@ad to a

conclusion that it is unnecessarily complicated. The usual

objection is as “to why even the previous top configuration

259

is modified while a new one is pushed on the stack (.1 5).

The explanation is that it must contain the “history” of

selecting a clause from the program. (And at the same time

such a solution was preferred to the use of a side-effect

which could be introduced by the is-uni procedure.) Should

a backtrack occur (ie popping an element from the stack)

then a new trial must be made in that very program. An

alternative approach which carries the history forward and

stores it in the top configuration requires popping two

configurations while backtracking, The reader is

encouraged to write such a version of apm.

The aprm function can be simply made recursive as well.

Informally speaking, it is sufficient to encapsulate right

sides of the conditionals (except undefined (.6)) in a call

to apm (and change its type definition) and add a check if

the stack is not empty.

4.6 Semantics

Definition 1 Computation Sequence

Given the definition of apm, a computation (sequence) of

a literal A determined by a program P is defined recursively

as f Otlows :

,0
Stto = mk-State(mk-Conf (P, /j, id), forward)

2° If apm. P. st~ is defined then st~+l ❑ apm. P. st~

Before we proceed to the definition of the semantice, an

additional function sema ia introduced.

Definition 2

Sema : Pro + Lit + Statem

where Gema. P, A is the longest computation of A
determined by P.

Definition 3 Semantics

The semantics sem of A determined by P is defined in the

following way:

1° sem : Pro + Lit + Substm

2° Let A and P be given and established. From sema, P.

A a subsequence is selected which contains all the

elements such that:

St$ = mk-State(mk-Conf(Pi, ~, t3i)Astki, diri),

where ~ = n, diri ❑ forward.

Then

sem. P. A ~ {eil, eiz, ...}

Such a subsequence is called a successful computation

sequence (for A determined by P) and abbreviated S.C.S.

5.0 PARTIAL EVALUATION

Informally speaking, a partial evaluation machine is an
extended abstract Prolog machine which, while computing,

labels those clauses (parts of a program) which

contributed to a successful computation. Those labelled

clauses form a subsequence PI of P such that the

denotation of A in P is preserved in the new program P’. P’

is called a pruned version of P (with respect to A) and will

be subject to further transformations.

In partial evaluation one also has to take a different

approach to the so called under-defined programs. The
partial evaluation machine should be total. However,

instead of popping the stack and switching to the

backward state in the case of undefined procedures (ie.

backtracking, as it was the case in the regular interpreter)

we rather assume that a definition will be provided later,

and thus the forward state is preserved. These concepts

are formalized in the following way.

The essential change is in the definition of configuration.

Itis now defined as follows:

con : Conf ❑ Pro Etody Subs Cla

The change induces the following natural modification in

the definition of is-uni. (The is-clef function’s text remain

unchanged, although the function is defined on a new

domain).

8. is-uni. A. P ~

.1 P=& + failmatch,

.2 !et mk-Cla(H, B) ❑ first. P in

.3 name. H ❑ name. A +

.4 (let A ❑ uni (H, A) in

.5 is-subs. A

mk-Conf(ta~. P, B, A, mk-Cla(H, B)),

is-uni. A. (tail. P)),

.6 is-uni. A. (tail. P)

The more significant change is in the definition of aprr. In

the case of partial evaluation this function is total.

apm : Pro + State -I State

Abstract p.e. Prolog Machine

9. apm. P. mk-State(stk, dir) ~

.1

.2

.3

.4

.5

.6

.6a

.6b

.7

.8

.9

.10

.11

.12

.13

.14

.15

.10

let mk-Conf(Pl, B,, f31, Cl) ❑ first. stk in

cases dir:

forward +

(Bl = ❑ + mk-State(tail. stk, backward),

cases is-clef. (first. B,). P:

break +

mk-State(mk-Conf (P, tail. 51, (3, &)”

mk-Conf(8, B,, f31, Cl)Atail. stk, forward)

failmatch *

mk-State(tail. stk, backward)

mk-Conf(P’, B’, A, C’) +

mk-State(mk-Conf (P, A. (B’Atail. 61), A. 8,, C’)*

mk-Conf(P’, B{, t31, Cl)’’tail. stk, forward))

backward -+
cases is-cler. (first. Bl). P,:

m!:-Conf’(P’, B’, A, C’) +

mI<-statr2(rnl< -Conf(P, A. (B’ntail. Bl), A. EI1, C’)”

mk-Coiif(P’, Bl, (31, C1)Ataii. stk, forward)

T + rnK-5tate(tail .stk, backward)

Annotations

We annotate below only the significantly modified part of

the apm’s definition.

.6 break, then a new state is created such that the

elements of the top configurations are: the global

program P, the tW/ of previous body, the previous

260

substitution, and the empty clause (which labels no

clause of the program); in the configuration next to

the top the program is empty as to denote the fact

that no more choices can be made there; the

description of the other configurations does not

substantially differ from the previous one. Such a top

configuration is called suspended.

