
On the Expressive Power of Query Languages

for Relational Databases

Eric C. Cooper

Computer Science Division - EECS
University of California

Berkeley, CA 94720

ABSTRACT

The query languages used in relational database systems are a
special class of programming languages. The majority, based on
first-order logic, lend themselves to analysis using formal methods.
Fhst, we provide a definition of relational query languages and their
expressive power. We prove some general results and show that
only a proper subset of first-order logic formulas may be used as a
practical query language. We characterize this subset in both
semantic and syntactic terms. We then analyze the expressive

power of several real query languages, including languages based on
the relational calculus, languages with set operators and aggregate
functions, and procedural query languages.

Since the partial ordering “is more expressive than” determines
a lattice among relational query languages, the results of the paper
may be viewed as determining some of the structure of this lattice.
We conclude with some applications of the results to the optimiza-
tion problem for query processing.

1. Introduction

There have been several studies of the expressive power of
relational query languages. Codd [C21 proved the equivalence of
relational algebra and relational calculus, and suggested that
languages with thk degree of expressive power be termed complete.

Aho and Unman [AU] showed the existence of a computable
query (the transitive closure of a relation) which relational algebra
is incapable of expressing, and proposed an extension of relational
algebra with a least fixed point operator.

Chandra and Horel [CHI redefined complete to mean capable
of expressing all computable queries. They introduced a complete

query language QL, which is an extension of relational algebra with
iterative and conditional capabilities.

In this paper, we introduce a formal method of comparing the
expressive power of query languages. We define a partial ordering
by expressive power that makes the set of query languages into a
lattice. The results cited above determine two points in this lattice:
one point corresponds to languages equivalent to relational algebra,
and the other corresponds to complete languages.

The results of this paper establish additional lattice points
corresponding to languages based on the relational calculus,
languages with set operators and aggregate functions, and pro-
cedural query languages.

2. Query languages and expressive power

We adopt the formal definitions of relational database, query,
and query language essentially as stated in [Cl+].

Definition 2.1.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

The universe is the set of natural numbers, denoted N.

A re/ation of rank m is a finite set R C Nm.

Let n = (n J,..., rr~). A database of type n is a set of relations
(R1,...,Rk), such that for each i, R, is of rank n.

The set of all databases of type n will be denoted DB” .

A query of type n is a partial function q such that for each

DB ~ DB”, q (DB) is either undefined or else a finite relation
of finite rank.

A query /anguage of type n is a set L of expressions and a
meaning function K such that for each c ~ L, 1A(e) is a query
of type n.

A sublanguage of (L, p) is a query language (Lo, ~ ~) with
LOCLandpO=~~LO.

We can now formalize the notion of expressive power.

Definition 2.2.

(1) The expressive power of L is the set w [L II = [w(e) I e ~ L].

(2) L, is e9uivalenc to L 2 (L I = L 2) iff M IIJL J = P2[L 21.

(3) L I is less powerjld thm L 2 (L, < L J ifl~ IL ,[L J CW2[L ~l.

(4) L,< L2iffwJLJGwJL21.

The next result is simple but useful.

Theorem 2.3. Suppose L 1< L j. Then them exists a sublanguage
LOCLzsuch that LO=L1.

Proofi Let Lo= AC; ’WJLII. •l

3. Complete languages

The next definition is similar to one in [CH].

Dethrition 3.1. Let (1,, ~) be a query language. Then L is:

(1)

(2)

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy

otherwise, or to repubfish, requires a fee and/or specific permission.

bounded above iff for” every e 6 L, p(e) is computable.

bounded below iff for every computable query q, there exists
an expression e ~ L such that P(e) = q.

@ 1982 ACM 0-89791-065-6/82/001/0361 $00.75

361

http://crossmark.crossref.org/dialog/?doi=10.1145%2F582153.582190&domain=pdf&date_stamp=1982-01-25

(3) complete iff it is bounded above and below.

The following theorem follows immediately.

Theorem 3.2. If L 1and L z are complete, then L,= L*.

Since it is proved in [CH] that complete languages exist, let Q

denote such a query language. The next result is an immediate
consequence of the definition.

Theorem 3.3.

(1) L I is bounded above iff L1 < Q.

(’2) L z is bounded below iff Q < L*.

The final result of this section is analogous to the unsolvabil-

ity of the halting problem.

Theorem 3.4. If L > Q, then no algorithm exists which can
decide for all expressions e EL whether or not the induced query
w(e) is a total function.