.8, .9, .10, .13, .14, .15 are modified as to refract the

change in the definition of the configuration.

Similarly, an obvious modification in the defkritions of the

sem functions is introduced to account for that change.

Namely,

1° st~ = mk-State(mk-Corif (P, A, id,8), forward)

We can now turn to the partial evaluation theorems. In

order to simplify the proofs of this chapter we assume

that:

sem. P.A= {EIil}

which says that there is only one S.C.S. for A determined

by P.

The proofs of the theorems in the sequel require the

following lemma characterizing unification:

Lemma 7

lftl. A=r3. Hand A’ =~’. A,wheree, e’ E Subs, and A,H~

Lit, then

3 (Al E Subs) (A1. A’ =A1. H) = 3 (A2 c subs)

(A2. A’ ❑ A2. 8. A)

We can now state our theorems. Let us put sem. P. A =

{0}. From the definition there exists a S.C.S. Let PA’ be the

subsequence of P consisting of those Ci E P which appear

in the S.C.S.

Theorem 1 Pruning, or dead code elimination

PA’ preserves the semantics of A i.e.

sem. P. A = sem. PA’. A

Moreover, the semantics is preserved for every instance

A’ of A, that is:

sem. P. A1 = sem. PA’, A’

where A’ ❑ 6’. A.

Proof. It is sufficient to prove that the substitutions

determined by both Pro9rams are equal. In order to do so

oile can prove a stronger fact ‘chat the respective S. C.S.’S

are equal. (PertlE.ps with the exception for Program

coefficients). The prcof is by contradiction. For the lack of.
the space we omit this somewhat lengthy, although simple

proof. It can be found in [Komorowski 81 a].
n
u

The program PA’ is called the fxwrmed version of P with

respect to A. Usually, the A index is omitted.

Such a pruned program is the subject of the next theorem

called the memorization theorem. Let us put

sem. P. A ❑ {0} where P = PA’ end assume that A’ = f3. A

for some 9‘ g Subs. We assume that the instantiation is

the proper one, that is it substitutes identifiers by terms

which themselves are not identifiers. Otherwise it would be

only a renaming of identifiers, which is not of interest here.

Theorem 2A Memorization

sem. P. A’ = 6’.6

where the application of substitution f3’ is understood as

follows:

Given 6. A and e‘ perform all its substitutions on 9. A; if

there is any substitution which cannot be performed

because the respective identifier does not appear in Cl. A

then the right side is undefined and A’ does not have a

semantics determined by P.

Proof. Let us denote the (only) S.C.S. for A

~tk = (P, ❑, e, Cin)...(P2, B2, Az. id, Ci2) (PI, A, id, C)

and consider a S.C.S. for A’

stk’ ❑ (P, ❑, 0“, Cin’) ... (pz’, %’, A2’. id, Ciz’) W’, A’> id>

t)

If such a sequence exists then it must be

stk Icla ❑ stk’ Icla

(ie only the clause coefficients are compared)

Namely, let us consider the second configuration of stk and

stk’ and suppose that Ci2 # Ci2’. From th@ definition of a

S.C.S. there is

A2’. A’ ❑ AZ. Hi2’

but since A’ is an instance of A, ie A’ = 9’. A then of course

there exists Az” E Subs such that

But it contradicts the assumption that there is OnlY S.C.S.

for A, thus C,z ❑ C,2’ follows. And Consequently, Az’. Hi2 is an

instance of A2. Hi2 where

A2’. Hi2 = kl’. A2. Hi2 (cf note on the definition of unif)

Thus in particular

A2’. 42 = 6’. A2. ?2 and fl’. (first. ~) = first. Bz’

By repeeting this reasoning for an arbitrary k = 2, 3, n it

is obtained that

Cik = Cik’ and e‘. (first. ~) = first. %’

Consequently,

6.6’ ❑ 6’. An. An-l. ... A2. id = An’. An-l’. ... AZ’. id
r-l
u

Informally, one can say that the semantics of an instance

of a literal is the instance of the semantics of the literal if

such exists.

The memorization, although epistemologically very

interesting, has a limited application in the case of partial
evaluation. Its epistemological value is that it is sufficient

to store the result of sem. P. A, ie the substitution, and
then instead of computing sem. P. A’ one only has to find

the unifier of A’ and 6. A. Note that there are unification

algorithms linear in time! (eg [Martelli 76]) Unfortunately,

such a global memorization has amon9 others a

disadvantage of negleCtin9 the w$Pended CotnPutations,
ie the conf@ratiOns created in the case of ~~eak (Cf .6,

.6a, .6 b). As soon as definitions for those Iiterals are
provided the global substitution shall generally be changed.

261

(Memorization may also lead to a large storage requirement

since there usually is a large number of semantic

substitutions.) In order to give the theorem a more

practical value it is improved as to account for such cases.

Namely, it is proposed to distribute the component

semantic substitutions over the program instead of storing

its global result. The idea is formalized as follows.

As previously, it is assumed that sem. P. A ❑ {~} and P =

PA’. From the definition of serm there exists a S.C.S. for A

determined by P:

stk = (P, ❑, On, Cin) ... (Pz, 62, e2, Ci2) (Pl, A, id, &)

where %n ❑ (3 and ~k = Ak. t?k.1, k = ~, n.

Let us also assume that Cij = Cik => j ❑ k, for j, k = 2, n,

and let PA” ~ 6). P where ~. P is defined as follows:

0. P ~ [AZ. Ci2/ Ci2, An. Cin/ Cin]. P

Then the following theorem holds:

Theorem 2B Data Structure Propagation

sem. P. A ❑ sem. (f3. P). A

Proof. The theorem is a consequence of the fact that if

unif(A, H) = A E Subs then there also is unif(A, A. H) = A,

The S.C.S. for A as determined by r3. P is:

stk’U ❑

(P”, ❑, en, An. Ci.)...(P2”, 52, 92, A2. Ci2) (Pl”, A, id, e)

u

The theorem generalizes for ,4’ = 9’. A in a natural way. [t is

enough to repeat arguments from the proof of the

memorization theorem to obtain the following corollary.

Corollary

sem. P. A’ ❑ sem. (9. p), A’

This CoroHarY accounts for the so called forward data
structure propagation since the substitutions generated in,

say, k-th configuration have no effect on an i-th

configuration where i < k, but can have it on any I-th

configuration where I > k. This situation can be compared

‘to an inference of the admissible data types (represented

as data structures) where the types carried by a call filter

the types of the ~rocedure. (We return to the issue of

inferencing data types in the sequel.) Moreover, the

unification mechanism of variable binding has a property of

substituting variables backwards. It is known in Prolog

programming under the name Iogioaf var%bh?. We are

going to use this unique property in the fmr’dmomirrg

theorem which accounts for bi.xkward data structure

propagation. Before we embark on that theorem two

additional notions are introduced.

Definition 4 Deterministic Procedure

A clause C ❑ mk-Cla(H, B) E P is called a deterministic

procedure in a program P iff

V (C’ = mk-Cla(Hl, B!) E p) (name. H, = name. H => c, = C)

Definition 5 Deterministic Call

A deterministic ca/t in a procedure C ❑ mk-Cla(H, B) c P is

a literal A such that A E B and there exists a deterministic

procedure C’ c P such that C’ = mk-Cla(H’, B’) where name.

H’ = name. A,

Theorem 3 Backward DS Propagation

Let P = P’ and Ak be a deterministic call in a procedure Ci =

mk-Cla(Ni, Bi) c P where Bi = Al ... AkAk+l ... Am and let Cj

= mk-Cia(Hj, Bj), i # j, be the corresponding deterministic

procedure. If Ci is replaced by the clause

Ci’ ❑ 8A. mk-Cla(Hi, Bi’)

where

~A.Ak ❑ 9A. Hi

and

~’ = Al ... 13jAk+l ... Am

then the semantics of any literal A determined by P’ = C, ...

Ci ,.. Cn is equal with the semantics determined by P’” ❑ Cl

... Ci’ ... c“

Proof. The proof follows immediately from the definition of

semantics and S,C.S.

c1

We have chosen P = P’ and not removed Cj from the

program in order to point out that P’” is now eligible for

pruning. Let us also notice that since Cj has not been

removed the semantics of any literal determined by PI!! is

the same as determined by P.

Definition 6 Partia[Evaluation

The introduced transformations: pruning, forward data

structure propagation and backward data structure

propagation are called the partial evaluation

transformations.

6.0 IMPLEMENTATION

The specification of the abstract Prolog machine is directly

implementable in, for example, Lisp. One can just compile it

i(NO Lisp in an “off the cuff” manner, or use a Lisp compiler

translating a subset of Mets-lV into Lisp [Ollongren 80].

For the details of the first implementation see [Komorowski

81 a]. However, since we do not refine this specification,

such implementations must be inefficient (there is no

provision for, eg structure-sharing [Boyer and Moore 72])

and they are not well-integrated into a programming

environment. Therefore, it is preferred to overcome these

drawbacks, even for the price of a very formal strictness

of an implementation.

Let us also note that the USA “buiki-on-iop” approach to

an implementatiorl of an embedded system - known from

Lisp or Prolog experience . is not good either. H also partly
cuts an access to the programming environment and

severely worsens the efficiency because of a double

interpretation.