4. RC-based languages

In thk section, we study general properties of query languages

based on the relational calculus of [Cl].

Definition 4.1. An RC-based language is a first-order language L
whose predicate symbols include the relations R,,.,. ,Rk.

In practice, L will also include other functions and predicates,
such as arithmetic operations and comparisons, whose usual
interpretation is clear. Therefore, a database DB determines a
unique structure for L, which we also refer to as DB.

Definition 4.2. Let @ be a wff of L with free variables xl,...,x~.
For each database DB, define p (@J) to be the set
{X,,...,Xm I O(XA...,XJ) ‘DE) of elements of N m which satisfy @ in
the structure DB.

w(4) is thus a function q (DB) defined on DBn But q is not
necessarily a query, because q (DB) may not be a finite relation for
all databases DB. For example, if @ is the wff x = x, then p(0) is
the constant function q (DB) = N, and N is not a finite relation. .

One solution to this problem is to agree to call q (DB)
undefined whenever it is not a finite relation. Since a query need
only be a partial function, any RC-based language L may be
regarded as a query language L*.

Theorem 4.3. If L is an RC-based language which includes arith-
metic, then L ● > Q.

Proof A result due to Godel states that the first-order language of
arithmetic is capable of representing all recursive functions, and
hence by Church’s thesis, all computable queries. ❑

The previous theorem and Theorem 3.4 show that for an

RC-based language to be used in a real database system, not all wffs
of the first-order language may be allowed in the query language.
We now define a class of formulas, called permissible wfls, whose
induced queries may be evaluated in finite time. Because several
later theorems will make use of syntactic properties of these per-
missible wffs, the definition is rather detailed.

Definition 4.4. Let @ be a wff in prenex normal form, with matrix
in disjunctive normal form VAI# ...

!, “

(1)

(2)

(3)

(4)

A direcccorrstrairrton x isaformula R(...,x),..), where R isa
relation.

An indirect constraint on x is a formula x = t, where t is a
term and all variables occurring in t are directly constrained

(see below).

A free or existentially quantified variable x is constrained iff in
every dkjunct A+ ,j in which x occurs, some I#J~ is a dkect or

indirect constraint on x, The total conslrairrr on x is the dis-
junction of these constraints.

A universali y quantified variable x is constrained iff in some
disjunct A@~ in which x occurs, every @ij in which x occurs

J

(5)

is the negation of a direct or indhect constraint on x. The
toral constraint on x is the disjunction of these (positive) con-
straints.

~ is permissible iff every variable in @ is constrained (or else

appears free in a set term--see Definition 5.3).

This definition gives a syntactic characterization of the seman-
tic notion of safe formtda in [U], since the truth or falsehood of a
permissible wff @ may be determined from the truth values of a
finite number of instances of the matrix of @. More specifically,
suppose @ is

(Q MJ... (QmXJIJ(Xl,Xm,Xm+ l,m,xJ...,xJ

Let Dj be the finite domain which satisfies the total constraint on
xi. Then the truth of @ depends only onthe truth of $ in the finite
universe Dlx . . xDn.

Theorem 4.5. If @ is a permissible wff, then the query p(+) is a
total function.

Proof With the notation as above, we have

(Xm+l,...,Xn I @(Xm+l,...,Xn)] GDm+lX . . . XDn,

which is finite. ❑

The following lemma will be useful later.

Lemma 4.6. Let (Vy ~)... (VyJ@ be a permissible wff. Then there
exist permissible wffs @j and 1$2 in which y ~,... ,.Yk occur free, such
that (Vyl)... (VjJk)~ is equivalent to +] ~ @z.

Proof We prove the result only when 1#1is quantifier-free; the gen-
eral case follows easily by induction.

Let P. be the conjunction of the total constraints in @ on the

Yi, and define p“ inductively to be the conjunction of the total con-
straints in # on the variables which occur in Pn_l. Clearly there
exists some n such that P._l is equivalent to Pn, Let @* be
PO A.. . APfl_l, and let @z be @* A*. Then @~* @~ is equivalent
to 1$, + ~, which is equivalent to (Vy J -O(Vyk)$ by the remarks
following Definition 4.4. ❑

5. Specific RC-based languages

In this section, several RC-based languages will be presented.
The definitions will actually specify only the underlying first-order
language; in each case, the corresponding query language is formed
from the set of permissible wffs.

We first define the language RC, an extended domain rela-
tional calculus in the terminology of [U].