There is, however, a possibility to directly implement the

specified ~xtensions in a Prolog interpreter provided a

convenient access to its source. The Qlog system
[Komorowski 79, 80, 81] (see also the appendices.), which

is an advanced programming environment for Prolog in Lisp,

makes an introduction of the specified extensions rwther

26?

straightforward. The basic extension to the Lisp code of

the Prolog interpreter requires just two lines of code and

the other parts which implement storage of a transformed

program, an interface to the user, the opening theorem,

etc, take less than 50 lines. In other implementations of

Prolog such changes are usually impossible because the

source code is either unavailable cr written in a language

which discourages any experiments with the source. The

price to pay is that it is impossible to formally prove the

correctness of such an implementation, since the Qlog

system implements a Prolog machine different from the

specified one.

Finally, we note that two very characteristic properties of

Prolog - unification and backtracking - significantly

contribute to the relative ease of defining and

implementing a partial evaluator.

Unification offers two things, One is the ability of an

errorless handling of uninstantiated variables (in other

languages one would say unbound), the other is the

possibility of substituting such variables later in the

computation, (known as the logical variable).

One can also add here that due to the weak-typing of

unification there are no constraints on the type a vat iable

can accept. It contributes to a worse efficiency, but it also

provides a greater flexibility of a program, which is

especially important in the development phase. And

eventually, it is the unification based binding mechanism

which makes it possible to define forward and backward

data structure propagation.

7.0 SAMPLES OF PARTIAL EVALUATIONS

III this chapter we present samples of interactive sessions

with a partial evaluation system, l“hese are excerpts from

script files. The user’s input is written in bold print and the

comments added later to the files are written in italics. The

main feature of the partial evaluation system is that it

appears to the user as the regular interpreter.

7.1 Open-macro Example

In the following example the data structure propagation is

performed by an application of the opening theorem.

The procedure arch checks if its argument is an arch. As a

result of providing data access procedures, the Mitislly

generic type procedure arch is specialized to a spe~i?ic

abstract data type. First, the procm:!wes are pretty
pr~!~ted, (h~n~e t~~e abbreviation pp),

15_PP ARCH

([ARCH :X]

(PIER :U)

(ARCHITRAVE :V)

(PIER :W)
(ON :U :V)

(ON :W :V)

(TOP :X :V)

(LEFT :X :U)

(RIGHT :X :W))

ARCH

1 t3+PP RIGHT

([RIGHT (A :Pl :AR fP2) :P2])

RIGHT

17_PP LEFT

([LEFT (A :Pl :AR :!=’2) :Pl])

LEFT

18_PP TOP

([TOP (A :Pl :AR :P2) :AR])

LEFT

The ca!l is:

19 (ARCH :Z)

Pruiing...

([RIGHT :X :W])

([LEFT :X :U])
([TOP :X W])

([ARCH :X]

(PIER :U)
(ARCHITRAVE :V)

(PIER :w)

(ON :U :V)

(ON :W :V)

(TOP :X :V)

(LEFT :X :U)

(R!GHT :X :W))

Pruning has no effect, nor wi!l the forward propagaflon

have

should I propagate data structures? ... Yes

(ERIGHT (a :PI :ar :p2) :P2])
([LEFT (a :pl :ar :p2) :pl])

([TOP (a :p”i jar :P2) :ar])

([ARCH :z]

(PIER ,u)

(ARCHITFMVE :V)

(PIER :W)

(ON :U :V)

(ON ;W iv)

(TOP :2 :V)

(LEFT :2 :U)

(RIGHT :Z :W))

More? Yes

FAILURE

Tha $o?WSFd data structure propagation gives no

interesting result since the top-level restriction is very

weak: it is a variable.

263

On the other hand an application of the opening of the

deterministic calls to the right, left, and fop procedures

results in this program:

([ARCH (a:pl :ar:p2)]
(PIER :pl)

(ARCHITRAVE :ar)

(PIER :P2)

(ON:PI :ar)

(ON :P2 :ar))

Although the opening in the case of Prolog partial

evakration seems similar to the opening in the regular

compilers, it is in fact more effective than, for example, in

Interlisp [Teitelman 78] or Prolog DEC1 O [Pereira 78]. It

flattens ‘the hierarchy of procedure calls and, this is

unique, it lifts to a higher level the data type checks of

the opened procedure. Thus the efficiency benefit has two

sources. Moreover, in this way the data structures are

inference from lower-level procedures. The opening and

forward propagation are an alternative to declarations in

weak-typed language with a pattern-matching variable

binding.

7.2 Gem-plus Example Revisited

One more transformation can be performed on the example

introduced in Chapter 2.0: the opening of the
deterministic calls. The result is:

([GEN-PLLJS (INTEGER . :X) (INTEGER . :Y) (integer . :res)]

(IS :RES (IPLUS :X :Y)))

The opening of the call to ACT is essential here.

Consequently, (integer . :res) is propagated up to the top

call and the type of the result can be determined. One can

repeat here the same comment as in the above example on

the arch procedure.

7.3 A Large Example

A test on a medium size Prolog program which was a part of

the author’s master thesis [Komorowski 76] has been

performed. The program implements a QA system with an

interface in a natural-like language. It accepts input about
family relationships. A sample session can be as follows:

>klenry is the father of Jan.

OK, continue.,.

>Who is a grandfather of Jan?

A grand~ather of Jan is... George.

>ViO!ette is the mother of Jan.

OK, continue...

>Who is a daughter-in-law of George?

A daughter-in-law of George is... Violette.

...

The system has 56 procedures of 93 clauses where 10
procedures process input and are common for both

updating and querying. Three experiments have been

performed. The first one has been an extraction of this

part of the code which is responsible for querying, the

second one - for updating, and the last one has been an

unrestricted partial evaluation of the entire program.

According to the expectations, the first partial evaluation

has produced a program of 53 procedures where in total

11 clauses have been removed. It is a result comparable

to a manual extraction which, although possible, is almost

always erroneous. Above that, two procedures have been

found deterministic and simplified.

The second partial evaluation has given a program

consisting of 32 procedures where 34 clauses have been

removed and six deterministic calls have been found.

The third resuit is rather surprising. The partial evaluation

has found some clauses never used by the system which

were left in the file by mistake and were the dead-code

indeecl. Moreover, it actually has improved the hand-coded

program! Eight deterministic calls have been found and

simplified. The performed simplifications are in fact a good

practice of an experienced Prolog programmer who prefers

unification to a procedure call.

Comments on the implementation

Ease of implementation: The emulation of partial

evaluation in the Qlog system requires some knowiedge

about the internal structures of the interpreter as to how

and where make the incisions. It is a certain disadvantage,

However, it is still a conceivable task even for a user

unacquainted with the interpreter, since an access to a

Lisp programming environment is provided.

A significant advantage of the emulation approach is the

access to the internal structures of Qlog. For example, one

can separate variable names from their bindings, change

user’s interface, or introduce other modifications in the

standard interpreter. All that is a practice in Lisp/Qlog but

unknown or rather hardly possible in other implementations

of Prologt

Integration in a programming environment: The emulation

is also advantageous with respect to the integration in a
programming environment. In fact, it is the very same

interpreter which after a few extensions also acts as a

partial evaluator. I-bus all the programmer tools which are

available for a user of the Qlog interpreter can serve a

user of the partial evaluator (eg break, trace, editor,

file-librarian, etc). This is basically the same principle as

was used to obtain the Qlog programming environment from

an existing Lisp’s [Komorowski 81].

8,0
REPRESENTING KNOWLEDGE ABOUT PROGRAMS

A Prolog program can be seen as a specification of some

rules, and a Prolog interpreter - as an interpreter of a rule

based system. This observation suggests that research in

rule-based systems can contribute to research concerned

with Prolog, Our special interest is in the so called

meta-rules systems where meta-rules aim at improving the

efficiency of execution eg [Davis 80], [Gallaire 80],

[Dincbas 80].

264

Unfortunately, the limit of the space makes it impossible to

elaborate this issue. Let us only mention that one can write

rules (which are Prolog programs themselves) which can

control execution. Such rules are generalizations of the

recommendation lists (cf [Sussman 72]). It is also possible

to write rules which can perform transformations of

programs in the partial evaluation style, ie transformations

which use current restrictions. More details can be found

in [Komorowski 81 a].

It is believed that such an approach to improved efficiency

ia better than annotations of Prolog programs used in

lC-Prolog [Clark 80]. The meta-level approach to regular

interpretation and partial evaluation has the following

advantages:

- it provides a clear, unannotated representation of

object programs;

- it provides a better modulark!ation of programs

and a means to express their static and dynamic

optimization;

- it amplifies the power of search by using

inference for controlling it, and thus helps to

control the exponential explosion;

- it is perspicuous in that it allows one to study

object level and strategic meta-level

programming separately.

CONCLUSIONS

In the introduction it was pointed out that partial

evaluation can be considered to be a kind of a

source-to-source compilation. However, the presented

formalization, and even more the implementation, show that

it is rather a case of a modified interpretation. This

observation was first made by Futamura and our

experiment confirms it strongly. Ershov and Itkin also

obtain a similar result, however for a much weaker

language.

The introduction of the implementation-oriented

specification of Prolog was a software engineering

requirement since the existing semantics of Prolog have

been either not implementation-oriented and idealized

[Kowalski 74], [Ernden 76], ~Apt 81], or unacceptable for a

formal treatment (ie machine implementations of the

language). However, the logic-related semantics of logic

programming provide several useful paradigms which can

help in a better understanding of the foundations and laws

of partial evaluation.

Syntax and Semantics. The syntax and semantics are

very &trong!y correlated in logic. in the extreme ca.ce of a

complete system, the syntactic consequence is equivalent

with the semantic one. Thanks to this relation any

syntactic change in a program, ie. theory, can have an

immediate and predictable result in the semantics.