Definition 5.1. RC is the first-order language of arithmetic

(+, , =, <) together with constant symbols 0,1,2,... and reration
symbols Rl,...,Rk ,

It also convenient at this point to define a family of sub-
languages of RC.

Definition 5.2. For n >0, RC. consists of all wffs of RC with no
more than n blocks of universal quantifiers in their prenex normal
forms. (A block is a string of adjacent quantifiers of the same
type.)

We note that RCO consists of the existential wffs of RC.

Also, for m < n we have RCm CRC., and thus RC = ~ RCn.
“=0

At this point, we wish to introduce the language QUEL of

[HsW into our framework. In order to do so, we assume that
QUEL consists only of retrieve statements from relations over N,
so that it conforms to the definition of query language in 2.1. Also,
we restrict the arithmetic of QUEL to addition and multiplication,
so that it will be comparable to RC. Finally, we give QUEL a pro.
duct aggregate, analogous to sum, so that the aggregate functions
are consistent with the arithmetic ones.

It is proved in [U] that pure domain relational calculus is
equivalent to pure tuple relational calculus. The same proof shows,

362

mutatis mutandis, the equivalence of QUEL as defined in [HSW]
with the version we now define. We adopt the more set-theoretical
notation of [CB].

Definition 5.3.

(1) If ~ is a set term of rank rr (see below), then for each
i, 1< i < n, eourst, (.S), sum, (S), and product are
aggregates of QUEL.

(2) If t is an aggregate of QUEL, then r is a term of QUEL. If t
is a term of RC, then r is a term of QUEL.

(3) If $ is an atomic formula of RC, then &J is an atomic formula
of QUEL. If S ~and S ~ are set terms of equal rank, then the
set comparison S ~= S ~is an atomic formula.

(4) If@ is an atomic formula of QUEL, then @ and W#Jare wffs
of QUEL. If @ is a wff, then 3v@ is a wff. If @l and 42 are
WKS, then ~ lV~ z and $ I A+ z are wffs.

(5) If R ia a relation of rank n, then R is a set term of rank n.
If @ is a wff with free variables Xl,...,xn, then

(xj,...,xn 14(xI,...,)))) is a set term of rank n.

Stricly speaking, QUEL is not a first-order language, since it
allows set terms. We should therefore specify how a set com-
parison is to be interpreted, This is an obvious extension of the
usual definition of interpretation in a structure, which we dkpense
with.

Note that (3) above allows only existential quantifiers to occur
in QUEL wffs. We also define a family nf sublanguages of QUEL.

Definition 5.4. For n >0, QUEL, consists of all wffs nf QUEL
with no more than n levels of nested set terms.

Thus,

(2) [R J(X)VR JY,Z)l

is a QUEL owff, while

R](x) A (y t i?z(x,y)/l{z I R~(x,y,z)) - (Z I R4x,z)}) = R5

is a QUEL2 wff.

The remarks preceding Definition 5.3 apply here: we will con-

sider the languages QUEL” defined above to be equivalent to the

corresponding languages in [HSW]. As ~tith RC, we have

QUELm CQUELn for rn < n, and QUEL = U QUELfl.

n-O

We note in passing that the occurrence of a free variable in a

set term corresponds to a by clause in [HSW].

6. The lattice determined by expressive power

Our first theorem follows directly from the definitions of the
previous section.

Theorem 6.1. RCO = QUELO

The next result is more interesting. It is true, but will not be
proved until later, that QUEL is more powerful than RC, There-
fore, by Theorem 2.3, there exists a sublanguage of QUEL which is
exactly as expressive as RC. We now characterize such a language,
which we call QUEL ‘f.

Definition 6.2,

(1) QUEL*’ consists of all wffs of QUEL which do not contain

any aggregate functions.

(2) For n >0, QUEL~’ ~ QUELfl flQUELx’.

QUELw’ does however allow set terms to be compared for
equality (whence the name.)

Theorem 6.3.

(1) For n >0, RC. = QUEL~!

(2) RC = QUEL*’

Proofi Since (1) implies (2), we prove only the former, by induc-
tion on n. For n = O, the result follows from Theorem 6,1.
Assume the result true for n–1. Let $ be a wff of RCn. It may be

written

(3 J...(3j) (V~O(Vy~)l@l@

where @ is a wff of RCn..l. Let ~’ be an equivalent QUEL~<l wff.
We now invoke Lemma 4.7 to obtain QUEL~l wffs + ~ and @J

such that (Vyl).- (VyJ$’ is equivalent to @~ * ~+. Let $’ be the
QUEL;’ Wff

(%l)oo’(+j)[(Yl,...,Ykl @I’1= lYJ*...klkl 42’)1

Then ~’ is equivalent to ~, which establishes lRCn < QUEL~!