First Order Logic is monotonic. If, in some axiom of a
theory, a term is substituted for a variable, then the new

theory has a non-greater set of consequences. It is

stressed that any term, not only a constant, can be

substituted. This fact provides a kind of a ‘ismooth”

reduction of the set of the consequences. Speaking
informally, there is a lattiCe of terms ordered by

specificity. For example, :x, (a :Y), (a :P7 :ar7 SF@, ... or

(a :x), (a (r :x7 :x.z)), (a (r (T7 :Y7)(ZZ ZYZ))), . . . m
the model-theoretic sense such substitutions lead to a

non-greater number of models, and can often give a Smaller

one. This property legitimates the data structure

propagation theorems and providea a generalization of the

definition of partial evaluation patterned on Kleene’s

theorem. The refinement allows arbitrary terms, not only

constants, to carry the restrictions. Partial evaluation, thus

defined, operates on abstract data types represented by

terms.

The pruning theorem can be justified by the following fact.

If a set of axioms and a restriction on a class of theorems

to be proved from that set are given, then the irrelevant

axioms can be pruned; where irrelevant means: not

appearing in the syntactic proof.

In summary, partial evaluation aims at a better efficiency

by an elimination of axioms which are irrelevant to a

restricted ttieory, and by specialization of axioms if their

restricted domain can be determined. The efficiency is

improved after pa(tial evaluation because fewer axioms

are tried while searching for a proof, and because the

instantiated axioins contribute to faster unification. At the

same time the partial evaluation transformations are proofs

about possible data types represented as data structures

and acceptable by a theory (ie program).

FUTURE RESEARCH

Some directions of future research following up issues

addressed in this paper are suggested here.

The standard specification of Prolog. Since there has

been no mat!lematically acceptable and

implementation-oriented definition of the Prolog language,

we propose the definition introduced here to be

established as the standard.

Further development of the specification. The extensions

to the definition which account for side-effect,

input/output and other system procedures are

straightforward. In particular, the specification of the so

called cut k a matter of tagging e configuration which

introduces a body containing a cut. Then an execution of a

art is merely a replacement of all program coordinates in

the configurations of the stack by the empty clause un~il

a tag is found [searching from the growing end of the

stack). This specification may be further refined to include

structure sharing technique [Boyer and Moore 72],

incremental indexing and other optimization. Eventually,

the specification may serve as a basis for the

development of a compiler.

F%wtia! ew?htad[on in other !snguagt?$. Although it is not

possible to directly apply the same technique to other

languages, a basis is established for the definition and

implementation of partial evaluation transformations in

other languages. It is also certain that any implementation

will require designing several tools which are granted for
free in Prolog, eg theorem proving. Probably Prolog itself

could partly support systems for other languages. The

experience from this research and from the work by Ershov

and Itkin shows that partial evaluation should be based on

an operational definition.

Problems to be solved. One would like to see better tools

for limiting the growth of a partially evaluated program. At

265

present there are only almost manual means for restraining

the growth. A promising solution is the application of

meta-rules.

Future program transformation. Partial evaluation is a

case of program transformation. It attempts to improve

efficiency of program execution by eliminating run-time

checks and performing as much computation in advance as

possible. However, it does not essentially modify

algorithms. We believe that general program transformation

systems should include partial evaluation as one of the

100Is and be accompanied by a nLlmber of other

transformations. Several optimizing transformations may

achieve better results if applied on partially evaluated

programs.

Partial and lazy evaluation. Partial and lazy evaluation

should be examined carefully. It seems that they are

related in an interesting way.

Partial evaluation and an automatic generation of

semantics-directed compilers are another promising area.

This research should be pursued very strongly.

Acknowk@aments

I have had fruitful interactions with Andrzej Blikle, Anders

Haraldsson and Erik Sandewall. I have also received helpful

suggestions from many colleagues at the Software

Syste~ms Research Center in the course of the design and

writing my thesis of which parts are included in this paper.

Dines Bjorner, Jan Maluszynski, Jorgen Fisher Nilsson,

Alexander Ollongren, Jerzy Tiuryn and Joseph Stoy have

read manuscripts of the thesis in various stages and

contributed with several comments. Gerald Jay Sussman

has encouraged me to work on partial evaluation and

provided me with a good deal of enthusiasm.

The research has been sponsored by the Swedish Board

for Techrical Development under the grant Dnr 80-3918

and by the Swedish Natural Science Research Council

under the grant F 4170-100.

APPENDIX A The Qlog Programming Environment

The Qlog programming environment is an implementation of

the Prolog language in a portable Lisp. It exists in main Lisp
dialects: Interlisp, Maclisp, and Lisp Machine Lisp.