For the other direction, let V’ be a wff of QUEL#! ~’ may be
written

where +’ is quantifier-free but may contain set term comparisons

{Y,,...A i 6;) = bh..,h I @2’)
where @~ and @~ are wffs of QUEL ~<l. Apply the inductive
hypothesis to obtain equivalent RCfl_l wffs r$I and 42; the above
set comparison is then equivalent to ~ 1- @2. Let I#Jbe the result
of substituting @J,~ @* for the original set comparison in @’. Then
the RCn wff

(*1)..(%j)(V~})...(Vy~)l#

is equivalent to $’, and the theorem is proved. ❑

Let us introduce two more QUEL sublanlguages, which we call
QUEL, countand QUEL counr,sum.

Definition 6.4.

(1) QUEL’ou”’”Um consists of all wffs of QU13L which do not con.
tain any product aggregates or set comparisons.

(2) Fnr n >0, QUELfl’”um ~ QUEL” n QUELcO””’,$wm.

(3) QUEL co””’ consists of all wffs of QUEL ‘“”{~$wm which do not
contain any sum aggregates.

(4) For n >0, QUELflU”’ ~ QUEL. n QUE.LcOu”’.

Thus, QUEL C“””’ allows only the calunt aggregate, and
QUEL”Ou”’,’um allows only tlhe count and sum aggregates.

We may use count tosimulate universal quantifiers, but nnt

vice versa, as we now show.

Theorem 6.5.

(1) For n >0, RCC < QUEL~!

(2) RC < QUELcO”n’

Proof First we show that for all n >0, RC,, < QUEL~(This
is very similar to the first part of the proof of Theorem 6.3. The

only difference is that we construct a QUEL ~’ wff of the form

(* J(3cJ)[count(ly j,...,yk I Oil) = connt((y~,...,yk I @2’))1

To show strict inequality, it suffices to let the database consist
of a single relation R of rsmk 1, and then to show that there is no
RC wff @(x) equivalent to the QUEL ~’ wff .x = count(R). Sup-
pose there exists such a @(x) in order to derive a contradiction.
Then the total constraint on x i:~ of the form

x = t(yl,...,ym) V R (x), and the total constraint on each y, is just
R (yi). We may consider tas a polynomial over N in the variables
y ,,...,yfl. Since @(x) is equivalent to x = count(R), itmust be the

case that either count (R) CR or else count(R) = r (Y 1,...,yfl) for
some y/,. ..,Y. ER. Our strategy will be to chclose an R such that
count (R) t R, and infer various properties of the polynomial r. We
will then vary R until we obtain contradictory properties of t.

First, let R = (O]. Since count(R) = 1, we must have
t (O,... ,0) = 1, which shows that t must have a constant term equal
to 1.

Now, let R = {2). Again count(R) = 1, so we must have
t(2,!,.,2) = 1. But this shows that t is identically equal to 1. This
contradiction proves the theorem. ❑

363

The language QUEL CoU”’is less powerful than QUEL couo~,s”m

Theorem 6.6.

(1) For n >0, QUEL~’ < QUEL~’,’Um

(2) QUELC”””’ < QUELtWKW~

Proof Since QUEL ~’ is a sublanguage of QUEL ~“n’,wm, we have
QUEL~’ < QUEL~’”um

To show strict inequality, we proceed as in the proof of the
previous theorem. Let the database consist of just R, as before. In

order to derive a contradiction, suppose @(x) is a QUELcOUn~ wff
coutit,stirnwff ~ = sum(R). The totalthat is equivalent to the QUELI

constraint on x is again x = r(y ~,...,yfl) V R (x), but here t may
involve count (R). We therefore consider t as a polynomial over N
in the variables y 1,... ,.JJnand count(R).

First, let R = (m+l, m+2,...,2m]. We have

~ m(m+l)
sum(R) = m +—

2

and so

mz< sum(R) < 2m2

Now count(R) = m, and for each y, we have m < y, < 2m, so by
varying m we can conclude that:

(1) tis of degree 2,

(2) c has only one term of degree 2, and its coefficient is 1.

Now, let p be a prime, and let R = {p ,2p ,,..,p?. We see that
p divides sum(R), and p divides all the variables occurring in r

(including count (R)). We conclude that p divides the constant
term of t. But thk is true for all primes p, so the constant term
must be 0.

Next, let R = {1,2}. Since sum(R) = 3, t is forced to have
either one or two linear terms.

Finally, let R = {2,3]. We see that f is always greater than 5,
which is a contradiction. Therefore no such @(x) exists. ❑

The language QUELcOun’,s”m is in turn less powerful than QUEL.

Theorem 6.7.

(1) For n >0, QuEL~C,’V~ < QUELfl.

(2) QUEL’Ou”@m < QUEL

Proof Since QUEL ~’,s”m is a sublanguage of QUEL., we have
QUEL~’,’”” < QUELn.

To show strict inequality, we proceed as before. Suppose
q5(x) is a QUEL ‘“””’SUM wff that is equivalent to the QUEL 1 wff
x = product(R). The total constraint on x is

x = t(.y ~,...,).) V R (x), where t is a polynomial over N in the
variables y ~,...,yn,count (R), and sum(R).

Let R = {m+l,...,2m], so that product(R) > mm. Now
count(R) = m, sum(R) < 2m2, and for eachy, we havey, < 2m.
Itfollows that for sufficiently large m, t < (2m~ ‘+1, where k is
the degree of t. But m may be chosen large enough so that
(2m ? ‘+1 < m‘, which yields the desired contradiction. ❑

The final theorem of this section shows that QUEL is not
complete.

Theorem 6.8. QUEL < Q

Proof If QUEL > Q, then by Theorem 3,4 the problem of decid-
ing whether a QUEL query is a total function would be unsolvable.
But this contradicts Theorem 4.5. ❑

The above proof is non-constructive, because we did not exhibit a
particular query which QUEL is incapable of expressing. A con-
structive proof. analogous to the proof in [AU] of the impossibility
of expressing the transitive closure query in relational algebra,
would provide a tighter upper bound than just Q on the expressive
power of QUEL.

The results of thk section may be summarized as follows:

RC = QUELX’ < QUEL co””~ c QUEL count,’”” < QUEL < Q

RC “ = QUEL~r < QUEL ~r < QUEL~rJum < QUEL, ~

RC ~ = QUEL & = QUEL&””’ == QUELfOu”’,su” == QUELO

7. Procedural query languages

In section 6, it was shown that various extensions of RC by

aggregate functions and set operations were all strictly less powerful
than the complete language Q, It follows from Theorem 2.3 that
each of these QUEL-like languages may be translated into a sub-
language of Q. This translation requires a more precise
specification of Q than that provided by Theorem 3.2. For
instance, by Theorem 4.3 we might take Q to be the set of all (not

just permissible) wffs in an RC-based language with arithmetic,

In this section, we will adopt a procedural definition for Q,
and we will be interested in the procedural sublanguages
corresponding to QUEL-like languages.

Several complete procedural languages have appeared in the
literature ([AU], [CB], [CH]). We base our specification of Q on
the language introduced in [AU, ii 7].

Definition 7.1. The following are programs of Q:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

x := t, where x is an individual variable and t is a term of
RC.

R := S, where R is a relation variable and S is a relation
variable or constant.

)
insert ((to,..., t”),R) and delete((fl,..., tn ,R), where tl,...,tnare
terms of RC and R is a relation variab e of rank n.

begin Pl; . ~ . ;P” end, where P1,...,P. are programs of Q.

if q$ then PJ else P* where @ is a qua~tifier-free wff of RC
and P, and P2 are programs of Q.

‘or (x~x.)in ‘.do’ where x ~,... ,x. are individual vari-
ables, R is a relatlon variable of rank n, and P is a program
of Q.

while I#Jdo P, where 1#1is a quantifier-free wff of RC and P is
a program of Q.

Unlike the language of [AU, $ 7], Q allows both individual

variables and relation variables to change during a for loop. We
must therefore specify the semantics of (6) carefully. For instance,
we wish the following program to compute {sum(R)} in the rela-
tion variable S.

begin
s := o;
s := 0;
for (x) in R do

s := S+x;
insert ((s),S)

end

This means that the program for (x) in R do P must execute P
successively for each element of R. However, the result may be
dependent on the order in which this is done, as is the case with
the following program.

begin
n := O;
s := 0;
for (x) in R do

if n = O then begin
insert ((n), S);
n ;= 1

end
end

364

One solution would be to define the effect of for x) in R do P to
ibe the union of the effects of serial iteration over a 1 possible order-

ings of R. Another approach is to specify that the meaning of
order-dependent programs is undefined. This simpler interpretation
is sufficient for our purposes.