Throughout this thesis the Interlisp [Teitelman 78] version

of Qlog is used. The Qlog interpreter is equally efficient as

the Prolog DE C- 10 interpreter. The new system provides a

unique Prolog programming environment in a class of the

host Lisp. By virtue of the implementation technique called

W.w?tional e.m.b=.rding Qlog i~herils most of the major

components of the Lisp programming environment at very

low cost, and obtains a high quality programming

environment. Some of the inherited facilities are:

breakpoints and procedure traces, editor, file librarian,

Interlisp’s spelling correction, and history list. Interfacing
the existing lnterlisp facilities to Prolog required 30 to 50

times less code than the Lisp facilities themselves require.

Some new facilities were developed, not found in any other

Prologj to provide appropriate displays in breakpoints of

the control and data in a pattern-matching, backtracking

language.

APPENDIX B The Concrete Syntax of Qlog

The concrete syntax of Qlog is written in a modified EfNF.

<Lispatom> including the special atom nil, and <Lispnumber>

are the objects defined in a host Lisp of Qlog. We leave

them undefined here. The dot usad in the definition is that

of Lisp.

<Idel>

<Ide>

<Variable>

<Ter>

<Lit>

<Head>

<Body>

<Cla>

<Pro>

::=
::=
:: ❑

✚✚✝

✚✚✝

✚✚✝

✚✚✝

✚✚✝

✚✚✝

<Lispatom>

<idel > I <Lispnumber>

:<lde>

<Variable> I <Ide> I (<ldel >. <Ter>)

(<ldal> . <Tar>)

[<ldel >. <Ter>] I (<ldel >. <Ter>)

(<Lit>) I (<Lit> . <Body>)
(<Head> . <Body>)

{< Cla>}

Mote. The “[” and “]” are a syntactical sugar used in the

Qlog-lnterlisp prstty printer. Both representations are

equal to the standard input routines. In other Lisps those

brackets might be “<” and “>”, respectively. The “{” and

}
,, ,1 denotes a set.

REFERENCES

[Arsac 79] J J Arsac, Syntactic Source to Source

Transforms and Program Manipulation,

Communications of the ACM, Vol 22, No 1, January

1979.

[Apt 81] K Apt, M H Emden, Contributions to the Theory

of Logic Programming, Erasmus University, The

Netherlands, 1981.

[Beckman 76] L Beckman, A Haraldsson, ~ C%karsson,

E Sandewall, A Partial Evaluator and its Use as a

Programming Tool, Artificial Intelligence Journal 7,

1976, pp. 319-367.

~Eijorner and Jones 78] D Bjorner, C B Jones, eds, The

Vienna Development Wlethod: The Me*a-Language,

Lecture Notes in Computer Science, Vol 61,

Springer-Verlag, 1978.

[Boyer and Moore 72] R S Moore, J S Moore The

Sharing of Structure in Theorem Proving

Programs, in Machine Intelligence 7, Meltzer and

Michie, eds, Edinburgh 1972.

[Burstall 78] R M Burstall, M S Feather, Program

Development by Transformations: An Overviaw,

Toulouse .CREST Coursa of Programming, Toulouse,

1978.
[Cheatham 79] “i’ Cheatham, G Holloway, J Townley,

Symbolic Evaluation and the Analysis of

Programsj IEEE Transactions on Software

Engineering, Vol SE-5, No ~, July 1979.
[C!arl< 80j K Clark, F McCabe, lC-Pt@og - Language

Features, in: [Tirnlund 80].

[Davis 80] R Davis, IVieta-rutes: Reasoning about

Control, Artificial Inte!licrence Journal Vol 15, 1$380.

[Dincbas 80] M Dincbas, The METALOG Problem Solving

System: An Informal Presentation, in: [Tarnlund

80].

[Emanuelson 80] P Emanuelson, Performance

enhancement ill e. well-structured

pattern-ma fcher through partial evacuation, Ph.D.

‘Thesis, Linkoping University, 1980.

266

[Emderr 76] M V Emden, R Kowalski, The Semantics of

Predicate Logic as a Programming Language, J of

ACM, Vol 23, No 4, October 1976.

[Ershov 77] A P Ershov, Correctness of Mixed

Computation in Algo!-like Programs, Proceedings

of the 6th MFCS Symposium, in: Lecture Notes in

Computer Science, Vo153, Springer-Verlag, 1977.

[Ershov 80] A P Ershov, Mixed Computation: Potential

Applications and Problems for Study, Computing

Center, Siberian Branch, USSR Ac. Sci. Novosibirsk

630090, USSR.

[Ershov and Itkin 77] A P Ershov, V E Itkin, Corectrress

of Mixe~ Computation in an Algol-like Pro9rams,

in Lecture Notes in Computer Science, VOI 53,

Springer Veriag, 1977.

[Futarnura 71] Y Futamura, Partial Evaluation of

Computer Programs: An Approach to A

Compiler-compiler, J. Inst. Electronics and

Communication Engineers, 1971.

[Gallaire 80] H Gallaire, C Lasserre, A Control

Metalanguage for Logic Programming, in:

[Tarnlund 80].

[Gordon 79]M J C Gordon, T/re Denotationa/ Description

of Programming Languages, An Introduction,

Springer-Verlag, 1979.

[Haraldsson 74] A Haraldsson, PCDB - A Procedure

Generator for A Predicate CsdcuAJs Data Base,

IFIP-74 Information Processing, North-Holland,

1974.

[Haraldsson 77] A Haraldsson, A Program Manipulation

System Based on Partial Evaluation, Ph.D. Thesis,

Linkoping University, Sweden 1977.

[Haraldsson 80] A Haraldsson, Experiences from a

program manipulation system, Linkoping University,

July 1980, LiTH-MAT-R-80-24.

[Henhapl 78]W Henhapl, C B Jones, A Forma/Definition

of Algol-60 as described in the modified Report,

in [Bjorner and Jones 78]

[Jones 78]C B Jones, The Meta-language: Preference

Manua/, in: [Bjorner and Jones 78].

[Kieburtz 81] R Kieburtz, J Shultis, Transformations of

FP Program Schemes, in: Invited Papers,

Symposium on Functional Languages and Computer

Architecture, Chalmers University of Technology,

Gothenburg, 1981.

[Kieene 52] S C Kleene, Introduction to

Metamathematics, Van Nostrand, New York 1952.

[Komorowski 76] H J Komorowski, Familia - A

Question-Answering System in Prolog with

Natural Language Interface, M Sc Thesis,

University of Warsaw, 1976. In Polish.

[Komorowski” 79] H J Komorowski, Q/og Interactive

Programming Environment - The Experience form

Embedding A Generalized Prolog in Inter!isp,

paper read at lntornational Summer Seminar on

Artificial Intelligence, Dubrovnik, August 1979. Also,

Informatics Laboratory, Linkoping University,
IJTH-MAT-R-79-I 9.

[Komorowski 80] H J Komorowski, Q/og - The Software

for Prolog and Logic Programming, in: ~arnlund

80].

[Komorowski 81] H J Komorowski, J W Goodwin,

Embedding Prolog in Lksp: An Example of A Lisp

Craft Technique, SSRC, Linkdping University, March

1$381, LiTH-MAT-R-81 -2. Paper read at Symposium
on Functional Programming Languages and Computer

Architecture in Gothenburg, June 1981, Sweden.

[Komorowski 81a] H J Komcwowski, A Specification of an

Abstract Prolog Machine and its Application to

Partial Evaluation, Ph.D. thesis no 69, Linkoping

University, Sweden 1981.

[Kowelski 74] R Kowalski, Predicate Logic as a

Programming Language, IFIP 74 Information

Processing, North-Holland 1974.

[Loveman 77] D B Loveman, Program Improvement by

Source to Source Transformation, Journal of the

ACM, Vol 24, No 1, January 1977.

[Martelli 76] A Martelli, U Montanari, Unification in Linear

Time and Space: A Structured Presentation,

Consiglio Nazlonale delle Recierche, Istituto di

Elaborazione dells Irrformazione, Nota Interns

B76-16, Piss, 1976.

[McCarthy 66] J McCarthy et al, Lisp 1.5 Programmer’s
Manual, MIT Press, 1966.

[Ollongren 80] A Olloncrren, On the Implemerrtafion of

Parts of /Vlefa-W in Lisp, SSRC, Linkoping

University, LiTH-MAT-R-81 -7, April 1981.

[Ostrovsky 80] B N Ostrovsky, Obtaining Language

Oriented Parser Systematically by Means of

Mixed Computation, in: Translation and Program

Models, Ed. I V Pottosin, Computing Center,

Novosibirsk, 69-80. In Russian.

[Pereira 78] L M Pereira et al, User’s Guide to

DECsystem- 10 Prolog, September 1978.

[Robinson 65] J A Robinson, A Machine-Oriented Logic

Based on fhe Resolution Principle, Journal of ACM

VOI 12, NO 1, 1965.

[Sandewall 71] E Sandewall, A Programming Tr?o/ for

Management of a Predicate Calculus-Orienfed

Data Base, Proceedings of the 2nd IJCAI, London,

1971.

[Standish 76] T A Standish, An Example of Program
Improvemmrt Using Source-to-Source

Trarrsforrnafiorm, Computer Science Conference,

Anaheim, February 1976.

[Stoy 77] J E Stoy, Denotational Semantics: The Scott-

Strachey Approach to Programming Language

Theory, MIT Press, 1977.

[Sussman 72] G J Sussman, T Winograd, E Charniak,

Micro- Planner Reference Manual, Al Memo 203a,

Al Lab, MiT, 1971.

[Teitelman 78] W Teitelman, !ntcr\isp Referance Manual,

Xerox, PARC, 1978.

~arnlund 80], S-A Tirnlund, Proceedings of the Logic

Programming Workshop, John von Neumann

Society, Debrecen, Hungary, 1980.

II

267