The query language Q consists of the programs together with
the meaning function determined by the semantics of the language.
Since rule (7) gives Q the power of a Turing machine, we have the
following result.

Theorem 7.2. Q is complete.

Let us now define a sublanguage of Q.

Definition 7,3. RQ consists of all programs of Q which do not con-
tain the while construct of rule (7).

Since all programs of RQ halt, we have the following.

Theorem 7.4. RQ < Q

The next theorem follows immediately from [AU, Theorem
31.

Theorem 7.5. RC < RQ

The main result of this section shows that in fact, RQ is more
than powerful enough to express the aggregate functions of QUEL.

Theorem 7.6. QUEL < RQ

Proof We first show QUEL < RQ. By the previous theorem, it
suffices to show how to simulate the QUEL aggregate functions
count, sum, and product in RQ. We do this for count; the method
for sum and product is similar. There are two cases to consider.

Case 1:
The argument of count is a set term with no free variables.

Example:

count(lx I I#J(x)))

Solution:
By the previous theorem, we may let P be a program of RQ
which computes {x I +(x)) and leaves the result in the rela-

tion variable R, say. Then the following program computes
the above example in the individual variable n.

begin
P;
~ := 0;

for (x)in R do n := tr+l
end

Case 2:
The argument of count is a set term some of whose variables
are free (corresponding to a by clause in [HSWI.)

Example:
[x I count({y i @(x,y))) = 1)

Solution:
Let P be a program of RQ which computes {x,y I ~ (x,y)) and
leaves the result in R. The following program computes the
above example in the relation variable X.

begin
P;
x := 0;
for (x,y} in R do
hegin

~ := o
for (x’,y’) in R do

;f x = x’ then n := n+l;
if n = 1 then insert((x),X)

end
end

We have indicated the general technique whereby an arbitrary
QUEL wff may be translated into an equivalent RQ program, and
so established QUEL < RQ.

Strict inequality follows from Theorem 4.5 and the fact that
not every RQ program induces a query which is a total function.

❑

8. Conclusions

The comparative study of expressive power as outlined in this
paper can be used in the design of new quer,y languages. A result

which relates the expressive power of a new language to that of an

existing one provides a valuable criterion for judging the new

language.

Some of the reatdts of section 6 are also applicable to the

problem of query optimization. The proofs of Theorems 6.3, 6.5,

6.6, and 7.6 actually yield algorithms for translating a given expres-
sion of one query language into an equivalent expression in
another. These might be used by an optimizer to change a query
with universal quantifiers or set comparisons, for example, into an
equivalent query which involves only the more efficient connt
operation.

One promising direction for further research in this area
would be to incorporate results on the computational complexity of
evaluating various classes of queries.

Acknowledgment

This paper originated as a final project in Philip Bernstein’s
course in database systems at Harvard. I gratefully acknowledge his
many helpful comments amd suggestions. Thanks are also due to
Joseph Halpern for discussions concerning the model theoretic
aspects of this work. An earlier version of this paper appeared as
Technical Report TR-14-80, Aiken Computation Laboratory, Har-
vard University, August 1980.

References

[AU]

[CB]

[CH]

[cl]

[C21

[HSW]

[u]

Aho, A. V, and J. D. Unman. “1.hiversa]ity of Data
Retrieval Languages.” Proc, 6th ACM Symposium on Princi-
ples o/Programming Languages. (January 1979), 110-120.

Casanova, M. A. and P. A. Bernstein. “A Formal System
for Reasoning about Programs Accessing a Relational
Database.” ACM Transactions on Programming Languages
and Systems 2:3. I(JUIY 1980), 386-414.

Chandra, A. K. nnd D. Harel. “Computable Queries for
Relational Data Bases.” Proc, Ilth ACM Symposium on the
Theory of Computing. (May 1979), 77-90.

Codd, E. F. “A IRelational Model for Large Shared Data
Banks.” CACA4 13:6. (June 1970), 377-387.

Codd, E. F. “Relational Completeness of Data Base Sub-
Ianguages,” in Data Base Systems, R. Rustin, ed. Prentice
Hall (1972), 65-98.

Held, G. D,, M. IK Stonebraker, and E. Wong. “INGRES
- A Relational Data Base System.” Proc. 1975 National
Computer Conference. (May 1975), 409-416.

Unman, J. D. Principles of Da[abase Systems. Computer
Science Press (1980).

365

